1
|
Wang R, Liu Y, Liu M, Zhang M, Li C, Xu S, Tang S, Ma Y, Wu X, Fei W. Combating tumor PARP inhibitor resistance: Combination treatments, nanotechnology, and other potential strategies. Int J Pharm 2025; 669:125028. [PMID: 39638266 DOI: 10.1016/j.ijpharm.2024.125028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
PARP (poly (ADP-ribose) polymerase) inhibitors (PARPi) have demonstrated significant potential in cancer treatment, particularly in tumors with breast cancer susceptibility gene (BRCA) mutations and other DNA repair deficiencies. However, the development of resistance to PARPi has become a major challenge in their clinical application. The emergence of drug resistance leads to reduced efficacy of the PARPi over time, impacting long-term treatment outcomes and survival rates. PARPi resistance in tumors often arises as cells activate alternative DNA repair pathways or evade the effect of PARPi, diminishing therapeutic effectiveness. Consequently, overcoming resistance is crucial for maintaining treatment efficacy and improving patient prognosis. This paper reviews the strategies to overcome PARPi resistance through combination treatment and nanotechnology therapy. We first review the current combination therapies with PARPi, including anti-angiogenic therapies, radiotherapies, immunotherapies, and chemotherapies, and elucidate their mechanisms for overcoming PARPi resistance. Additionally, this paper focuses on the application of nanotechnology in improving the effectiveness of PARPi and overcoming drug resistance. Subsequently, this paper presents several promising strategies to tackle PARPi resistance, including but not limited to: structural modifications of PARPi, deployment of gene editing systems, implementation of "membrane lipid therapy," and modulation of cellular metabolism in tumors. By integrating these strategies, this research will provide comprehensive approaches to overcome the resistance of PARPi in cancer treatment and offer guidance for future research and clinical practice.
Collapse
Affiliation(s)
- Rong Wang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yunxi Liu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Mingqi Liu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Meng Zhang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Chaoqun Li
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Shanshan Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Sangsang Tang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yidan Ma
- YiPeng Subdistrict Community Healthcare Center, Hangzhou 311225, China
| | - Xiaodong Wu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Weidong Fei
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
2
|
Chen T, Wan L, Xiao Y, Wang K, Wu P, Li C, Huang C, Liu X, Xue W, Sun G, Ji X, Lin H, Ji Z. Curcumin/pEGCG-encapsulated nanoparticles enhance spinal cord injury recovery by regulating CD74 to alleviate oxidative stress and inflammation. J Nanobiotechnology 2024; 22:653. [PMID: 39443923 PMCID: PMC11515499 DOI: 10.1186/s12951-024-02916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Spinal cord injury (SCI) often accompanies impairment of motor function, yet there is currently no highly effective treatment method specifically for this condition. Oxidative stress and inflammation are pivotal factors contributing to severe neurological deficits after SCI. In this study, a type of curcumin (Cur) nanoparticle (HA-CurNPs) was developed to address this challenge by alleviating oxidative stress and inflammation. Through non-covalent interactions, curcumin (Cur) and poly (-)-epigallocatechin-3-gallate (pEGCG) are co-encapsulated within hyaluronic acid (HA), resulting in nanoparticles termed HA-CurNPs. These nanoparticles gradually release curcumin and pEGCG at the SCI site. The released pEGCG and curcumin not only scavenge reactive oxygen species (ROS) and prevents apoptosis, thereby improving the neuronal microenvironment, but also regulate CD74 to promote microglial polarization toward an M2 phenotype, and inhibits M1 polarization, thereby suppressing the inflammatory response and fostering neuronal regeneration. Moreover, in vivo experiments on SCI mice demonstrate that HA-CurNPs effectively protect neuronal cells and myelin, reduce glial scar formation, thereby facilitating the repair of damaged spinal cord tissues, restoring electrical signaling at the injury site, and improving motor functions. Overall, this study demonstrates that HA-CurNPs significantly reduce oxidative stress and inflammation following SCI, markedly improving motor function in SCI mice. This provides a promising therapeutic approach for the treatment of SCI.
