1
|
Luo S, Xu J, Mo C, Gong W, Li C, Hou X, Ou M. High-throughput sequencing reveals twelve cell death pattern prognostic target genes as potential drug-response-associated genes in the treatment of colorectal cancer cells with palmatine hydrochloride. ONCOLOGIE 2024. [DOI: 10.1515/oncologie-2024-0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Abstract
Objectives
Palmatine Hydrochloride (PaH), an isoquinoline alkaloid from Phellodendron amurense and Coptis chinensis, has analgesic, anti-inflammatory, and anticancer properties. This study aimed to assess PaH’s effectiveness against SW480 colorectal cancer (CRC) cells and explore its molecular mechanisms.
Methods
PaH’s effects on SW480 CRC cells were evaluated using MTT assays for proliferation, scratch assays for migration, and flow cytometry for apoptosis. Differentially expressed genes (DEGs) were identified through high-throughput sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses assessed DEG roles. Prognostic significance related to programmed cell death (PCD) was analyzed using R-Package with TCGA data. RT-qPCR validated key genes identified.
Results
PaH significantly inhibited SW480 cell growth, invasion, and apoptosis. The MTT assay showed inhibition rates increased from 5.49 % at 25 μg/mL to 52.48 % at 400 μg/mL. Scratch assays indicated reduced cell invasion over 24, 48, and 72 h. Apoptosis rose from 12.36 % in controls to 45.54 % at 400 μg/mL. Sequencing identified 3,385 significant DEGs, primarily in cancer pathways (p=0.004). Among 35 PCD-related DEGs, Lasso Cox regression highlighted 12 key genes, including TERT, TGFBR1, WNT4, and TP53. RT-qPCR confirmed TERT and TGFBR1 downregulation (0.614-fold, p=0.008; 0.41-fold, p<0.001) and TP53 and WNT4 upregulation (5.634-fold, p<0.001; 5.124-fold, p=0.002).
Conclusions
PaH inhibits CRC cell proliferation, migration, and invasion by modulating key PCD genes, suggesting its potential as a CRC therapeutic agent.
Collapse
Affiliation(s)
- Sha Luo
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
| | - Jiajun Xu
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
| | - Chune Mo
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
| | - Weiwei Gong
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
| | - Chunhong Li
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
| | - Xianliang Hou
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
| | - Minglin Ou
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
| |
Collapse
|
2
|
Xu Q, Jin Z, Yuan Z, Yu Z, Gao J, Zhao R, Li H, Ren H, Cao B, Wei B, Jiang L. YAP Promotes Chemoresistance to 5-FU in Colorectal Cancer Through mTOR/GLUT3 Axis. J Cancer 2024; 15:6784-6797. [PMID: 39668819 PMCID: PMC11632981 DOI: 10.7150/jca.100179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/28/2024] [Indexed: 12/14/2024] Open
Abstract
Background: Although chemoresistance constitutes a significant barrier to the effectiveness of chemotherapy in colorectal cancer (CRC), its precise mechanisms remain unclear. YAP functions as an oncogene in various malignancies. However, the relationship between YAP and chemoresistance in CRC needs clarification. Methods: The expression level of YAP in CRC tissues was assessed through immunohistochemistry (IHC), and the impact of YAP on CRC cell chemoresistance was evaluated using the Cell Counting Kit-8, EdU, and flow cytometry assays. Meanwhile, tumor proliferation was assessed in vivo by analyzing the expression of PCNA and Ki-67 in subcutaneous tumors via IHC. In addition, the TUNEL assay was employed to evaluate tumor apoptosis levels and western blot was utilized to detect the mTOR/GLUT3 pathway-related protein expression to provide insights into the underlying mechanism. Results: YAP was highly expressed in CRC tissues and correlated with patient prognosis and clinicopathological features. Bioinformatic analysis based on the TCGA database revealed that YAP was associated with DNA replication, glycolysis, and the mTOR pathway. Meanwhile, YAP could enhance chemoresistance and glycolysis in CRC cells both in vitro and in vivo. Additional mechanistic experiments unveiled that YAP promoted CRC cell chemoresistance via the mTOR/GLUT3 axis. Conclusion: This study validated the role of YAP as an oncogene in CRC, as it promoted chemoresistance through the mTOR/GLUT3 axis. These results suggested YAP as a potential target for promoting the efficacy of chemotherapy in patients with CRC.
