1
|
Medina Pérez VM, Baselga M, Schuhmacher AJ. Single-Domain Antibodies as Antibody-Drug Conjugates: From Promise to Practice-A Systematic Review. Cancers (Basel) 2024; 16:2681. [PMID: 39123409 PMCID: PMC11311928 DOI: 10.3390/cancers16152681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Antibody-drug conjugates (ADCs) represent potent cancer therapies that deliver highly toxic drugs to tumor cells precisely, thus allowing for targeted treatment and significantly reducing off-target effects. Despite their effectiveness, ADCs can face limitations due to acquired resistance and potential side effects. OBJECTIVES This study focuses on advances in various ADC components to improve both the efficacy and safety of these agents, and includes the analysis of several novel ADC formats. This work assesses whether the unique features of VHHs-such as their small size, enhanced tissue penetration, stability, and cost-effectiveness-make them a viable alternative to conventional antibodies for ADCs and reviews their current status in ADC development. METHODS Following PRISMA guidelines, this study focused on VHHs as components of ADCs, examining advancements and prospects from 1 January 2014 to 30 June 2024. Searches were conducted in PubMed, Cochrane Library, ScienceDirect and LILACS using specific terms related to ADCs and single-domain antibodies. Retrieved articles were rigorously evaluated, excluding duplicates and non-qualifying studies. The selected peer-reviewed articles were analyzed for quality and synthesized to highlight advancements, methods, payloads, and future directions in ADC research. RESULTS VHHs offer significant advantages for drug conjugation over conventional antibodies due to their smaller size and structure, which enhance tissue penetration and enable access to previously inaccessible epitopes. Their superior stability, solubility, and manufacturability facilitate cost-effective production and expand the range of targetable antigens. Additionally, some VHHs can naturally cross the blood-brain barrier or be easily modified to favor their penetration, making them promising for targeting brain tumors and metastases. Although no VHH-drug conjugates (nADC or nanoADC) are currently in the clinical arena, preclinical studies have explored various conjugation methods and linkers. CONCLUSIONS While ADCs are transforming cancer treatment, their unique mechanisms and associated toxicities challenge traditional views on bioavailability and vary with different tumor types. Severe toxicities, often linked to compound instability, off-target effects, and nonspecific blood cell interactions, highlight the need for better understanding. Conversely, the rapid distribution, tumor penetration, and clearance of VHHs could be advantageous, potentially reducing toxicity by minimizing prolonged exposure. These attributes make single-domain antibodies strong candidates for the next generation of ADCs, potentially enhancing both efficacy and safety.
Collapse
Affiliation(s)
- Víctor Manuel Medina Pérez
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
| | - Marta Baselga
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
| | - Alberto J. Schuhmacher
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Fundación Aragonesa para la Investigación y el Desarrollo (ARAID), 50018 Zaragoza, Spain
| |
Collapse
|
2
|
Lim M, Fletcher NL, Saunus JM, McCart Reed AE, Chittoory H, Simpson PT, Thurecht KJ, Lakhani SR. Targeted Hyperbranched Nanoparticles for Delivery of Doxorubicin in Breast Cancer Brain Metastasis. Mol Pharm 2023; 20:6169-6183. [PMID: 37970806 DOI: 10.1021/acs.molpharmaceut.3c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Breast cancer brain metastases (BM) are associated with a dismal prognosis and very limited treatment options. Standard chemotherapy is challenging in BM patients because the high dosage required for an effective outcome causes unacceptable systemic toxicities, a consequence of poor brain penetration, and a short physiological half-life. Nanomedicines have the potential to circumvent off-target toxicities and factors limiting the efficacy of conventional chemotherapy. The HER3 receptor is commonly expressed in breast cancer BM. Here, we investigate the use of hyperbranched polymers (HBP) functionalized with a HER3 bispecific-antibody fragment for cancer cell-specific targeting and pH-responsive release of doxorubicin (DOX) to selectively deliver and treat BM. We demonstrated that DOX-release from the HBP carrier was controlled, gradual, and greater in endosomal acidic conditions (pH 5.5) relative to physiologic pH (pH 7.4). We showed that the HER3-targeted HBP with DOX payload was HER3-specific and induced cytotoxicity in BT474 breast cancer cells (IC50: 17.6 μg/mL). Therapeutic testing in a BM mouse model showed that HER3-targeted HBP with DOX payload impacted tumor proliferation, reduced tumor size, and prolonged overall survival. HER3-targeted HBP level detected in ex vivo brain samples was 14-fold more than untargeted-HBP. The HBP treatments were well tolerated, with less cardiac and oocyte toxicity compared to free DOX. Taken together, our HER3-targeted HBP nanomedicine has the potential to deliver chemotherapy to BM while reducing chemotherapy-associated toxicities.
