1
|
Gong Y, Li T, Liu Q, Wang X, Deng Z, Cheng L, Yu B, Liu H. Analysis of differential metabolites in serum metabolomics of patients with aortic dissection. BMC Cardiovasc Disord 2024; 24:226. [PMID: 38664632 PMCID: PMC11044603 DOI: 10.1186/s12872-024-03798-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/17/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Pathogenesis and diagnostic biomarkers of aortic dissection (AD) can be categorized through the analysis of differential metabolites in serum. Analysis of differential metabolites in serum provides new methods for exploring the early diagnosis and treatment of aortic dissection. OBJECTIVES This study examined affected metabolic pathways to assess the diagnostic value of metabolomics biomarkers in clients with AD. METHOD The serum from 30 patients with AD and 30 healthy people was collected. The most diagnostic metabolite markers were determined using metabolomic analysis and related metabolic pathways were explored. RESULTS In total, 71 differential metabolites were identified. The altered metabolic pathways included reduced phospholipid catabolism and four different metabolites considered of most diagnostic value including N2-gamma-glutamylglutamine, PC(phocholines) (20:4(5Z,8Z,11Z,14Z)/15:0), propionyl carnitine, and taurine. These four predictive metabolic biomarkers accurately classified AD patient and healthy control (HC) samples with an area under the curve (AUC) of 0.9875. Based on the value of the four different metabolites, a formula was created to calculate the risk of aortic dissection. Risk score = (N2-gamma-glutamylglutamine × -0.684) + (PC (20:4(5Z,8Z,11Z,14Z)/15:0) × 0.427) + (propionyl carnitine × 0.523) + (taurine × -1.242). An additional metabolic pathways model related to aortic dissection was explored. CONCLUSION Metabolomics can assist in investigating the metabolic disorders associated with AD and facilitate a more in-depth search for potential metabolic biomarkers.
Collapse
Affiliation(s)
- Yun Gong
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Tangzhiming Li
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Qiyun Liu
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Xiaoyu Wang
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Zixian Deng
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Lixin Cheng
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China.
| | - Biao Yu
- Luohu People's Hospital (Shenzhen Luohu Hospital Group, The Third Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, 518020, China.
| | - Huadong Liu
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China.
| |
Collapse
|
2
|
Zhang N, Yang F, Zhao P, Jin N, Wu H, Liu T, Geng Q, Yang X, Cheng L. MrGPS: an m6A-related gene pair signature to predict the prognosis and immunological impact of glioma patients. Brief Bioinform 2023; 25:bbad498. [PMID: 38171932 PMCID: PMC10782913 DOI: 10.1093/bib/bbad498] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/17/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
N6-methyladenosine (m6A) RNA methylation is the predominant epigenetic modification for mRNAs that regulates various cancer-related pathways. However, the prognostic significance of m6A modification regulators remains unclear in glioma. By integrating the TCGA lower-grade glioma (LGG) and glioblastoma multiforme (GBM) gene expression data, we demonstrated that both the m6A regulators and m6A-target genes were associated with glioma prognosis and activated various cancer-related pathways. Then, we paired m6A regulators and their target genes as m6A-related gene pairs (MGPs) using the iPAGE algorithm, among which 122 MGPs were significantly reversed in expression between LGG and GBM. Subsequently, we employed LASSO Cox regression analysis to construct an MGP signature (MrGPS) to evaluate glioma prognosis. MrGPS was independently validated in CGGA and GEO glioma cohorts with high accuracy in predicting overall survival. The average area under the receiver operating characteristic curve (AUC) at 1-, 3- and 5-year intervals were 0.752, 0.853 and 0.831, respectively. Combining clinical factors of age and radiotherapy, the AUC of MrGPS was much improved to around 0.90. Furthermore, CIBERSORT and TIDE algorithms revealed that MrGPS is indicative for the immune infiltration level and the response to immune checkpoint inhibitor therapy in glioma patients. In conclusion, our study demonstrated that m6A methylation is a prognostic factor for glioma and the developed prognostic model MrGPS holds potential as a valuable tool for enhancing patient management and facilitating accurate prognosis assessment in cases of glioma.
Collapse
Affiliation(s)
- Ning Zhang
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University
- Neuroscience Center, Shantou University Medical College, Shantou, China
| | - Fengxia Yang
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University
- Neuroscience Center, Shantou University Medical College, Shantou, China
| | - Pengfei Zhao
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University
| | - Nana Jin
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University
| | - Haonan Wu
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University
| | - Tao Liu
- International Digital Economy Academy, Shenzhen, China
| | - Qingshan Geng
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University
| | - Xiaojun Yang
- Neuroscience Center, Shantou University Medical College, Shantou, China
| | - Lixin Cheng
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University
| |
Collapse
|
3
|
Liu X, Hong C, Jiang Y, Li W, Chen Y, Ma Y, Zhao P, Li T, Chen H, Liu X, Cheng L. Co-expression module analysis reveals high expression homogeneity for both coding and non-coding genes in sepsis. BMC Genomics 2023; 24:418. [PMID: 37488493 PMCID: PMC10364430 DOI: 10.1186/s12864-023-09460-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/16/2023] [Indexed: 07/26/2023] Open
Abstract
Sepsis is a life-threatening condition characterized by a harmful host response to infection with organ dysfunction. Annually about 20 million people are dead owing to sepsis and its mortality rates is as high as 20%. However, no studies have been carried out to investigate sepsis from the system biology point of view, as previous research predominantly focused on individual genes without considering their interactions and associations. Here, we conducted a comprehensive exploration of genome-wide expression alterations in both mRNAs and long non-coding RNAs (lncRNAs) in sepsis, using six microarray datasets. Co-expression networks were conducted to identify mRNA and lncRNA modules, respectively. Comparing these sepsis modules with normal modules, we observed a homogeneous expression pattern within the mRNA/lncRNA members, with the majority of them displaying consistent expression direction. Moreover, we identified consistent modules across diverse datasets, consisting of 20 common mRNA members and two lncRNAs, namely CHRM3-AS2 and PRKCQ-AS1, which are potential regulators of sepsis. Our results reveal that the up-regulated common mRNAs are mainly involved in the processes of neutrophil mediated immunity, while the down-regulated mRNAs and lncRNAs are significantly overrepresented in T-cell mediated immunity functions. This study sheds light on the co-expression patterns of mRNAs and lncRNAs in sepsis, providing a novel perspective and insight into the sepsis transcriptome, which may facilitate the exploration of candidate therapeutic targets and molecular biomarkers for sepsis.
Collapse
Affiliation(s)
- Xiaojun Liu
- Department of Critical Care, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, 518020, China
| | - Chengying Hong
- Department of Critical Care, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, 518020, China
| | - Yichun Jiang
- Department of Critical Care, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, 518020, China
| | - Wei Li
- Department of Critical Care, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, 518020, China
| | - Youlian Chen
- Department of Critical Care, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, 518020, China
| | - Yonghui Ma
- Department of Critical Care, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, 518020, China
| | - Pengfei Zhao
- Department of Critical Care, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, 518020, China
| | - Tiyuan Li
- Department of Critical Care, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, 518020, China
| | - Huaisheng Chen
- Department of Critical Care, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, 518020, China.
| | - Xueyan Liu
- Department of Critical Care, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, 518020, China.
| | - Lixin Cheng
- Department of Critical Care, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, 518020, China.
| |
Collapse
|