1
|
Xu J, Cheng X, Wang Q, Zhang F, Ren X, Huang K, Hu Y, Gao R, Yang K, Yin J, Yang B, He X, Li Y. Artemether Ameliorates Non-Alcoholic Steatohepatitis by Restraining Cross-Talk Between Lipotoxicity-Induced Hepatic Hepatocytes and Macrophages. Phytother Res 2025; 39:604-618. [PMID: 39609107 DOI: 10.1002/ptr.8393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/08/2024] [Accepted: 11/09/2024] [Indexed: 11/30/2024]
Abstract
Non-alcoholic steatohepatitis (NASH) has no effective treatment drug. Our previous study initially found that artemether (Art) treatment significantly attenuates NSAH by regulating liver lipid metabolism. This study further elucidates new mechanisms of Art in improving liver inflammation and provides evidence for drug repurposing. Herein, we utilized HFHF diet-induced animal model and macrophage models to detect the mechanisms of Art in NASH. We confirmed that Art significantly reduced hepatic steatosis, injury, and fibrosis in a high-fat high-fructose (HFHF) diet-induced animal model. Art significantly suppressed the activation of inflammatory macrophages and secretion of pro-inflammatory cytokine (IL-1β) by reducing serum double-stranded DNA (dsDNA) levels and triggering the AIM2/Caspase-1/GSDMD signaling in vivo. dsDNA-induced Caspase-1 and PI-positive cells pyroptosis, AIM2 inflammasome activation, IL-1β, and IL-18 secretion increase were inhibited by Art in vitro. Furthermore, we found Art effectively suppressed mitochondrial DNA (mtDNA), a typical form of dsDNA, released from free fatty acid (FFA)-stressed hepatocytes, which further inhibited AIM2 inflammasome mediated-pyroptosis through decreasing the cleavage of Caspase-1/GSDMD/IL-1β. Moreover, inhibition of the AIM2 gene partly reversed the inhibitory effect of Art on macrophage pyroptosis. Impaired mitochondrial structure and function were confirmed in FFA-stressed hepatocytes and the HFHF-diet-induced NASH mouse model, which was reversed by Art treatment. The present study provides evidence for Art as a potential anti-pyroptosis therapeutic agent for NASH treatment.
Collapse
Affiliation(s)
- Jia Xu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaoyan Cheng
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, China
| | - Qi Wang
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Feng Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xinxin Ren
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yanzhou Hu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ruxin Gao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kun Yang
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jingya Yin
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Bingqing Yang
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yue Li
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Xiao Y, Yang Y, Xiong H, Dong G. The implications of FASN in immune cell biology and related diseases. Cell Death Dis 2024; 15:88. [PMID: 38272906 PMCID: PMC10810964 DOI: 10.1038/s41419-024-06463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Fatty acid metabolism, particularly fatty acid synthesis, is a very important cellular physiological process in which nutrients are used for energy storage and biofilm synthesis. As a key enzyme in the fatty acid metabolism, fatty acid synthase (FASN) is receiving increasing attention. Although previous studies on FASN have mainly focused on various malignancies, many studies have recently reported that FASN regulates the survival, differentiation, and function of various immune cells, and subsequently participates in the occurrence and development of immune-related diseases. However, few studies to date systematically summarized the function and molecular mechanisms of FASN in immune cell biology and related diseases. In this review, we discuss the regulatory effect of FASN on immune cells, and the progress in research on the implications of FASN in immune-related diseases. Understanding the function of FASN in immune cell biology and related diseases can offer insights into novel treatment strategies for clinical diseases.
Collapse
Affiliation(s)
- Yucai Xiao
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, Shandong, China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272007, Shandong, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, Shandong, China.
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, Shandong, China.
| |
Collapse
|
3
|
Ren X, Xu J, Xu Y, Wang Q, Huang K, He X. Artemether Attenuates Gut Barrier Dysfunction and Intestinal Flora Imbalance in High-Fat and High-Fructose Diet-Fed Mice. Nutrients 2023; 15:4860. [PMID: 38068719 PMCID: PMC10707945 DOI: 10.3390/nu15234860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Intestinal inflammation is a key determinant of intestinal and systemic health, and when our intestines are damaged, there is disruption of the intestinal barrier, which in turn induces a systemic inflammatory response. However, the etiology and pathogenesis of inflammatory diseases of the intestine are still not fully understood. Artemether (ART), one of the artemisinin derivatives, has been widely used to treat malaria. Nevertheless, the effect of ART on intestinal inflammation remains unclear. The present study intended to elucidate the potential mechanism of ART in diet-induced intestinal injury. A high-fat and high-fructose (HFHF) diet-induced mouse model of intestinal injury was constructed, and the mice were treated with ART to examine their role in intestinal injury. RT-qPCR, Western blotting, immunohistochemical staining, and 16S rRNA gene sequencing were used to investigate the anti-intestinal inflammation effect and mechanism of ART. The results indicated that ART intervention may significantly ameliorate the intestinal flora imbalance caused by the HFHF diet and alleviate intestinal barrier function disorders and inflammatory responses by raising the expression of tight junction proteins ZO-1 and occludin and decreasing the expression of pro-inflammatory factors TNF-α and IL-1β. Moreover, ART intervention restrained HFHF-induced activation of the TLR4/NF-κB p65 pathway in colon tissue, which may be concerned with the potential protective effect of ART on intestinal inflammation. ART might provide new insights into further explaining the mechanism of action of other metabolic diseases caused by intestinal disorders.