Collapse
Affiliation(s)
- Malcolm Lim
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
| | - Jodi M Saunus
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Amy E McCart Reed
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Haarika Chittoory
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Peter T Simpson
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
| | - Sunil R Lakhani
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
- Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, Queensland 4006, Australia
| |
Collapse
|
3
|
Li R, Craig M, D'Argenio DZ, Betts A, Mager DE, Maurer TS. Editorial: Model-informed decision making in the preclinical stages of pharmaceutical research and development. Front Pharmacol 2023; 14:1184914. [PMID: 37124233 PMCID: PMC10131111 DOI: 10.3389/fphar.2023.1184914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Affiliation(s)
- Rui Li
- Translational Modeling and Simulation, Medicine Design, Pfizer Inc., Cambridge, MA, United States
| | - Morgan Craig
- Department of Mathematics and Statistics, Université de Montréal, Montréal, QC, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, QC, Canada
| | - David Z. D'Argenio
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Alison Betts
- Applied BioMath, LLC, Concord, MA, United States
| | - Donald E. Mager
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
- Enhanced Pharmacodynamics, LLC, Buffalo, NY, United States
| | - Tristan S. Maurer
- Translational Modeling and Simulation, Medicine Design, Pfizer Inc., Cambridge, MA, United States
| |
Collapse
|
4
|
Bordeau BM, Nguyen TD, Polli JR, Chen P, Balthasar JP. Payload-Binding Fab Fragments Increase the Therapeutic Index of MMAE Antibody-Drug Conjugates. Mol Cancer Ther 2023; 22:459-470. [PMID: 36723609 PMCID: PMC10073278 DOI: 10.1158/1535-7163.mct-22-0440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/12/2022] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
Monomethyl auristatin E (MMAE) is a potent tubulin inhibitor that is used as the payload for four FDA-approved antibody-drug conjugates (ADC). Deconjugated MMAE readily diffuses into untargeted cells, resulting in off-target toxicity. Here, we report the development and evaluation of a humanized Fab fragment (ABC3315) that enhances the therapeutic selectivity of MMAE ADCs. ABC3315 increased the IC50 of MMAE against human cancer cell lines by > 500-fold with no impact on the cytotoxicity of MMAE ADCs, including polatuzumab vedotin (PV) and trastuzumab-vc-MMAE (TvcMMAE). Coadministration of ABC3315 did not reduce the efficacy of PV or TvcMMAE in xenograft tumor models. Coadministration of ABC3315 with 80 mg/kg TvcMMAE significantly (P < 0.0001) increased the cumulative amount of MMAE that was excreted in urine 0 to 4 days after administration from 789.4±19.0 nanograms (TvcMMAE alone) to 2625±206.8 nanograms (for mice receiving TvcMMAE with coadministration of ABC3315). Mice receiving 80 mg/kg TvcMMAE and PBS exhibited a significant drop in white blood cell counts (P = 0.025) and red blood cell counts (P = 0.0083) in comparison with control mice. No significant differences, relative to control mice, were found for white blood cell counts (P = 0.15) or for red blood cell counts (P = 0.23) for mice treated with 80 mg/kg TvcMMAE and ABC3315. Coadministration of ABC3315 with 120 mg/kg PV significantly (P = 0.045) decreased the percentage body weight loss at nadir for treated mice from 11.9%±7.0% to 4.1%±2.1%. Our results demonstrate that ABC3315, an anti-MMAE Fab fragment, decreases off-target toxicity while not decreasing antitumor efficacy, increasing the therapeutic window of MMAE ADCs.