Collapse
Affiliation(s)
- Tianjun Chen
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Li Wan
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yongchun Xiao
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Ke Wang
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Ping Wu
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Can Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Caiqiang Huang
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiangge Liu
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Guodong Sun
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe Peoples Hospital), Jinan University, Heyuan, 517000, China
| | - Xin Ji
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
| | - Hongsheng Lin
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Zhisheng Ji
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
3
|
Huang S, Xiao S, Li X, Tao R, Yang Z, Gao Z, Hu J, Meng Y, Zheng G, Chen X. Development of Dual-Targeted Mixed Micelles Loaded with Celastrol and Evaluation on Triple-Negative Breast Cancer Therapy. Pharmaceutics 2024; 16:1174. [PMID: 39339211 PMCID: PMC11435154 DOI: 10.3390/pharmaceutics16091174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Considering that the precise delivery of Celastrol (Cst) into mitochondria to induce mitochondrial dysfunction may be a potential approach to improve the therapeutic outcomes of Cst on TNBC, a novel tumor mitochondria dual-targeted mixed-micelle nano-system was fabricated via self-synthesized triphenylphosphonium-modified cholesterol (TPP-Chol) and hyaluronic acid (HA)-modified cholesterol (HA-Chol). The Cst-loaded mixed micelles (Cst@HA/TPP-M) exhibited the characteristics of a small particle size, negative surface potential, high drug loading of up to 22.8%, and sustained drug release behavior. Compared to Cst-loaded micelles assembled only by TPP-Chol (Cst@TPP-M), Cst@HA/TPP-M decreased the hemolysis rate and upgraded the in vivo stability and safety. In addition, a series of cell experiments using the triple-negative breast cancer cell line MDA-MB-231 as a cell model proved that Cst@HA/TPP-M effectively increased the cellular uptake of the drug through CD44-receptors-mediated endocytosis, and the uptake amount was three times that of the free Cst group. The confocal results demonstrated successful endo-lysosomal escape and effective mitochondrial transport triggered by the charge converse of Cst@HA/TPP-M after HA degradation in endo-lysosomes. Compared to the free Cst group, Cst@HA/TPP-M significantly elevated the ROS levels, reduced the mitochondrial membrane potential, and promoted tumor cell apoptosis, showing a better induction effect on mitochondrial dysfunction. In vivo imaging and antitumor experiments based on MDA-MB-231-tumor-bearing nude mice showed that Cst@HA/TPP-M facilitated drug enrichment at the tumor site, attenuated drug systemic distribution, and polished up the antitumor efficacy of Cst compared with free Cst. In general, as a target drug delivery system, mixed micelles co-constructed by TPP-Chol and HA-Chol might provide a promising strategy to ameliorate the therapeutic outcomes of Cst on TNBC.
Collapse
Affiliation(s)
- Siying Huang
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
| | - Simeng Xiao
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
| | - Xuehao Li
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
| | - Ranran Tao
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
| | - Zhangwei Yang
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
| | - Ziwei Gao
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
| | - Junjie Hu
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
- Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Yan Meng
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
- Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Guohua Zheng
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
- Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Xinyan Chen
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
- Hubei Shizhen Laboratory, Wuhan 430065, China
| |
Collapse
|
4
|
Grumezescu V, Gherasim O, Gălățeanu B, Hudiță A. Antitumoral-Embedded Biopolymeric Spheres for Implantable Devices. Pharmaceutics 2024; 16:754. [PMID: 38931875 PMCID: PMC11207774 DOI: 10.3390/pharmaceutics16060754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The bioactive surface modification of implantable devices paves the way towards the personalized healthcare practice by providing a versatile and tunable approach that increase the patient outcome, facilitate the medical procedure, and reduce the indirect or secondary effects. The purpose of our study was to assess the performance of composite coatings based on biopolymeric spheres of poly(lactide-co-glycolide) embedded with hydroxyapatite (HA) and methotrexate (MTX). Bio-simulated tests performed for up to one week evidenced the gradual release of the antitumor drug and the biomineralization potential of PLGA/HA-MTX sphere coatings. The composite materials proved superior biocompatibility and promoted enhanced cell adhesion and proliferation with respect to human preosteoblast and osteosarcoma cell lines when compared to pristine titanium.
