1
|
Liu J, Luo R, Zhang Y, Li X. Current status and perspective on molecular targets and therapeutic intervention strategy in hepatic ischemia-reperfusion injury. Clin Mol Hepatol 2024; 30:585-619. [PMID: 38946464 PMCID: PMC11540405 DOI: 10.3350/cmh.2024.0222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024] Open
Abstract
Hepatic ischemia‒reperfusion injury (HIRI) is a common and inevitable complication of hepatic trauma, liver resection, or liver transplantation. It contributes to postoperative organ failure or tissue rejection, eventually affecting patient prognosis and overall survival. The pathological mechanism of HIRI is highly complex and has not yet been fully elucidated. The proposed underlying mechanisms include mitochondrial damage, oxidative stress imbalance, abnormal cell death, immune cell hyperactivation, intracellular inflammatory disorders and other complex events. In addition to serious clinical limitations, available antagonistic drugs and specific treatment regimens are still lacking. Therefore, there is an urgent need to not only clarify the exact etiology of HIRI but also reveal the possible reactions and bottlenecks of existing drugs, helping to reduce morbidity and shorten hospitalizations. We analyzed the possible underlying mechanism of HIRI, discussed various outcomes among different animal models and explored neglected potential therapeutic strategies for HIRI treatment. By thoroughly reviewing and analyzing the literature on HIRI, we gained a comprehensive understanding of the current research status in related fields and identified valuable references for future clinical and scientific investigations.
Collapse
Affiliation(s)
- Jia Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ranyi Luo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yinhao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Kamińska D, Skrzycki M. Lipid droplets, autophagy, and ER stress as key (survival) pathways during ischemia-reperfusion of transplanted grafts. Cell Biol Int 2024; 48:253-279. [PMID: 38178581 DOI: 10.1002/cbin.12114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Ischemia-reperfusion injury is an event concerning any organ under a procedure of transplantation. The early result of ischemia is hypoxia, which causes malfunction of mitochondria and decrease in cellular ATP. This leads to disruption of cellular metabolism. Reperfusion also results in cell damage due to reoxygenation and increased production of reactive oxygen species, and later by induced inflammation. In damaged and hypoxic cells, the endoplasmic reticulum (ER) stress pathway is activated by increased amount of damaged or misfolded proteins, accumulation of free fatty acids and other lipids due to inability of their oxidation (lipotoxicity). ER stress is an adaptive response and a survival pathway, however, its prolonged activity eventually lead to induction of apoptosis. Sustaining cell functionality in stress conditions is a great challenge for transplant surgeons as it is crucial for maintaining a desired level of graft vitality. Pathways counteracting negative consequences of ischemia-reperfusion are autophagy and lipid droplets (LD) metabolism. Autophagy remove damaged organelles and molecules driving them to lysosomes, digested simpler compounds are energy source for the cell. Mitophagy and ER-phagy results in improvement of cell energetic balance and alleviation of ER stress. This is important in sustaining metabolic homeostasis and thus cell survival. LD metabolism is connected with autophagy as LD are degraded by lipophagy, a source of free fatty acids and glycerol-thus autophagy and LD can readily remove lipotoxic compounds in the cell. In conclusion, monitoring and pharmaceutic regulation of those pathways during transplantation procedure might result in increased/improved vitality of transplanted organ.
Collapse
Affiliation(s)
- Daria Kamińska
- Department of Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warszawa, Poland
| | - Michał Skrzycki
- Chair and Department of Biochemistry, Medical University of Warsaw, Warszawa, Poland
| |
Collapse
|
3
|
Mouratidou C, Pavlidis ET, Katsanos G, Kotoulas SC, Mouloudi E, Tsoulfas G, Galanis IN, Pavlidis TE. Hepatic ischemia-reperfusion syndrome and its effect on the cardiovascular system: The role of treprostinil, a synthetic prostacyclin analog. World J Gastrointest Surg 2023; 15:1858-1870. [PMID: 37901735 PMCID: PMC10600776 DOI: 10.4240/wjgs.v15.i9.1858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023] Open
Abstract
Hepatic ischemia-reperfusion syndrome has been the subject of intensive study and experimentation in recent decades since it is responsible for the outcome of several clinical entities, such as major hepatic resections and liver transplantation. In addition to the organ's post reperfusion injury, this syndrome appears to play a central role in the dysfunction of distant tissues and systems. Thus, continuous research should be directed toward finding effective therapeutic options to improve the outcome and reduce the postoperative morbidity and mortality rates. Treprostinil is a synthetic analog of prostaglandin I2, and its experimental administration has shown encouraging results. It has already been approved by the Food and Drug Administration in the United States for pulmonary arterial hypertension and has been used in liver transplantation, where preliminary encouraging results showed its safety and feasibility by using continuous intravenous administration at a dose of 5 ng/kg/min. Treprostinil improves renal and hepatic function, diminishes hepatic oxidative stress and lipid peroxidation, reduces hepatictoll-like receptor 9 and inflammation, inhibits hepatic apoptosis and restores hepatic adenosine triphosphate (ATP) levels and ATP synthases, which is necessary for functional maintenance of mitochondria. Treprostinil exhibits vasodilatory properties and antiplatelet activity and regulates proinflammatory cytokines; therefore, it can potentially minimize ischemia-reperfusion injury. Additionally, it may have beneficial effects on cardiovascular parameters, and much current research interest is concentrated on this compound.
Collapse
Affiliation(s)
| | - Efstathios T Pavlidis
- 2nd Propedeutic Department of Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Georgios Katsanos
- Department of Transplantation, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | | | - Eleni Mouloudi
- Intensive Care Unit, Hippokration General Hospital, Thessaloniki 54642, Greece
| | - Georgios Tsoulfas
- Department of Transplantation, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Ioannis N Galanis
- 2nd Propedeutic Department of Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Theodoros E Pavlidis
- 2nd Propedeutic Department of Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| |
Collapse
|