Collapse
Affiliation(s)
- Brandon M. Bordeau
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214
| | - Toan Duc Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214
| | - Joseph Ryan Polli
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214
| | - Ping Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214
| | - Joseph P. Balthasar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214
| |
Collapse
|
5
|
Nguyen TD, Bordeau BM, Balthasar JP. Mechanisms of ADC Toxicity and Strategies to Increase ADC Tolerability. Cancers (Basel) 2023; 15:713. [PMID: 36765668 PMCID: PMC9913659 DOI: 10.3390/cancers15030713] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Anti-cancer antibody-drug conjugates (ADCs) aim to expand the therapeutic index of traditional chemotherapy by employing the targeting specificity of monoclonal antibodies (mAbs) to increase the efficiency of the delivery of potent cytotoxic agents to malignant cells. In the past three years, the number of ADCs approved by the Food and Drug Administration (FDA) has tripled. Although several ADCs have demonstrated sufficient efficacy and safety to warrant FDA approval, the clinical use of all ADCs leads to substantial toxicity in treated patients, and many ADCs have failed during clinical development due to their unacceptable toxicity profiles. Analysis of the clinical data has demonstrated that dose-limiting toxicities (DLTs) are often shared by different ADCs that deliver the same cytotoxic payload, independent of the antigen that is targeted and/or the type of cancer that is treated. DLTs are commonly associated with cells and tissues that do not express the targeted antigen (i.e., off-target toxicity), and often limit ADC dosage to levels below those required for optimal anti-cancer effects. In this manuscript, we review the fundamental mechanisms contributing to ADC toxicity, we summarize common ADC treatment-related adverse events, and we discuss several approaches to mitigating ADC toxicity.
Collapse
Affiliation(s)
| | | | - Joseph P. Balthasar
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
6
|
Nguyen TD, Bordeau BM, Zhang Y, Mattle AG, Balthasar JP. Half-Life Extension and Biodistribution Modulation of Biotherapeutics via Red Blood Cell Hitch-Hiking with Novel Anti-Band 3 Single-Domain Antibodies. Int J Mol Sci 2022; 24:475. [PMID: 36613917 PMCID: PMC9820191 DOI: 10.3390/ijms24010475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Small therapeutic proteins are receiving increased interest as therapeutic drugs; however, their clinical success has been limited due to their rapid elimination. Here, we report a half-life extension strategy via strategy via red blood cell red blood cell (RBC) hitch-hiking. This manuscript details the development and characterization of novel anti-RBC single-domain antibodies (sdAbs), their genetic fusion to therapeutic antibody fragments (TAF) as bispecific fusion constructs, and their influence on TAF pharmacokinetics and biodistribution. Several sdAbs specific to the band 3 antigen were generated via phage-display technology. Binding affinity to RBCs was assessed via flow cytometry. Affinity maturation via random mutagenesis was carried out to improve the binding affinity of the sdAbs. Bi-specific constructs were generated by fusing the anti-RBC sdAbs with anti-tissue necrosis factor alpha (TNF-α) TAF via the use of a glycine-serine flexible linker, and assessments for binding were performed via enzyme-linked immunosorbent assay and flow cytometry. Pharmacokinetics of anti-RBC sdAbs and fusion constructs were evaluated following intravenous bolus dosing in mice at a 1 mg/kg dose. Two RBC-binding sdAbs, RB12 and RE8, were developed. These two clones showed high binding affinity to human RBC with an estimated KD of 17.7 nM and 23.6 nM and low binding affinity to mouse RBC with an estimated KD of 335 nM and 528 nM for RB12 and RE8, respectively. Two derivative sdAbs, RMA1, and RMC1, with higher affinities against mouse RBC, were generated via affinity maturation (KD of 66.9 nM and 30.3 nM, respectively). Pharmacokinetic investigations in mice demonstrated prolonged circulation half-life of an anti-RBC-TNF-α bispecific construct (75 h) compared to a non-RBC binding control (1.3 h). In summary, the developed anti-RBC sdAbs and fusion constructs have demonstrated high affinity in vitro, and sufficient half-life extension in vivo.
