1
|
Cao J, Belousoff MJ, Danev R, Christopoulos A, Wootten D, Sexton PM. Cryo-EM Structure of the Human Amylin 1 Receptor in Complex with CGRP and Gs Protein. Biochemistry 2024; 63:1089-1096. [PMID: 38603770 PMCID: PMC11080994 DOI: 10.1021/acs.biochem.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
Inhibition of calcitonin gene-related peptide (CGRP) or its cognate CGRP receptor (CGRPR) has arisen as a major breakthrough in the treatment of migraine. However, a second CGRP-responsive receptor exists, the amylin (Amy) 1 receptor (AMY1R), yet its involvement in the pathology of migraine is poorly understood. AMY1R and CGRPR are heterodimers consisting of receptor activity-modifying protein 1 (RAMP1) with the calcitonin receptor (CTR) and the calcitonin receptor-like receptor (CLR), respectively. Here, we present the structure of AMY1R in complex with CGRP and Gs protein and compare it with the reported structures of the AMY1R complex with rat amylin (rAmy) and the CGRPR in complex with CGRP. Despite similar protein backbones observed within the receptors and the N- and C-termini of the two peptides bound to the AMY1R complexes, they have distinct organization in the peptide midregions (the bypass motif) that is correlated with differences in the dynamics of the respective receptor extracellular domains. Moreover, divergent conformations of extracellular loop (ECL) 3, intracellular loop (ICL) 2, and ICL3 within the CTR and CLR protomers are evident when comparing the CGRP bound to the CGRPR and AMY1R, which influences the binding mode of CGRP. However, the conserved interactions made by the C-terminus of CGRP to the CGRPR and AMY1R are likely to account for cross-reactivity of nonpeptide CGRPR antagonists observed at AMY1R, which also extends to other clinically used CGRPR blockers, including antibodies.
Collapse
Affiliation(s)
- Jianjun Cao
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Matthew J. Belousoff
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Radostin Danev
- Graduate
School of Medicine, University of Tokyo, N415, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Arthur Christopoulos
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Denise Wootten
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Patrick M. Sexton
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
2
|
Garelja ML, Alexander TI, Bennie A, Nimick M, Petersen J, Walker CS, Hay DL. Pharmacological characterisation of erenumab, Aimovig, at two calcitonin gene-related peptide responsive receptors. Br J Pharmacol 2024; 181:142-161. [PMID: 37580864 PMCID: PMC10840612 DOI: 10.1111/bph.16218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/30/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Calcitonin gene-related peptide (CGRP) is involved in migraine pathophysiology. CGRP can signal through two receptors. The canonical CGRP receptor comprises the calcitonin receptor-like receptor and receptor activity-modifying protein 1 (RAMP1); the AMY1 receptor comprises the calcitonin receptor with RAMP1. Drugs that reduce CGRP activity, such as receptor antagonists, are approved for the treatment and prevention of migraine. Despite being designed to target the canonical CGRP receptor, emerging evidence suggests that these antagonists, including erenumab (a monoclonal antibody antagonist) can also antagonise the AMY1 receptor. However, it is difficult to estimate its selectivity because direct comparisons between receptors under matched conditions have not been made. We therefore characterised erenumab at both CGRP-responsive receptors with multiple ligands, including αCGRP and βCGRP. EXPERIMENTAL APPROACH Erenumab antagonism was quantified through IC50 and pKB experiments, measuring cAMP production. We used SK-N-MC cells which endogenously express the human CGRP receptor, and HEK293S and Cos7 cells transiently transfected to express either human CGRP or AMY1 receptors. KEY RESULTS Erenumab antagonised both the CGRP and AMY1 receptors with an ~20-120-fold preference for the CGRP receptor, depending on the cells, agonist, analytical approach and/or assay format. Erenumab antagonised both forms of CGRP equally, and appeared to act as a competitive reversible antagonist at both receptors. CONCLUSION AND IMPLICATIONS Despite being designed to target the CGRP receptor, erenumab can antagonise the AMY1 receptor. Its ability to antagonise CGRP activity at both receptors may be useful in better understanding the clinical profile of erenumab.
