1
|
Cheng B, Liu J, Gao L, Zhu Z, Yang Y, Liu S, Wu X. EMB-driven glioblastoma multiforme progression via the MCT4/GPX3 axis: therapeutic inhibition by Ganxintriol A. J Transl Med 2025; 23:272. [PMID: 40038742 DOI: 10.1186/s12967-025-06290-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/23/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Embigin (EMB) is a transmembrane glycoprotein highly expressed in glioblastoma multiforme (GBM), yet its role in GBM progression remains unclear. In this study, we investigate the function of intracellular EMB in promoting GBM progression and evaluate the effect of Ganxintriol A, a traditional Chinese herbal extract, in GBM treatment. METHODS Bioinformatics datasets were utilized to assess EMB expression and its prognostic value in GBM patients. In vitro experiments such as PCR、western blot,CCK8,transwell,wound healing,clone formation and flow cytometry assays were conducted to examine EMB's biological functions and underlying mechanisms in GBM cell lines. Additionally, we constructed a subcutaneous tumor model in nude mice and evaluated the effect of traditional Chinese medicine extract Ganxintriol A on the progression of GBM through in vivo and in vitro experiments. RESULTS EMB is highly expressed in GBM and is associated with poor prognosis in GBM patients. EMB overexpression accelerated GBM progression, whereas EMB knockdown had the opposite effect. Further analysis revealed that EMB upregulated epithelial-mesenchymal transition (EMT) and glycolysis while maintaining glutathione (GSH) redox balance by inducing monocarboxylate transporter 4 (MCT4) and glutathione peroxidase 3 (GPX3) expression. Treatment with Ganxintriol A significantly downregulated EMB expression, effectively inhibiting GBM progression both in vitro and in vivo. CONCLUSIONS This study highlights EMB as an independent prognostic biomarker for GBM and reveals a novel mechanism by which EMB drives GBM progression. Additionally, Ganxintriol A is identified as a promising therapeutic candidate for GBM treatment.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Psychiatry, The Affiliated Xuzhou Eastern Hospital of Xuzhou Medical University, 379 Tongshan Road, Xuzhou, 221000, China
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200292, China
| | - Jing Liu
- Department of Neurology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou No. 1 People's Hospital, 269 University Road, Xuzhou, 221000, China
| | - Ling Gao
- Department of Pharmacy, The Affiliated Huaihai Hospital of Xuzhou Medical University, The 71st Group Army Hospital of CPLA Army, 226 Tongshan Road, Xuzhou, 221000, China
| | - Ziwen Zhu
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200292, China
| | - Yang Yang
- Department of Pharmacy, The Affiliated Huaihai Hospital of Xuzhou Medical University, The 71st Group Army Hospital of CPLA Army, 226 Tongshan Road, Xuzhou, 221000, China
| | - Shangqi Liu
- Department of Neurology, Xuzhou Central Hospital, the Affiliated Xuzhou Clinical College of Xuzhou Medical University, 199 Jiefang South Road, Xuzhou, 221000, China
| | - Xiaojin Wu
- Department of Radiation Oncology, Xuzhou Central Hospital, the Affiliated Xuzhou Clinical College of Xuzhou Medical University, 199 Jiefang South Road, Xuzhou, 221000, China.
| |
Collapse
|
2
|
Zheng Z, Ke L, Ye S, Shi P, Yao H. Pharmacological Mechanisms of Cryptotanshinone: Recent Advances in Cardiovascular, Cancer, and Neurological Disease Applications. Drug Des Devel Ther 2024; 18:6031-6060. [PMID: 39703195 PMCID: PMC11658958 DOI: 10.2147/dddt.s494555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
Cryptotanshinone (CTS) is an important active ingredient of Salvia miltiorrhiza Bge. In recent years, its remarkable pharmacological effects have triggered extensive and in-depth studies. The aim of this study is to retrieve the latest research progress on CTS and provide prospects for future research. The selection of literature for inclusion, data extraction and methodological quality assessment were discussed. Studies included (1) physicochemical and ADME/Tox properties, (2) pharmacological effects and mechanism, (3) conclusion and bioinformatics analysis. A total of 915 titles and abstracts were screened, resulting in 184 papers used in this review; CTS has shown therapeutic effects on a variety of diseases by modulating multiple molecular pathways. For example, CTS primarily targets NF-κB pathway and MAPK pathway to have a therapeutic role in cardiovascular diseases; in cancer, CTS shows superior efficacy through the PI3K/Akt/mTOR pathway and the JAK/STAT pathway; CTS act on the Nrf2/HO-1 pathway to combat neurological diseases. In addition, key targets of CTS were predicted by bioinformatics analysis, referring to disease ontology (DO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analysis, with R Studio; AKT1, MAPK1, STAT3, P53 and EGFR are predicted to be the key targets of CTS against diseases. The key proteins were then docked by Autodock software to preliminarily assess their binding activities. This review provided new insights into research of CTS and its potential applications in the future, and especially the targets and directly binding modes for CTS are waiting to be investigated.