Collapse
Affiliation(s)
- Qixuan Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Zhesi Jin
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu,China
| | - Zhen Yuan
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Zhiyuan Yu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Jingwang Gao
- Department of General Surgery, Linfen Central Hospital, Linfen, Shanxi, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Huiguang Ren
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Linhua Jiang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
3
|
Huang H, Chen X, Xu J, Tu M, Lai B, Ouyang X. Prognostic impact of postoperative adjuvant chemotherapy on elderly patients with colorectal adenocarcinoma: A propensity score matching study. J Gastroenterol Hepatol 2024; 39:2351-2359. [PMID: 39136187 DOI: 10.1111/jgh.16685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 12/06/2024]
Abstract
BACKGROUND AND AIM Currently, the primary treatment modality for patients with colorectal adenocarcinoma (CRA) is radical surgery combined with postoperative adjuvant chemotherapy (PAC). However, many elderly patients decline PAC due to concerns about their underlying physiological condition, and the impact of PAC on the prognosis of elderly patients remains uncertain. METHODS We extracted data from the SEER database for CRA patients aged 75 and above between 2010 and 2019. Utilizing propensity score matching (PSM), we stratified the patients into a PAC group and a non-PAC group, enabling us to compare the differences in Kaplan-Meier survival curves between these two groups. Furthermore, through univariate and multivariate Cox regression analyses, we identified the clinical factors that influence the survival of elderly CRA patients and compared the prognostic disparities between the two patient groups within specific subgroups of these clinical factors. RESULTS Following PSM, a total of 3668 patients were included and divided into the PAC group and the non-PAC group, with no statistically significant differences observed in crucial clinical characteristics between the two groups. Kaplan-Meier analysis revealed a significantly better prognosis for patients in the PAC group compared with those in the non-PAC group. In addition, age, chemotherapy, TNM staging, gender, and preoperative CEA levels were all identified as important factors affecting patient prognosis. Moreover, PAC provided survival benefits across the majority of levels within the aforementioned subgroups. However, in specific subgroups (age > 90, Grade IV stage, median household income < $40 000), PAC did not confer any survival benefits. CONCLUSION PAC can significantly improve the prognosis of elderly CRA patients. Nonetheless, in certain population subsets characterized by specific clinical features, PAC does not provide any survival benefits.
Collapse
Affiliation(s)
- Heng Huang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xijiong Chen
- Health Science Center, Ningbo University, Ningbo, China
| | - Jinyi Xu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Maopu Tu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Lai
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xi Ouyang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Wu X, Feng N, Wang C, Jiang H, Guo Z. Small molecule inhibitors as adjuvants in cancer immunotherapy: enhancing efficacy and overcoming resistance. Front Immunol 2024; 15:1444452. [PMID: 39161771 PMCID: PMC11330769 DOI: 10.3389/fimmu.2024.1444452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Adjuvant therapy is essential in cancer treatment to enhance primary treatment effectiveness, reduce adverse effects, and prevent recurrence. Small molecule inhibitors as adjuvants in cancer immunotherapy aim to harness their immunomodulatory properties to optimize treatment outcomes. By modulating the tumor microenvironment, enhancing immune cell function, and increasing tumor sensitivity to immunotherapy, small molecule inhibitors have the potential to improve patient responses. This review discusses the evolving use of small molecule inhibitors as adjuvants in cancer treatment, highlighting their role in enhancing the efficacy of immunotherapy and the opportunities for advancing cancer therapies in the future.
