1
|
Ruijiao Z, Tianyuan L, Shiyin W, Sihui M, Shumei D, Lei X, Liqin C, Zhangjie J, Qinghua P, Liangchao Q. One lung ventilation during thoracoscopic lobectomy alters lung microbiome miversity and composition. Sci Rep 2025; 15:4937. [PMID: 39929955 PMCID: PMC11811219 DOI: 10.1038/s41598-025-89233-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
Current research indicates that the lungs are not sterile and maintain their own unique microecological balance, which can be disrupted by mechanical ventilation.One-lung ventilation (OLV) induces ischemia-reperfusion (IR) injury in the non-ventilated lung, a common contributor to acute lung injury during the perioperative period. This study investigates alterations in the pulmonary microbiome following one-lung ventilation during thoracoscopic lobectomy and evaluates the impact of differential microbiota on inflammatory responses. Approved by the Hospital Ethics Committee, this study involved 65 patients undergoing thoracoscopic lobectomy from April 2024 to June 2024. An internally controlled paired analysis was implemented to compare bronchoalveolar lavage fluid(BALF) collected from the operative side lung before and after one-lung ventilation. Key outcomes included changes in lung microbiota composition, levels of IL-1β and TNF-α, and the incidence of postoperative complications, with samples preserved for future analysis. Our research revealed significant changes in the abundances of Veillonella, Rothia, Ralstonia, and Melittanglum following one-lung ventilation during thoracoscopic lobectomy. However, there were no notable changes in overall microbial diversity, and alpha diversity remained unchanged. Correspondingly, the levels of IL-1β and TNF-α in the bronchoalveolar lavage fluid significantly increased post-OLV, positively correlating with Ralstonia abundance. The operational taxonomic units and species abundances significantly decreased following one-lung ventilation; nevertheless, overall microbial diversity remained stable. In BALF, levels of IL-1β and TNF-α were markedly elevated, with Ralstonia identified as a key pulmonary microbiome agent influencing inflammatory responses after one-lung ventilation.
Collapse
Affiliation(s)
- Zhang Ruijiao
- Department of Anesthesiology and Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330001, China
| | - Li Tianyuan
- Department of Anesthesiology and Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330001, China
| | - Wu Shiyin
- Department of Anesthesiology and Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330001, China
| | - Ma Sihui
- Department of Anesthesiology and Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330001, China
| | - Deng Shumei
- Department of Anesthesiology and Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330001, China
| | - Xiong Lei
- Department of Anesthesiology and Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330001, China
| | - Cheng Liqin
- Department of Anesthesiology and Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330001, China
| | - Jiang Zhangjie
- Department of Anesthesiology and Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330001, China
| | - Peng Qinghua
- Department of Anesthesiology and Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330001, China.
| | - Qu Liangchao
- Department of Anesthesiology and Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330001, China.
| |
Collapse
|
2
|
Liu R, Zhang X, Yan J, Liu S, Li Y, Wu G, Gao J. Penehyclidine hydrochloride alleviates lung ischemia-reperfusion injury by inhibiting pyroptosis. BMC Pulm Med 2024; 24:207. [PMID: 38671448 PMCID: PMC11046774 DOI: 10.1186/s12890-024-03018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVE The aim of this research was to examine how penehyclidine hydrochloride (PHC) impacts the occurrence of pyroptosis in lung tissue cells within a rat model of lung ischemia-reperfusion injury. METHODS Twenty-four Sprague Dawley (SD) rats, weighing 250 g to 270 g, were randomly distributed into three distinct groups as outlined below: a sham operation group (S group), a control group (C group), and a test group (PHC group). Rats in the PHC group received a preliminary intravenous injection of PHC at a dose of 3 mg/kg. At the conclusion of the experiment, lung tissue and blood samples were collected and properly stored for subsequent analysis. The levels of malondialdehyde, superoxide dismutase, and myeloperoxidase in the lung tissue, as well as IL-18 and IL-1β in the blood serum, were assessed using an Elisa kit. Pyroptosis-related proteins, including Caspase1 p20, GSDMD-N, and NLRP3, were detected through the western blot method. Additionally, the dry-to-wet ratio (D/W) of the lung tissue and the findings from the blood gas analysis were also documented. RESULTS In contrast to the control group, the PHC group showed enhancements in oxygenation metrics, reductions in oxidative stress and inflammatory reactions, and a decrease in lung injury. Additionally, the PHC group exhibited lowered levels of pyroptosis-associated proteins, including the N-terminal segment of gasdermin D (GSDMD-N), caspase-1p20, and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3). CONCLUSION Pre-administration of PHC has the potential to mitigate lung ischemia-reperfusion injuries by suppressing the pyroptosis of lung tissue cells, diminishing inflammatory reactions, and enhancing lung function. The primary mechanism behind anti-pyroptotic effect of PHC appears to involve the inhibition of oxidative stress.