Collapse
Affiliation(s)
- Toan D. Nguyen
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Brandon M. Bordeau
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Yu Zhang
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Anna G. Mattle
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Joseph P. Balthasar
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
- 450 Pharmacy Building, Buffalo, NY 14214, USA
| |
Collapse
|
7
|
Nguyen TD, Bordeau BM, Zhang Y, Mattle AG, Balthasar JP. Half-Life Extension and Biodistribution Modulation of Biotherapeutics via Red Blood Cell Hitch-Hiking with Novel Anti-Band 3 Single-Domain Antibodies. Int J Mol Sci 2022. [PMID: 36613917 DOI: 10.3390/ijms23179779/s1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Small therapeutic proteins are receiving increased interest as therapeutic drugs; however, their clinical success has been limited due to their rapid elimination. Here, we report a half-life extension strategy via strategy via red blood cell red blood cell (RBC) hitch-hiking. This manuscript details the development and characterization of novel anti-RBC single-domain antibodies (sdAbs), their genetic fusion to therapeutic antibody fragments (TAF) as bispecific fusion constructs, and their influence on TAF pharmacokinetics and biodistribution. Several sdAbs specific to the band 3 antigen were generated via phage-display technology. Binding affinity to RBCs was assessed via flow cytometry. Affinity maturation via random mutagenesis was carried out to improve the binding affinity of the sdAbs. Bi-specific constructs were generated by fusing the anti-RBC sdAbs with anti-tissue necrosis factor alpha (TNF-α) TAF via the use of a glycine-serine flexible linker, and assessments for binding were performed via enzyme-linked immunosorbent assay and flow cytometry. Pharmacokinetics of anti-RBC sdAbs and fusion constructs were evaluated following intravenous bolus dosing in mice at a 1 mg/kg dose. Two RBC-binding sdAbs, RB12 and RE8, were developed. These two clones showed high binding affinity to human RBC with an estimated KD of 17.7 nM and 23.6 nM and low binding affinity to mouse RBC with an estimated KD of 335 nM and 528 nM for RB12 and RE8, respectively. Two derivative sdAbs, RMA1, and RMC1, with higher affinities against mouse RBC, were generated via affinity maturation (KD of 66.9 nM and 30.3 nM, respectively). Pharmacokinetic investigations in mice demonstrated prolonged circulation half-life of an anti-RBC-TNF-α bispecific construct (75 h) compared to a non-RBC binding control (1.3 h). In summary, the developed anti-RBC sdAbs and fusion constructs have demonstrated high affinity in vitro, and sufficient half-life extension in vivo.
Collapse
Affiliation(s)
- Toan D Nguyen
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Brandon M Bordeau
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Yu Zhang
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Anna G Mattle
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Joseph P Balthasar
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
- 450 Pharmacy Building, Buffalo, NY 14214, USA
| |
Collapse
|
8
|
Jin Y, Edalatian Zakeri S, Bahal R, Wiemer AJ. New Technologies Bloom Together for Bettering Cancer Drug Conjugates. Pharmacol Rev 2022; 74:680-711. [PMID: 35710136 PMCID: PMC9553120 DOI: 10.1124/pharmrev.121.000499] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drug conjugates, including antibody-drug conjugates, are a step toward realizing Paul Ehrlich's idea from over 100 years ago of a "magic bullet" for cancer treatment. Through balancing selective targeting molecules with highly potent payloads, drug conjugates can target specific tumor microenvironments and kill tumor cells. A drug conjugate consists of three parts: a targeting agent, a linker, and a payload. In some conjugates, monoclonal antibodies act as the targeting agent, but new strategies for targeting include antibody derivatives, peptides, and even small molecules. Linkers are responsible for connecting the payload to the targeting agent. Payloads impact vital cellular processes to kill tumor cells. At present, there are 12 antibody-drug conjugates on the market for different types of cancers. Research on drug conjugates is increasing year by year to solve problems encountered in conjugate design, such as tumor heterogeneity, poor circulation, low drug loading, low tumor uptake, and heterogenous expression of target antigens. This review highlights some important preclinical research on drug conjugates in recent years. We focus on three significant areas: improvement of antibody-drug conjugates, identification of new conjugate targets, and development of new types of drug conjugates, including nanotechnology. We close by highlighting the critical barriers to clinical translation and the open questions going forward. SIGNIFICANCE STATEMENT: The development of anticancer drug conjugates is now focused in three broad areas: improvements to existing antibody drug conjugates, identification of new targets, and development of new conjugate forms. This article focuses on the exciting preclinical studies in these three areas and advances in the technology that improves preclinical development.