Collapse
Affiliation(s)
- Xiaolin Wu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nuan Feng
- Department of Nutrition, Peking University People’s Hospital, Qingdao, China
- Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Zhu Guo
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Okpoghono J, Isoje EF, Igbuku UA, Ekayoda O, Omoike GO, Adonor TO, Igue UB, Okom SU, Ovowa FO, Stephen-Onojedje QO, Ejueyitsi EO, Seigha AA. Natural polyphenols: A protective approach to reduce colorectal cancer. Heliyon 2024; 10:e32390. [PMID: 38961927 PMCID: PMC11219337 DOI: 10.1016/j.heliyon.2024.e32390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Background A form of cancer that affects the rectum or colon (large intestine) is called colorectal cancer (CRC). The main risk factors for CRC include dietary, lifestyle, and environmental variables. Currently natural polyphenols have demonstrated impressive anticarcinogenic capabilities. Objective The main objective was to provide an updated, thorough assessment of the defensive mechanism of natural polyphenols for the global suppression of colorectal cancer. More precisely, this study aimed to analyze a set of chosen polyphenols with demonstrated safety, effectiveness, and biochemical defense mechanism on colon cancer models in order to facilitate future research. Methods This review was carried out with purposefully attentive and often updated scientific databases, including PubMed, Scopus, Science Direct, and Web of Science. After selecting approximately 178 potentially relevant papers based just on abstracts, 145 studies were meticulously reviewed and discussed. Results The outcomes disclosed that anti-CRC mechanisms of natural polyphenols involved the control of several molecular and signaling pathways. Natural polyphenols have also been shown to have the ability to limit the growth and genesis of tumors via altering the gut microbiota and cancer stem cells. However, the biochemical uses of many natural polyphenols have remained restricted because of their truncated water solubility and low bioavailability. In order to attain synergistic properties it is recommended to combine the use of different natural polyphenols because of their low bioavailability and volatility. However, the use of lipid-based nano- and micro-carriers also may be helpful to solve these problems with efficient distribution system to target sites. Conclusion In conclusion, the use of polyphenols for CRC treatment appears promising. To ascertain their efficacy, more clinical research is anticipated.
Collapse
Affiliation(s)
- Joel Okpoghono
- Department of Biochemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Endurance F. Isoje
- Department of Science Laboratory Technology (Biochemistry Option), Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Ufuoma A. Igbuku
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Ovigueroye Ekayoda
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Delta State, Nigeria
| | - Godson O. Omoike
- Department of Public Health, School of Health and Society, University of Wolverhampton, United Kingdom
| | - Treasure O. Adonor
- Department of Biotechnology, Faculty of Life Science, University of Essex, United Kingdom
| | - Udoka B. Igue
- Department of Chemical Sciences, Novena University, Ogume, Delta State, Nigeria
| | - Solomon U. Okom
- Department of Biochemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Faith O. Ovowa
- Department of Science Laboratory Technology (Biochemistry Option), Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Queen O. Stephen-Onojedje
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Delta State, Nigeria
| | - Ejiro O. Ejueyitsi
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Delta State, Nigeria
| | - Anita A. Seigha
- Department of Chemical Sciences, Novena University, Ogume, Delta State, Nigeria
| |
Collapse
|
6
|
Narwanti I, Yu ZY, Sethy B, Lai MJ, Lee HY, Olena P, Lee SB, Liou JP. 6-Regioisomeric 5,8-quinolinediones as potent CDC25 inhibitors against colorectal cancers. Eur J Med Chem 2023; 258:115505. [PMID: 37302341 DOI: 10.1016/j.ejmech.2023.115505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Precise and accurate control of cell cycle progression is required to maintain cell identity and proliferation. Failing to keep it will lead to genome instability and tumorigenesis. Cell Division Cycle 25 (CDC25) phosphatases are the key to regulating the activity of the master cell cycle controller, cyclin-dependent kinases (CDKs). Dysregulation of CDC25 has been shown to associate with several human malignancies. Here, we reported a series of derivatives of the CDC25 inhibitor, NSC663284, bearing quinones as core scaffolds and morpholin alkylamino side chains. Among these derivatives, the cytotoxic activity of the 6-isomer of 5,8-quinolinedione derivatives (6b, 16b, 17b, and 18b) displayed higher potency against colorectal cancer (CRC) cells. Compound 6b possessed the most antiproliferative activity, with IC50 values of 0.59 μM (DLD1) and 0.44 μM (HCT116). The treatment of compound 6b resulted in a remarkable effect on cell cycle progression, blocking S-phase progression in DLD1 cells straight away while slowing S-phase progression and accumulated cells in the G2/M phase in HCT116 cells. Furthermore, we showed that compound 6b inhibited CDK1 dephosphorylation and H4K20 methylation in cells. The treatment with compound 6b induced DNA damage and triggered apoptosis. Our study identifies compound 6b as a potent CDC25 inhibitor that induces genome instability and kills cancer cells through an apoptotic pathway, deserving further investigation to fulfill its candidacy as an anti-CRC agent.