Collapse
Affiliation(s)
- Michael L. Garelja
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Tyla I. Alexander
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Amy Bennie
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
| | - Mhairi Nimick
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
| | - Jakeb Petersen
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Christopher S. Walker
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Debbie L. Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
3
|
Chang CL, Cai Z, Hsu SYT. A gel-forming α-MSH analog promotes lasting melanogenesis. Eur J Pharmacol 2023; 958:176008. [PMID: 37673364 DOI: 10.1016/j.ejphar.2023.176008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
The α-MSH peptide plays a significant role in the regulation of pigmentation via the melanocortin 1 receptor (MC1R). It increases the DNA repair capacity of melanocytes and reduces the incidence of skin cancers. As such, α-MSH analogs could have the utility for protecting against UV-induced skin DNA damage in susceptible patients. Recently, α-MSH analogs have been approved for the treatment of erythropoietic protoporphyria, hypoactive sexual desire, or pediatric obesity. However, the delivery of these drugs requires inconvenient implants or frequent injections. We recently found that select palmitoylated melanocortin analogs such as afamelanotide and adrenocorticotropin peptides self-assemble to form liquid gels in situ. To explore the utility of these novel analogs, we studied their pharmacological characteristics in vitro and in vivo. Acylated afamelanotide (DDE 313) and ACTH1-24 (DDE314) analogs form liquid gels at 6-20% and have a significantly increased viscosity at >2.5% compared to original analogs. Using the DDE313 analog as a prototype, we showed gel-formation reduces the passage of DDE313 through Centricon filters, and subcutaneous injection of analog gel in rats leads to the sustained presence of the peptide in circulation for >12 days. In addition, DDE313 darkened the skin of frogs for >4 weeks, whereas those injected with an equivalent dose of afamelanotide lost the tanning response within a few days. Because self-assembled gels allow sustained activation of melanocortin receptors, further studies of these analogs may allow the development of effective and convenient tanning therapies to prophylactically protect against UV-induced malignant transformation of skin cells in susceptible patients.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Zheqing Cai
- CL Laboratory LLC, Gaithersburg, MD, 20878, United States
| | | |
Collapse
|
4
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 93] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Kotliar IB, Lorenzen E, Schwenk JM, Hay DL, Sakmar TP. Elucidating the Interactome of G Protein-Coupled Receptors and Receptor Activity-Modifying Proteins. Pharmacol Rev 2023; 75:1-34. [PMID: 36757898 PMCID: PMC9832379 DOI: 10.1124/pharmrev.120.000180] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/27/2022] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are known to interact with several other classes of integral membrane proteins that modulate their biology and pharmacology. However, the extent of these interactions and the mechanisms of their effects are not well understood. For example, one class of GPCR-interacting proteins, receptor activity-modifying proteins (RAMPs), comprise three related and ubiquitously expressed single-transmembrane span proteins. The RAMP family was discovered more than two decades ago, and since then GPCR-RAMP interactions and their functional consequences on receptor trafficking and ligand selectivity have been documented for several secretin (class B) GPCRs, most notably the calcitonin receptor-like receptor. Recent bioinformatics and multiplexed experimental studies suggest that GPCR-RAMP interactions might be much more widespread than previously anticipated. Recently, cryo-electron microscopy has provided high-resolution structures of GPCR-RAMP-ligand complexes, and drugs have been developed that target GPCR-RAMP complexes. In this review, we provide a summary of recent advances in techniques that allow the discovery of GPCR-RAMP interactions and their functional consequences and highlight prospects for future advances. We also provide an up-to-date list of reported GPCR-RAMP interactions based on a review of the current literature. SIGNIFICANCE STATEMENT: Receptor activity-modifying proteins (RAMPs) have emerged as modulators of many aspects of G protein-coupled receptor (GPCR)biology and pharmacology. The application of new methodologies to study membrane protein-protein interactions suggests that RAMPs interact with many more GPCRs than had been previously known. These findings, especially when combined with structural studies of membrane protein complexes, have significant implications for advancing GPCR-targeted drug discovery and the understanding of GPCR pharmacology, biology, and regulation.