Collapse
Affiliation(s)
- Yiming Jin
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | | | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
9
|
Mosch R, Guchelaar HJ. Immunogenicity of Monoclonal Antibodies and the Potential Use of HLA Haplotypes to Predict Vulnerable Patients. Front Immunol 2022; 13:885672. [PMID: 35784343 PMCID: PMC9249215 DOI: 10.3389/fimmu.2022.885672] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/24/2022] [Indexed: 01/14/2023] Open
Abstract
The use of monoclonal antibodies (mAbs) in the clinic has successfully expanded to treatment of cancer, viral infections, inflammations, and other indications. However, some of the classes of mAbs that are used in the clinic show the formation of anti-drug antibodies (ADAs) leading to loss of efficacy. This review describes ADA formation for the various mAbs, and its clinical effect. Lastly, this review considers the use of HLA-haplotypes as biomarkers to predict vulnerability of patients sensitive to formation of ADAs.
Collapse
|
10
|
Polli JR, Chen P, Bordeau BM, Balthasar JP. Targeted Delivery of Endosomal Escape Peptides to Enhance Immunotoxin Potency and Anti-cancer Efficacy. AAPS J 2022; 24:47. [PMID: 35338415 PMCID: PMC9044403 DOI: 10.1208/s12248-022-00698-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/05/2022] [Indexed: 01/10/2023] Open
Abstract
This work describes use of anti-carcinoembryonic antigen antibodies (10H6, T84.66) for targeted delivery of an endosomal escape peptide (H6CM18) and gelonin, a type I ribosome inactivating protein. The viability of colorectal cancer cells (LS174T, LoVo) was assessed following treatment with gelonin or gelonin immunotoxins, with or without co-treatment with T84.66-H6CM18. Fluorescent microscopy was used to visualize the escape of immunoconjugates from endosomes of treated cells, and efficacy and toxicity were assessed in vivo in xenograft tumor-bearing mice following single- and multiple-dose regimens. Application of 25 pM T84.66-H6CM18 combined with T84.66-gelonin increased gelonin potency by ~ 1,000-fold and by ~ 6,000-fold in LS174T and LoVo cells. Intravenous 10H6-gelonin at 1.0 mg/kg was well tolerated by LS174T tumor-bearing mice, while 10 and 25 mg/kg doses led to signs of toxicity. Single-dose administration of PBS, gelonin conjugated to T84.66 or 10H6, T84.66-H6CM18, or gelonin immunotoxins co-administered with T84.66-H6CM18 were evaluated. The combinations of T84.66-gelonin + 1.0 mg/kg T84.66-H6CM18 and 10H6-gelonin + 0.1 mg/kg T84.66-H6CM18 led to significant delays in LS174T growth. Use of a multiple-dose regimen allowed further anti-tumor effects, significantly extending median survival time by 33% and by 69%, for mice receiving 1 mg/kg 10H6-gelonin + 0.1 mg/kg T84.66-H6CM18 (p = 0.0072) and 1 mg/kg 10H6-gelonin + 1 mg/kg T84.66-H6CM18 (p = 0.0017). Combined administration of gelonin immunoconjugates with antibody-targeted endosomal escape peptides increased the delivery of gelonin to the cytoplasm of targeted cells, increased gelonin cell killing in vitro by 1,000-6,000 fold, and significantly increased in vivo efficacy.
Collapse
Affiliation(s)
- Joseph Ryan Polli
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, 14214, USA
| | - Ping Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, 14214, USA
| | - Brandon M Bordeau
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, 14214, USA
| | - Joseph P Balthasar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, 14214, USA.
| |
Collapse
|