Collapse
Affiliation(s)
- Iin Narwanti
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
| | - Zih-Yao Yu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Bidyadhar Sethy
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Mei-Jung Lai
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Hsueh-Yun Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | | | - Sung-Bau Lee
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
7
|
Huang MY, Huang YJ, Cheng TL, Jhang WY, Ke CC, Chen YT, Kuo SH, Lin IL, Huang YH, Chuang CH. XPF-ERCC1 Blocker Improves the Therapeutic Efficacy of 5-FU- and Oxaliplatin-Based Chemoradiotherapy in Colorectal Cancer. Cells 2023; 12:1475. [PMID: 37296596 PMCID: PMC10252687 DOI: 10.3390/cells12111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
5-FU-based chemoradiotherapy (CRT) and oxaliplatin-based CRT are commonly used therapies for advanced colorectal cancer (CRC). However, patients with a high expression of ERCC1 have a worse prognosis than those with a low expression. In this study, we investigated the effect of XPF-ERCC1 blockers on chemotherapy and 5-FU-based CRT and oxaliplatin (OXA)-based CRT in colorectal cancer cell lines. We investigated the half-maximal inhibitory concentration (IC50) of 5-FU, OXA, XPF-ERCC1 blocker, and XPF-ERCC1 blocker, and 5-FU or OXA combined and analyzed the effect of XPF-ERCC1 blocker on 5-FU-based CRT and oxaliplatin-based CRT. Furthermore, the expression of XPF and γ-H2AX in colorectal cells was analyzed. In animal models, we combined the XPF-ERCC1 blocker with 5-FU and OXA to investigate the effects of RC and finally combined the XPF-ERCC1 blocker with 5-FU- and oxaliplatin-based CRT. In the IC50 analysis of each compound, the cytotoxicity of the XPF-ERCC1 blocker was lower than that of 5-FU and OXA. In addition, the XPF-ERCC1 blocker combined with 5-FU or OXA enhanced the cytotoxicity of the chemotherapy drugs in colorectal cells. Furthermore, the XPF-ERCC1 blocker also increased the cytotoxicity of 5-FU-based CRT and OXA -based CRT by inhibiting the XPF product DNA locus. In vivo, the XPF-ERCC1 blocker was confirmed to enhance the therapeutic efficacy of 5-FU, OXA, 5-FU-based CRT, and OXA CRT. These findings show that XPF-ERCC1 blockers not only increase the toxicity of chemotherapy drugs but also increase the efficacy of combined chemoradiotherapy. In the future, the XPF-ERCC1 blocker may be used to improve the efficacy of 5-FU- and oxaliplatin-based CRT.
Collapse
Grants
- (KMU-DK(B)110005, KMU-S110002 and KMU-M111011, (KMU-DK(B)110006, KMU-DK(B)110006-2, KMU-DK(B)111001-3, KMU-DK(B)112002-1, KMU-DK(B)112002-3, KMU-KI110004, KMU-DK(B)110005, KMU-S110002, KMU-TC111A03-2 and KMU-M111011) Kaohsiung Medical University
- (KMUH-DK(B)110005-1, KMUH-DK(B)110005-2, KMUH-DK(B)110005-3, KMUH-DK(B)110005-4, KMUH110-0R72, KMUH111-1R69) Kaohsiung Medical University Hospital
- (NSYSUKMU 110-I002, KAFGH_D_112023) NSYSU-KMU joint research project
- (802KB109388) Medical Research Fund of Kaohsiung Armed Forces General Hospital
- (110KK004, NK110I02-2, 110E9010BA11) National Kaohsiung Marine University
- (110KK004) National Sun Yat-sen University
- (MOST108-2314-B-037-021-MY3, MOST110-2320-B-037-027-MY3, MOST110-2314-B-037-075-MY2, MOST103-2314-B-037-010-MY3, MOST106-2314-B-037-019, MOST108-2314-B-037-021-MY3, MOST 110-2628-B-037-010, MOST 110-2320-B-037-027-MY3, MOST 111-2628-B-037-010 and MOST 111 Ministry of Science and Technology, Taiwan
- PT111001, PT111002 Kaohsiung Medical University
Collapse
Affiliation(s)
- Ming-Yii Huang
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Jung Huang
- Department of Biochemistry, School of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tian-Lu Cheng
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wun-Ya Jhang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chien-Chih Ke
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yi-Ting Chen
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shih-Hsun Kuo
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - I-Ling Lin
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yu-Hsiang Huang