Collapse
Affiliation(s)
- Rongfang Liu
- Department of Anesthesiology, the Second Hospital of Hebei Medical University, NO. 215 of HePing West Road, Xinhua District Shijiazhuang, 050000, Shijiazhuang, China
- Department of Anesthesiology, Affiliated Hospital of Hebei University, 071000, Baoding, China
| | - Xuguang Zhang
- Department of Thoracic surgery, Affiliated Hospital of Hebei University, 071000, Baoding, China
| | - Jing Yan
- Electron microscope room, Hebei Medical University, 050000, Shijiazhuang, China
| | - Shan Liu
- Department of Pathology, Affiliated Hospital of Hebei University, 071000, Baoding, China
| | - Yongle Li
- Department of Anesthesiology, Affiliated Hospital of Hebei University, 071000, Baoding, China
| | - Guangyi Wu
- Department of Anesthesiology, Affiliated Hospital of Hebei University, 071000, Baoding, China
| | - Jingui Gao
- Department of Anesthesiology, the Second Hospital of Hebei Medical University, NO. 215 of HePing West Road, Xinhua District Shijiazhuang, 050000, Shijiazhuang, China.
| |
Collapse
|
3
|
Feng H, Zhang J, Wang X, Guo Z, Wang L, Zhang K, Li J. Baicalin Protects Broilers against Avian Coronavirus Infection via Regulating Respiratory Tract Microbiota and Amino Acid Metabolism. Int J Mol Sci 2024; 25:2109. [PMID: 38396786 PMCID: PMC10888704 DOI: 10.3390/ijms25042109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
An increasing amount of evidence indicates that Baicalin (Bai, a natural glycosyloxyflavone compound) exhibits an antiviral effect against avian viruses. However, it remains unclear if the antiviral effect of Bai against infectious bronchitis virus (IBV) is exerted indirectly by modulating respiratory tract microbiota and/or their metabolites. In this study, we investigated the protection efficacy of Bai in protecting cell cultures and broilers from IBV infection and assessed modulation of respiratory tract microbiota and metabolites during infection. Bai was administered orally to broilers by being mixed in with drinking water for seven days. Ultimately, broilers were challenged with live IBV. The results showed that Bai treatment reduced respiratory tract symptoms, improved weight gain, slowed histopathological damage, reduced virus loads and decreased pro-inflammation cytokines production. Western blot analysis demonstrated that Bai treatment significantly inhibited Toll-like receptor 7 (TLR7), myeloid differentiation factor 88 (MyD88) and nuclear factor kappa-B (NF-κB) expression both in cell culture and cells of the trachea. Bai treatment reversed respiratory tract microbiota dysbiosis, as shown by 16S rDNA sequencing in the group of broilers inoculated with IBV. Indeed, we observed a decrease in Proteobacteria abundance and an increase in Firmicutes abundance. Metabolomics results suggest that the pentose phosphate pathway, amino acid and nicotinamide metabolism are linked to the protection conferred by Bai against IBV infection. In conclusion, these results indicated that further assessment of anti-IBV strategies based on Bai would likely result in the development of antiviral molecule(s) which can be administered by being mixed with feed or water.
Collapse
Affiliation(s)
- Haipeng Feng
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (H.F.); (J.Z.); (L.W.); (Z.G.)
| | - Jingyan Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (H.F.); (J.Z.); (L.W.); (Z.G.)
| | - Xuezhi Wang
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China;
| | - Zhiting Guo
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (H.F.); (J.Z.); (L.W.); (Z.G.)
| | - Lei Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (H.F.); (J.Z.); (L.W.); (Z.G.)
| | - Kang Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (H.F.); (J.Z.); (L.W.); (Z.G.)
| | - Jianxi Li
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (H.F.); (J.Z.); (L.W.); (Z.G.)
