1
|
Hu H, Lu X, He Y, Li J, Wang S, Luo Z, Wang Y, Wei J, Huang H, Duan C, Sun N. Sestrin2 in POMC neurons modulates energy balance and obesity related metabolic disorders via mTOR signaling. J Nutr Biochem 2024; 133:109703. [PMID: 39025457 DOI: 10.1016/j.jnutbio.2024.109703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Sestrin2 is a highly conserved protein that can be induced under various stress conditions. Researches have revealed that the signaling pathway of the mammalian target of rapamycin (mTOR) is essential in modulating both glucose and lipid metabolism. However, the precise involvement of Sestrin2 in the hypothalamus, particularly in pro-opiomelanocortin (POMC) neurons, in control of energy homeostasis remains uncertain. In this study, we aimed to investigate the functional role of Sestrin2 in hypothalamic POMC neurons in regulation of energy balance, as well as revealing the underlying mechanisms. Therefore, cre-dependent AAV virus encoding or silencing Sestrin2 was injected into the hypothalamic ARC of pomc-cre transgenic mice. The results demonstrated that Sestrin2 overexpression in POMC neurons ameliorated high-fat diet (HFD)-induced obesity and increased energy expenditure. Conversely, Sestrin2 deficiency in POMC neurons predisposed mice to HFD induced obesity. Additionally, the thermogenesis of brown adipose tissue and lipolysis of inguinal white adipose tissue were both enhanced by the increased sympathetic nerve innervation in Sestrin2 overexpressed mice. Further exploration revealed that Sestrin2 overexpression inhibited the mTOR signaling pathway in hypothalamic POMC neurons, which may account for the alleviation of systematic metabolic disturbance induced by HFD in these mice. Collectively, our findings demonstrate that Sestrin2 in POMC neurons plays a pivotal role in maintaining energy balance in a context of HFD-induced obesity by inhibiting the mTOR pathway, providing new insights into how hypothalamic neurons respond to nutritional signals to protect against obesity-associated metabolic dysfunction.
Collapse
Affiliation(s)
- Huiling Hu
- Department of Clinical Laboratory, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoxia Lu
- Department of Clinical Laboratory, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuqing He
- Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Li
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Shoujie Wang
- Center for Precision Medicine, Platform of Metabolomics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhijun Luo
- Emergency Department, The Seventh Affiliated Hospital, Southern Medical University, Foshan, China
| | - Ying Wang
- Department of Clinical Laboratory, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jie Wei
- Department of Clinical Laboratory, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hao Huang
- Department of Laboratory Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Chaohui Duan
- Department of Clinical Laboratory, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Nannan Sun
- Department of Obstetrics and Gynecology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Kábelová A, Malínská H, Marková I, Hüttl M, Liška F, Chylíková B, Šeda O. Quercetin supplementation in metabolic syndrome: nutrigenetic interactions with the Zbtb16 gene variant in rodent models. GENES & NUTRITION 2024; 19:22. [PMID: 39455928 PMCID: PMC11515271 DOI: 10.1186/s12263-024-00757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Quercetin is a promising phytochemical in treating abnormalities associated with metabolic syndrome (MetS). This study aimed to explore the morphometric, metabolic, transcriptomic, and nutrigenetic responses to quercetin supplementation using two genetically distinct MetS models that only differ in the variant of the MetS-related Zbtb16 gene (Zinc Finger And BTB Domain Containing 16). RESULTS Quercetin supplementation led to a significant reduction in the relative weight of retroperitoneal adipose tissue in both investigated strains. A decrease in visceral (epididymal) fat mass, accompanied by an increase in brown fat mass after quercetin treatment, was observed exclusively in the SHR strain. While the levels of serum triglycerides decreased within both strains, the free fatty acids levels decreased in SHR-Zbtb16-Q rats only. The total serum cholesterol levels were not affected by quercetin in either of the two tested strains. While there were no significant changes in brown adipose tissue transcriptome, quercetin supplementation led to a pronounced gene expression shift in white retroperitoneal adipose tissue, particularly in SHR-Zbtb16-Q. CONCLUSION Quercetin administration ameliorates certain MetS-related features; however, the efficacy of the treatment exhibits subtle variations depending on the specific variant of the Zbtb16 gene.