Collapse
Affiliation(s)
- Ziyao Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Liyuan Ke
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Shumin Ye
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| |
Collapse
|
3
|
Memarzia A, Saadat S, Asgharzadeh F, Behrouz S, Folkerts G, Boskabady MH. Therapeutic effects of medicinal plants and their constituents on lung cancer, in vitro, in vivo and clinical evidence. J Cell Mol Med 2023; 27:2841-2863. [PMID: 37697969 PMCID: PMC10538270 DOI: 10.1111/jcmm.17936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023] Open
Abstract
The most common type of cancer in the world is lung cancer. Traditional treatments have an important role in cancer therapy. In the present review, the most recent findings on the effects of medicinal plants and their constituents or natural products (NP) in treating lung cancer are discussed. Empirical studies until the end of March 2022 were searched using the appropriate keywords through the databases PubMed, Science Direct and Scopus. The extracts and essential oils tested were all shown to effect lung cancer by several mechanisms including decreased tumour weight and volume, cell viability and modulation of cytokine. Some plant constituents increased expression of apoptotic proteins, the proportion of cells in the G2/M phase and subG0/G1 phase, and Cyt c levels. Also, natural products (NP) activate apoptotic pathways in lung cancer cell including p-JNK, Akt/mTOR, PI3/ AKT\ and Bax, Bcl2, but suppressed AXL phosphorylation. Plant-derived substances altered the cell morphology, reduced cell migration and metastasis, oxidative marker production, p-eIF2α and GRP78, IgG, IgM levels and reduced leukocyte counts, LDH, GGT, 5'NT and carcinoembryonic antigen (CEA). Therefore, medicinal plant extracts and their constituents could have promising therapeutic value for lung cancer, especially if used in combination with ordinary anti-cancer drugs.
Collapse
Affiliation(s)
- Arghavan Memarzia
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Physiology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Saeideh Saadat
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Physiology, School of MedicineZahedan University of Medical SciencesZahedanIran
| | - Fereshteh Asgharzadeh
- Department of Physiology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Sepide Behrouz
- Department of Animal Science, Faculty of AgricultureUniversity of BirjandBirjandIran
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of ScienceUtrecht UniversityUtrechtNetherlands
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Physiology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
4
|
Wang T, Yin S, Gu J, Li J, Zhang M, Shan J, Wu X, Li Y. Study on the Intervention Mechanism of Cryptotanshinone on Human A2780 Ovarian Cancer Cell Line Using GC-MS-Based Cellular Metabolomics. Pharmaceuticals (Basel) 2023; 16:861. [PMID: 37375808 DOI: 10.3390/ph16060861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Cryptotanshinone (CT), an active component of the traditional Chinese medicine Salvia miltiorrhiza Bunge, exhibits a wide range of biological and pharmacological activities. Although the anticancer activity of CT is well known, the knowledge of its effect on the regulation of cancer cell metabolism is relatively new. The present study investigated the anticancer mechanism of CT in ovarian cancer with a focus on cancer metabolism. CCK8 assays, apoptosis assays, and cell cycle assays were conducted to reveal the growth-suppressive effect of CT on ovarian cancer A2780 cells. To explore the potential underlying mechanisms of CT, the changes in endogenous metabolites in A2780 cells before and after CT intervention were investigated using the gas chromatography-mass spectrometry (GC-MS) approach. A total of 28 important potential biomarkers underwent significant changes, mainly involving aminoacyl-tRNA biosynthesis, energy metabolism, and other pathways. Changes in the ATP and amino acid contents were verified with in vitro and in vivo experiments. Our results indicate that CT may exert an anti-ovarian cancer effect by inhibiting ATP production, promoting the protein catabolic process, and inhibiting protein synthesis, which may lead to cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Tong Wang
- School of Medicine and Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shusheng Yin
- School of Medicine and Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Juan Gu
- School of Medicine and Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jingjing Li
- School of Medicine and Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengmeng Zhang
- School of Medicine and Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao Wu
- School of Medicine and Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yongming Li
- School of Medicine and Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
5
|
Protein tyrosine kinase inhibitor resistance in malignant tumors: molecular mechanisms and future perspective. Signal Transduct Target Ther 2022; 7:329. [PMID: 36115852 PMCID: PMC9482625 DOI: 10.1038/s41392-022-01168-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/08/2022] [Accepted: 08/26/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractProtein tyrosine kinases (PTKs) are a class of proteins with tyrosine kinase activity that phosphorylate tyrosine residues of critical molecules in signaling pathways. Their basal function is essential for maintaining normal cell growth and differentiation. However, aberrant activation of PTKs caused by various factors can deviate cell function from the expected trajectory to an abnormal growth state, leading to carcinogenesis. Inhibiting the aberrant PTK function could inhibit tumor growth. Therefore, tyrosine kinase inhibitors (TKIs), target-specific inhibitors of PTKs, have been used in treating malignant tumors and play a significant role in targeted therapy of cancer. Currently, drug resistance is the main reason for limiting TKIs efficacy of cancer. The increasing studies indicated that tumor microenvironment, cell death resistance, tumor metabolism, epigenetic modification and abnormal metabolism of TKIs were deeply involved in tumor development and TKI resistance, besides the abnormal activation of PTK-related signaling pathways involved in gene mutations. Accordingly, it is of great significance to study the underlying mechanisms of TKIs resistance and find solutions to reverse TKIs resistance for improving TKIs efficacy of cancer. Herein, we reviewed the drug resistance mechanisms of TKIs and the potential approaches to overcome TKI resistance, aiming to provide a theoretical basis for improving the efficacy of TKIs.
Collapse
|