| |
Collapse
|
4
|
Ju S, Liu M, Wang B, Yu D, Zhang H, Zhang M, Li J. Transcutaneous electrical acupoint stimulation improves pulmonary function by regulating oxidative stress during one-lung ventilation in patients with lung cancer undergoing thoracoscopic surgery: a randomized controlled trial. BMC Complement Med Ther 2023; 23:463. [PMID: 38104066 PMCID: PMC10725027 DOI: 10.1186/s12906-023-04304-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Our aim was to evaluate the efficacy of transcutaneous electrical acupoint stimulation (TEAS) on oxidative stress induced by one-lung ventilation, lung function, and postoperative quality of recovery in patients with lung cancer. METHODS The participants (n = 80) were assigned to the sham group and TEAS group. TEAS on bilateral Feishu (BL13), Zusanli (ST36), and Hegu (L14) was performed 30 minutes before induction of anesthesia and continued until the end of the surgery. In the sham group, the same acupoints were selected without electrical stimulation. PaO2/FiO2, intrapulmonary shunt ratio (Qs/Qt), alveolar-arterial oxygen tension (A-aDO2), and respiratory index (RI) were calculated to evaluate lung function before one-lung ventilation (T0), 30 min after one-lung ventilation (T1), 1 h after one-lung ventilation (T2), and 10 min after resuming two-lung ventilation (T3). The levels of malondialdehyde (MDA) and superoxide dismutase (SOD) were detected to estimate oxidative stress at T0, T1, T2, and T3. Secondary outcomes included removal time of thoracic drainage tube, duration of intensive care unit (ICU) stay, length of postoperative hospitalization, the incidence of postoperative pulmonary complications, and the Quality of Recovery-15 (QoR-15) score on postoperative day 1 and 2. RESULTS TEAS significantly increased PaO2/FiO2 at T1 and T2, while Qs/Qt, A-aDO2, and RI decreased remarkably from T1 to T3 (P < 0.05). Meanwhile, TEAS obviously decreased MDA and increased SOD activity at T2 and T3 (P < 0.05). Furthermore, TEAS also markedly shortened the length of ICU stay and hospital stay after surgery, whereas the QoR-15 score on postoperative day 1 and 2 was significantly higher (P < 0.05). CONCLUSIONS TEAS could reduce oxidative lung injury during one-lung ventilation, thereby protecting pulmonary function and effectively accelerating the early recovery of patients with lung cancer. TRIAL REGISTRATION Chinese Clinical Trial Registry (ChiCTR2000038243).
Collapse
Affiliation(s)
- Songxu Ju
- Department of Anesthesiology, Hebei General Hospital, 348 Heping West Road, Shijiazhuang, 050051, Hebei, China
| | - Meinv Liu
- Department of Anesthesiology, Hebei General Hospital, 348 Heping West Road, Shijiazhuang, 050051, Hebei, China
| | - Bei Wang
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, China
| | - Dongdong Yu
- Department of Anesthesiology, Hebei General Hospital, 348 Heping West Road, Shijiazhuang, 050051, Hebei, China
| | - Huanhuan Zhang
- Department of Anesthesiology, Hebei General Hospital, 348 Heping West Road, Shijiazhuang, 050051, Hebei, China
| | - Meng Zhang
- Department of Anesthesiology, Hebei General Hospital, 348 Heping West Road, Shijiazhuang, 050051, Hebei, China
| | - Jianli Li
- Department of Anesthesiology, Hebei General Hospital, 348 Heping West Road, Shijiazhuang, 050051, Hebei, China.
| |
Collapse
|
5
|
Ferroptosis in Rat Lung Tissue during Severe Acute Pancreatitis-Associated Acute Lung Injury: Protection of Qingyi Decoction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:5827613. [PMID: 36820405 PMCID: PMC9938780 DOI: 10.1155/2023/5827613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/06/2022] [Accepted: 11/25/2022] [Indexed: 02/13/2023]
Abstract
Qingyi decoction (QYD) has anti-inflammatory pharmacological properties and substantial therapeutic benefits on severe acute pancreatitis (SAP) in clinical practice. However, its protective mechanism against SAP-associated acute lung injury (ALI) remains unclear. In this study, we screened the active ingredients of QYD from the perspective of network pharmacology to identify its core targets and signaling pathways against SAP-associated ALI. Rescue experiments were used to determine the relationship between QYD and ferroptosis. Then, metabolomics and 16s rDNA sequencing were used to identify differential metabolites and microbes in lung tissue. Correlation analysis was utilized to explore the relationship between core targets, signaling pathways, metabolic phenotypes, and microbial flora, sorting out the potential molecular network of QYD against SAP-associated lung ALI. Inflammatory damage was caused by SAP in the rat lung. QYD could effectively alleviate lung injury, improve respiratory function, and significantly reduce serum inflammatory factor levels in SAP rats. Network pharmacology and molecular docking identified three key targets: ALDH2, AnxA1, and ICAM-1. Mechanistically, QYD may inhibit ferroptosis by promoting the ALDH2 expression and suppress neutrophil infiltration by blocking the cleavage of intact AnxA1 and downregulating ICAM-1 expression. Ferroptosis activator counteracts the pulmonary protective effect of QYD in SAP rats. In addition, seven significant differential metabolites were identified in lung tissues. QYD relatively improved the lung microbiome's abundance in SAP rats. Further correlation analysis determined the correlation between ferroptosis, differential metabolites, and differential microbes. In this work, the network pharmacology, metabolomics, and 16s rDNA sequencing were integrated to uncover the mechanism of QYD against SAP-associated ALI. This novel integrated method may play an important role in future research on traditional Chinese medicine.
Collapse
|