Collapse
Affiliation(s)
- Adéla Kábelová
- Institute of Biology and Medical Genetics, the First Faculty of Medicine, Charles University, General University Hospital in Prague, Albertov 4, Prague 2, 128 00, Czech Republic
| | - Hana Malínská
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Irena Marková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martina Hüttl
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - František Liška
- Institute of Biology and Medical Genetics, the First Faculty of Medicine, Charles University, General University Hospital in Prague, Albertov 4, Prague 2, 128 00, Czech Republic
| | - Blanka Chylíková
- Institute of Biology and Medical Genetics, the First Faculty of Medicine, Charles University, General University Hospital in Prague, Albertov 4, Prague 2, 128 00, Czech Republic
| | - Ondřej Šeda
- Institute of Biology and Medical Genetics, the First Faculty of Medicine, Charles University, General University Hospital in Prague, Albertov 4, Prague 2, 128 00, Czech Republic.
| |
Collapse
|
3
|
Wu H, Qiu Z, Wang L, Li W. Renal Fibrosis: SIRT1 Still of Value. Biomedicines 2024; 12:1942. [PMID: 39335456 PMCID: PMC11428497 DOI: 10.3390/biomedicines12091942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Chronic kidney disease (CKD) is a major global health concern. Renal fibrosis, a prevalent outcome regardless of the initial cause, ultimately leads to end-stage renal disease. Glomerulosclerosis and renal interstitial fibrosis are the primary pathological features. Preventing and slowing renal fibrosis are considered effective strategies for delaying CKD progression. However, effective treatments are lacking. Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase belonging to class III histone deacetylases, is implicated in the physiological regulation and protection of the kidney and is susceptible to a diverse array of pathological influences, as demonstrated in previous studies. Interestingly, controversial conclusions have emerged as research has progressed. This review provides a comprehensive summary of the current understanding and advancements in the field; specifically, the biological roles and mechanisms of SIRT1 in regulating renal fibrosis progression. These include aspects such as lipid metabolism, epithelial-mesenchymal transition, oxidative stress, aging, inflammation, and autophagy. This manuscript explores the potential of SIRT1 as a therapeutic target for renal fibrosis and offers new perspectives on treatment approaches and prognostic assessments.
Collapse
Affiliation(s)
- Huailiang Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.W.); (Z.Q.)
| | - Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.W.); (Z.Q.)
| | - Liyan Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.W.); (Z.Q.)
| |
Collapse
|
4
|
Tian C, Huang R, Xiang M. SIRT1: Harnessing multiple pathways to hinder NAFLD. Pharmacol Res 2024; 203:107155. [PMID: 38527697 DOI: 10.1016/j.phrs.2024.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses hepatic steatosis, non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. It is the primary cause of chronic liver disorders, with a high prevalence but no approved treatment. Therefore, it is indispensable to find a trustworthy therapy for NAFLD. Recently, mounting evidence illustrates that Sirtuin 1 (SIRT1) is strongly associated with NAFLD. SIRT1 activation or overexpression attenuate NAFLD, while SIRT1 deficiency aggravates NAFLD. Besides, an array of therapeutic agents, including natural compounds, synthetic compounds, traditional Chinese medicine formula, and stem cell transplantation, alleviates NALFD via SIRT1 activation or upregulation. Mechanically, SIRT1 alleviates NAFLD by reestablishing autophagy, enhancing mitochondrial function, suppressing oxidative stress, and coordinating lipid metabolism, as well as reducing hepatocyte apoptosis and inflammation. In this review, we introduced the structure and function of SIRT1 briefly, and summarized the effect of SIRT1 on NAFLD and its mechanism, along with the application of SIRT1 agonists in treating NAFLD.
Collapse
Affiliation(s)
- Cheng Tian
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rongrong Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Fu Y, Wang Z, Qin H. Examining the Pathogenesis of MAFLD and the Medicinal Properties of Natural Products from a Metabolic Perspective. Metabolites 2024; 14:218. [PMID: 38668346 PMCID: PMC11052500 DOI: 10.3390/metabo14040218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), characterized primarily by hepatic steatosis, has become the most prevalent liver disease worldwide, affecting approximately two-fifths of the global population. The pathogenesis of MAFLD is extremely complex, and to date, there are no approved therapeutic drugs for clinical use. Considerable evidence indicates that various metabolic disorders play a pivotal role in the progression of MAFLD, including lipids, carbohydrates, amino acids, and micronutrients. In recent years, the medicinal properties of natural products have attracted widespread attention, and numerous studies have reported their efficacy in ameliorating metabolic disorders and subsequently alleviating MAFLD. This review aims to summarize the metabolic-associated pathological mechanisms of MAFLD, as well as the natural products that regulate metabolic pathways to alleviate MAFLD.