Collapse
Affiliation(s)
- Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Oana Gherasim
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Ariana Hudiță
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
5
|
Qian J, Guo Y, Xu Y, Wang X, Chen J, Wu X. Combination of micelles and liposomes as a promising drug delivery system: a review. Drug Deliv Transl Res 2023; 13:2767-2789. [PMID: 37278964 DOI: 10.1007/s13346-023-01368-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/07/2023]
Abstract
Among various nanocarriers, liposomes, and micelles are relatively mature drug delivery systems with the advantages of prolonging drug half-life, reducing toxicity, and improving efficacy. However, both have problems, such as poor stability and insufficient targeting. To further exploit the excellent properties of micelles and liposomes and avoid their shortcomings, researchers have developed new drug delivery systems by combining the two and making use of their respective advantages to achieve the goals of increasing the drug loading capacity, multiple targeting, and multiple drug delivery. The results have demonstrated that this new combination approach is a very promising delivery platform. In this paper, we review the combination strategies, preparation methods, and applications of micelles and liposomes to introduce the research progress, advantages, and challenges of composite carriers.
Collapse
Affiliation(s)
- Jiecheng Qian
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yankun Guo
- Department of Pharmacy, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Pharmacy, Organization Department, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youfa Xu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Shanghai Wei Er Lab, Shanghai, China
| | - Xinyu Wang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jianming Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
- Shanghai Wei Er Lab, Shanghai, China.
| | - Xin Wu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
- Shanghai Wei Er Lab, Shanghai, China.
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Wang Z, Xiao M, Guo F, Yan Y, Tian H, Zhang Q, Ren S, Yang L. Biodegradable polyester-based nano drug delivery system in cancer chemotherapy: a review of recent progress (2021-2023). Front Bioeng Biotechnol 2023; 11:1295323. [PMID: 38026861 PMCID: PMC10647934 DOI: 10.3389/fbioe.2023.1295323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Cancer presents a formidable threat to human health, with the majority of cases currently lacking a complete cure. Frequently, chemotherapy drugs are required to impede its progression. However, these drugs frequently suffer from drawbacks such as poor selectivity, limited water solubility, low bioavailability, and a propensity for causing organ toxicity. Consequently, a concerted effort has been made to seek improved drug delivery systems. Nano-drug delivery systems based on biodegradable polyesters have emerged as a subject of widespread interest in this pursuit. Extensive research has demonstrated their potential for offering high bioavailability, effective encapsulation, controlled release, and minimal toxicity. Notably, poly (ε-caprolactone) (PCL), poly (lactic-co-glycolic acid) (PLGA), and polylactic acid (PLA) have gained prominence as the most widely utilized options as carriers of the nano drug delivery system. This paper comprehensively reviews recent research on these materials as nano-carriers for delivering chemotherapeutic drugs, summarizing their latest advancements, acknowledging their limitations, and forecasting future research directions.
Collapse
Affiliation(s)
- Zongheng Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
| | - Miaomiao Xiao
- Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Fangliang Guo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yue Yan
- Department of Emergency, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hong Tian
- Department of Oncology, The 4th People’s Hospital of Shenyang, China Medical University, Shenyang, China
| | - Qianshi Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuangyi Ren
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liqun Yang
- Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
- Research Center for Biomedical Materials, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Curcio M, Vittorio O, Bell JL, Iemma F, Nicoletta FP, Cirillo G. Hyaluronic Acid within Self-Assembling Nanoparticles: Endless Possibilities for Targeted Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162851. [PMID: 36014715 PMCID: PMC9413373 DOI: 10.3390/nano12162851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 05/27/2023]
Abstract
Self-assembling nanoparticles (SANPs) based on hyaluronic acid (HA) represent unique tools in cancer therapy because they combine the HA targeting activity towards cancer cells with the advantageous features of the self-assembling nanosystems, i.e., chemical versatility and ease of preparation and scalability. This review describes the key outcomes arising from the combination of HA and SANPs, focusing on nanomaterials where HA and/or HA-derivatives are inserted within the self-assembling nanostructure. We elucidate the different HA derivatization strategies proposed for this scope, as well as the preparation methods used for the fabrication of the delivery device. After showing the biological results in the employed in vivo and in vitro models, we discussed the pros and cons of each nanosystem, opening a discussion on which approach represents the most promising strategy for further investigation and effective therapeutic protocol development.
Collapse
Affiliation(s)
- Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Orazio Vittorio
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sidney, NSW 2052, Australia
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Jessica Lilian Bell
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sidney, NSW 2052, Australia
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
| | - Francesca Iemma
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| |
Collapse
|