Collapse
Affiliation(s)
- Ilana B Kotliar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Emily Lorenzen
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Jochen M Schwenk
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Debbie L Hay
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| |
Collapse
|
6
|
Chang CL, Cai Z, Hsu SYT. Gel-forming antagonist provides a lasting effect on CGRP-induced vasodilation. Front Pharmacol 2022; 13:1040951. [PMID: 36569288 PMCID: PMC9772450 DOI: 10.3389/fphar.2022.1040951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Migraine affects ∼15% of the adult population, and the standard treatment includes the use of triptans, ergotamines, and analgesics. Recently, CGRP and its receptor, the CLR/RAMP1 receptor complex, have been targeted for migraine treatment due to their critical roles in mediating migraine headaches. The effort has led to the approval of several anti-CGRP antibodies for chronic migraine treatment. However, many patients still suffer continuous struggles with migraine, perhaps due to the limited ability of anti-CGRP therapeutics to fully reduce CGRP levels or reach target cells. An alternative anti-CGRP strategy may help address the medical need of patients who do not respond to existing therapeutics. By serendipity, we have recently found that several chimeric adrenomedullin/adrenomedullin 2 peptides are potent CLR/RAMP receptor antagonists and self-assemble to form liquid gels. Among these analogs, the ADE651 analog, which potently inhibits CLR/RAMP1 receptor signaling, forms gels at a 6-20% level. Screening of ADE651 variants indicated that residues at the junctional region of this chimeric peptide are important for gaining the gel-forming capability. Gel-formation significantly slowed the passage of ADE651 molecules through Centricon filters. Consistently, subcutaneous injection of ADE651 gel in rats led to the sustained presence of ADE651 in circulation for >1 week. In addition, analysis of vascular blood flow in rat hindlimbs showed ADE651 significantly reduces CGRP-induced vasodilation. Because gel-forming antagonists could have direct and sustained access to target cells, ADE651 and related antagonists for CLR/RAMP receptors may represent promising candidates for targeting CGRP- and/or adrenomedullin-mediated headaches in migraine patients.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Taoyuan, Taiwan
| | - Zheqing Cai
- CL Laboratory LLC, Gaithersburg, MD, United States
| | - Sheau Yu Teddy Hsu
- Adepthera LLC, San Jose, CA, United States,*Correspondence: Sheau Yu Teddy Hsu,
| |
Collapse
|
7
|
Chang CL, Cai Z, Hsu SYT. Sustained Activation of CLR/RAMP Receptors by Gel-Forming Agonists. Int J Mol Sci 2022; 23:ijms232113408. [PMID: 36362188 PMCID: PMC9655119 DOI: 10.3390/ijms232113408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Adrenomedullin (ADM), adrenomedullin 2 (ADM2), and CGRP family peptides are important regulators of vascular vasotone and integrity, neurotransmission, and fetoplacental development. These peptides signal through CLR/RAMP1, 2, and 3 receptors, and protect against endothelial dysfunction in disease models. As such, CLR/RAMP receptor agonists are considered important therapeutic candidates for various diseases. Methods and Results: Based on the screening of a series of palmitoylated chimeric ADM/ADM2 analogs, we demonstrated a combination of lipidation and accommodating motifs at the hinge region of select peptides is important for gaining an enhanced receptor-activation activity and improved stimulatory effects on the proliferation and survival of human lymphatic endothelial cells when compared to wild-type peptides. In addition, by serendipity, we found that select palmitoylated analogs self-assemble to form liquid gels, and subcutaneous administration of an analog gel led to the sustained presence of the peptide in the circulation for >2 days. Consistently, subcutaneous injection of the analog gel significantly reduced the blood pressure in SHR rats and increased vasodilation in the hindlimbs of adult rats for days. Conclusions: Together, these data suggest gel-forming adrenomedullin analogs may represent promising candidates for the treatment of various life-threatening endothelial dysfunction-associated diseases such as treatment-resistant hypertension and preeclampsia, which are in urgent need of an effective drug.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Kweishan, Taoyuan 20878, Taiwan
| | - Zheqing Cai
- CL Laboratory LLC, Gaithersburg, MD 20878, USA
| | - Sheau Yu Teddy Hsu
- Adepthera LLC, San Jose, CA 95138, USA
- Correspondence: ; Tel.: +1-650-799-3496
| |
Collapse
|