- Post-Graduate Year Training, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Hung Chuang
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
8
|
Li T, Yu J, Hou M, Zha S, Cheng Q, Zheng Q, Li L. Quantitative evaluation of therapy options for relapsed/refractory diffuse large B-cell lymphoma: A model-based meta-analysis. Pharmacol Res 2023; 187:106592. [PMID: 36470547 DOI: 10.1016/j.phrs.2022.106592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
New therapies for relapsed/refractory diffuse large B-cell lymphoma (r/rDLBCL) have emerged in recent years, but there have been no comprehensive quantitative comparisons of the efficacy of these therapies. In this study, the efficacy characteristics of 11 types of treatment strategy and 63 treatment regimens were compared by model based meta-analysis. We found that compared with monotherapy, association therapy had significant benefits in terms of overall survival (OS), progression-free survival (PFS), and objective response rate (ORR). However, whereas treatment regimens involving chemotherapy contributed to significant improvements in ORR and PFS, OS was not improved. In terms of treatment strategy, we identified chemotherapy in association with immunotherapy sequential autologous stem cell transplantation (ASCT), the association of two different types of immunotherapies, chemotherapy sequential ASCT, chemotherapy in association with immunotherapy, and chemotherapy in association with two types of immunotherapies as showing better efficacy. With respect to specific treatment regimens, we found that the following had better efficacy: rituximab in association with inotuzumab ozogamicin; rituximab in association with carmustine, etoposide, cytarabine, and melphalan sequential ASCT (R-BEAM+ASCT); lenalidomide in association with rituximab, etoposide, cisplatin, cytarabine, and methylprednisolone; iodine-131 tositumomab in association with BEAM sequential ASCT; and chemotherapy sequential chimeric antigen receptor T-cell immunotherapy, with median OS of 48.2, 34.2, 27.8, 25.8, and 25 months, respectively. Moreover, with respect to association therapy, there was a strong correlation between the 6-month PFS and 2-year OS. The findings of this study provide the necessary quantitative information for clinical practice and clinical trial design for the treatment of r/rDLBCL.
Collapse
Affiliation(s)
- Ting Li
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, China
| | - Jiesen Yu
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, China
| | - Mengyuan Hou
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, China
| | - Sijie Zha
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, China
| | - Qingqing Cheng
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, China
| | - Qingshan Zheng
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, China.
| | - Lujin Li
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
9
|
3,3′-Diindolylmethane Enhances Fluorouracil Sensitivity via Inhibition of Pyrimidine Metabolism in Colorectal Cancer. Metabolites 2022; 12:metabo12050410. [PMID: 35629914 PMCID: PMC9144298 DOI: 10.3390/metabo12050410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Chemoresistance limits treatment outcomes in colorectal cancer (CRC) patients. A dimeric metabolite of indole-3-carbinol, 3,3′-diindolylmethane (DIM) is abundant in cruciferous vegetables and has shown anticancer efficacy. The role of DIM in regulating chemosensitivity in CRC remains unknown. In this study, we demonstrated that DIM treatment inhibits the malignant progression of CRC. RNA sequencing indicated that pyrimidine synthesis genes are attenuated by DIM treatment. Stable 13C-labeled glucose tracing revealed that DIM inhibits de novo pyrimidine biosynthesis in CRC. DIM increases 5-FU cytotoxicity in CRC via regulation of the expression of pyrimidine metabolism-related genes. DIM synergizes with 5-FU to enhance its inhibitory effects on CRC both in vivo and in vitro. Our results suggest that DIM improves the therapeutic outcomes of FU-based chemotherapy in CRCs by inhibiting pyrimidine metabolism, identifying a new strategy for clinical therapy.
Collapse
|