Collapse
Affiliation(s)
| | | | - Hong Qin
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410006, China; (Y.F.); (Z.W.)
| |
Collapse
|
6
|
Sha J, Zhang M, Feng J, Shi T, Li N, Jie Z. Promyelocytic leukemia zinc finger controls type 2 immune responses in the lungs by regulating lineage commitment and the function of innate and adaptive immune cells. Int Immunopharmacol 2024; 130:111670. [PMID: 38373386 DOI: 10.1016/j.intimp.2024.111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
Type 2 immune responses are critical for host defense, mediate allergy and Th2-high asthma. The transcription factor, promyelocytic leukemia zinc finger (PLZF), has emerged as a significant regulator of type 2 inflammation in the lung; however, its exact mechanism remains unclear. In this review, we summarized recent findings regarding the ability of PLZF to control the development and function of innate lymphoid cells (ILCs), iNKT cells, memory T cells, basophils, and other immune cells that drive type 2 responses. We discussed the important role of PLZF in the pathogenesis of Th2-high asthma. Collectively, prior studies have revealed the critical role of PLZF in the regulation of innate and adaptive immune cells involved in type 2 inflammation in the lung. Therefore, targeting PLZF signaling represents a promising therapeutic approach to suppress Th2-high asthma.
Collapse
Affiliation(s)
- Jiafeng Sha
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jingjing Feng
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Tianyun Shi
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Na Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Center of Community-Based Health Research, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Hai L, Maurya VK, DeMayo FJ, Lydon JP. Establishment of Murine Pregnancy Requires the Promyelocytic Leukemia Zinc Finger Transcription Factor. Int J Mol Sci 2024; 25:3451. [PMID: 38542422 PMCID: PMC10970820 DOI: 10.3390/ijms25063451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024] Open
Abstract
Using an established human primary cell culture model, we previously demonstrated that the promyelocytic leukemia zinc finger (PLZF) transcription factor is a direct target of the progesterone receptor (PGR) and is essential for progestin-dependent decidualization of human endometrial stromal cells (HESCs). These in vitro findings were supported by immunohistochemical analysis of human endometrial tissue biopsies, which showed that the strongest immunoreactivity for endometrial PLZF is detected during the progesterone (P4)-dominant secretory phase of the menstrual cycle. While these human studies provided critical clinical support for the important role of PLZF in P4-dependent HESC decidualization, functional validation in vivo was not possible due to the absence of suitable animal models. To address this deficiency, we recently generated a conditional knockout mouse model in which PLZF is ablated in PGR-positive cells of the mouse (Plzf d/d). The Plzf d/d female was phenotypically analyzed using immunoblotting, real-time PCR, and immunohistochemistry. Reproductive function was tested using the timed natural pregnancy model as well as the artificial decidual response assay. Even though ovarian activity is not affected, female Plzf d/d mice exhibit an infertility phenotype due to an inability of the embryo to implant into the Plzf d/d endometrium. Initial cellular and molecular phenotyping investigations reveal that the Plzf d/d endometrium is unable to develop a transient receptive state, which is reflected at the molecular level by a blunted response to P4 exposure with a concomitant unopposed response to 17-β estradiol. In addition to a defect in P4-dependent receptivity, the Plzf d/d endometrium fails to undergo decidualization in response to an artificial decidual stimulus, providing the in vivo validation for our earlier HESC culture findings. Collectively, our new Plzf d/d mouse model underscores the physiological importance of the PLZF transcription factor not only in endometrial stromal cell decidualization but also uterine receptivity, two uterine cellular processes that are indispensable for the establishment of pregnancy.
Collapse
Affiliation(s)
- Lan Hai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (L.H.); (V.K.M.)
| | - Vineet K. Maurya
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (L.H.); (V.K.M.)
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA;
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (L.H.); (V.K.M.)
| |
Collapse
|