Collapse
Affiliation(s)
- Xinxin Ren
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jia Xu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ye Xu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qin Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| |
Collapse
|
4
|
Yang Y, Jia X, Qu M, Yang X, Fang Y, Ying X, Zhang M, Wei J, Pan Y. Exploring the potential of treating chronic liver disease targeting the PI3K/Akt pathway and polarization mechanism of macrophages. Heliyon 2023; 9:e17116. [PMID: 37484431 PMCID: PMC10361319 DOI: 10.1016/j.heliyon.2023.e17116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/25/2023] Open
Abstract
Chronic liver disease is a significant public health issue that can lead to considerable morbidity and mortality, imposing an enormous burden on healthcare resources. Understanding the mechanisms underlying chronic liver disease pathogenesis and developing effective treatment strategies are urgently needed. In this regard, the activation of liver resident macrophages, namely Kupffer cells, plays a vital role in liver inflammation and fibrosis. Macrophages display remarkable plasticity and can polarize into different phenotypes according to diverse microenvironmental stimuli. The polarization of macrophages into M1 pro-inflammatory or M2 anti-inflammatory phenotypes is regulated by complex signaling pathways such as the PI3K/Akt pathway. This review focuses on investigating the potential of using plant chemicals targeting the PI3K/Akt pathway for treating chronic liver disease while elucidating the polarization mechanism of macrophages under different microenvironments. Studies have demonstrated that inhibiting M1-type macrophage polarization or promoting M2-type polarization can effectively combat chronic liver diseases such as alcoholic liver disease, non-alcoholic fatty liver disease, and liver fibrosis. The PI3K/Akt pathway acts as a pivotal modulator of macrophage survival, migration, proliferation, and their responses to metabolism and inflammatory signals. Activating the PI3K/Akt pathway induces anti-inflammatory cytokine expression, resulting in the promotion of M2-like phenotype to facilitate tissue repair and resolution of inflammation. Conversely, inhibiting PI3K/Akt signaling could enhance the M1-like phenotype, which exacerbates liver damage. Targeting the PI3K/Akt pathway has tremendous potential as a therapeutic strategy for regulating macrophage polarization and activity to treat chronic liver diseases with plant chemicals, providing new avenues for liver disease treatment.
Collapse
Affiliation(s)
- Yaqian Yang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiaotao Jia
- Department of Neurology, The Affifiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710003, PR China
| | - Mengyang Qu
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xinmao Yang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yan Fang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiaoping Ying
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Meiqian Zhang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Jing Wei
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yanfang Pan
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| |
Collapse
|
5
|
He HQ, Shen WT, Pei Q, Fei JB, Yu Y, Qin HH, Wang GJ. Evaluation of the efficacy and safety of artemether emulsion on localized senile pruritus: A randomized pilot study. Medicine (Baltimore) 2022; 101:e30472. [PMID: 36107571 PMCID: PMC9439745 DOI: 10.1097/md.0000000000030472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Localized senile pruritus is a continued health problem for the elderly. This study aimed to evaluate the efficacy and safety of artemether emulsion on localized senile pruritus. METHODS Sixty patients diagnosed with senile pruritus were randomized into the artemether emulsion (1%) group or emulsion base group in a 1:1 ratio (the artemether group vs the control group). The patients used artemether emulsion or emulsion base for pruritus twice daily for 2 weeks. The pruritus visual analog scale (VAS) and the rate of adverse events were evaluated in week 0 and week 2. RESULTS The VAS scores in week 2 after treatment decreased significantly compared with those before treatment in both groups (P < .05). After treatment, patients receiving the artemether emulsion had significantly lower mean VAS scores compared to those who received the emulsion base (1.21 ± 1.64 vs 3.67 ± 2.97, P < .05). When the VAS scores were compared between the 2 groups before treatment, the effective rate of the artemether group was significantly higher than that of the control group (χ2 = 55, P < .05) in week 2 after treatment. Besides, no adverse events occurred in both groups. CONCLUSIONS Both artemether emulsion and emulsion base were effective in treating localized senile pruritus, and artemether emulsion was superior to emulsion base.
Collapse
Affiliation(s)
- Hui-Qiong He
- Department of Dermatology, Shanghai University of Medicine and Health Science Affiliated Zhoupu Hospital, Shanghai, China
| | - Wen-Tong Shen
- Department of Dermatology, Shanghai University of Medicine and Health Science Affiliated Zhoupu Hospital, Shanghai, China
| | - Qin Pei
- Department of Dermatology, Shanghai University of Medicine and Health Science Affiliated Zhoupu Hospital, Shanghai, China
| | - Jian-Biao Fei
- Department of Dermatology, Shanghai University of Medicine and Health Science Affiliated Zhoupu Hospital, Shanghai, China
| | - Yue Yu
- Department of Dermatology, Shanghai University of Medicine and Health Science Affiliated Zhoupu Hospital, Shanghai, China
| | - Hai-Hong Qin
- Department of Dermatology, Shanghai University of Medicine and Health Science Affiliated Zhoupu Hospital, Shanghai, China
| | - Guo-Jiang Wang
- Department of Dermatology, Shanghai University of Medicine and Health Science Affiliated Zhoupu Hospital, Shanghai, China
- *Correspondence: Guo-jiang Wang, Department of Dermatology, Shanghai University of Medicine and Health Science Affiliated Zhoupu Hospital, No. 1500, Zhouyuan Road, Pudong New Area, Shanghai, 201318, China (e-mail: )
| |
Collapse
|