1
|
Yang C, Fu J, Zheng F, Fu Y, Duan X, Zuo R, Zhu J. Aconitine promotes ROS-activated P38/MAPK/Nrf2 pathway to inhibit autophagy and promote myocardial injury. J Cardiothorac Surg 2024; 19:665. [PMID: 39707526 DOI: 10.1186/s13019-024-03149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Aconitine has cardiotoxicity, but the mechanism of cardiotoxicity induced by aconitine is limited. The aim of this study was to investigate the mechanism of myocardial injury induced by aconitine. METHODS Using aconitine, ROS inhibitor N-acetylcysteine(NAC), the autophagy activitor Rapamycin (Rap) or the P38/MAPK pathway activitor Dehydrocorydaline treats H9C2 cells. CCK-8 assay was used to assay cell proliferation activity. Flow Cytometry was used to detect cell apoptosis. Dichloro-dihydrofluorescein diacetate was used to detect ROS levels. The expression of LC3 was detected by Immunofluorescence Staining. Western blotting detected the expression of related proteins. The mRNA levels of inflammatory factors were detected by RT-qPCR. RESULTS Aconitine inhibits cardiomyocyte proliferation, induces apoptosis and secretion of inflammatory factors. Aconitine activates the P38/MAPK/Nrf2 pathway, induces ROS increase, and promotes autophagy. NAC can inhibit proliferation inhibition, apoptosis, inflammation and P38/MAPK/Nrf2 pathway activation induced by aconitine. Rap and P38 activators can partially recover the effects of NAC on proliferation, apoptosis, inflammation and autophagy of cardiomyocytes. CONCLUSION Aconitine promotes ROS-activated P38/MAPK/Nrf2 pathway to inhibit autophagy and promote myocardial injury.
Collapse
Affiliation(s)
- Chunai Yang
- Department of Emergency, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Jinxiao Fu
- Department of Geriatric Medicine, The Affiliated Hospital of Yunnan University, 176 Qingnian Road, Wuhua District, Kunming, 650021, Yunnan, China.
| | - Fenshuang Zheng
- Department of Emergency, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Yangshan Fu
- Department of Emergency, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Xueqiong Duan
- Department of Emergency, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Ruiling Zuo
- Department of Emergency, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Junbo Zhu
- Department of Emergency, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| |
Collapse
|
2
|
Bian YY, Hou J, Khakurel S. Treatment of a patient with aconitine poisoning using veno-arterial membrane oxygenation: A case report. World J Clin Cases 2024; 12:4842-4852. [PMID: 39070832 PMCID: PMC11235513 DOI: 10.12998/wjcc.v12.i21.4842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Aconitine poisoning is highly prone to causing malignant arrhythmias. The elimination of aconitine from the body takes a considerable amount of time, and during this period, patients are at a significant risk of death due to malignant arrhythmias associated with aconitine poisoning. CASE SUMMARY A 30-year-old male patient was admitted due to accidental ingestion of aconitine-containing drugs. Upon arrival at the emergency department, the patient intermittently experienced malignant arrhythmias including ventricular tachycardia, ventricular fibrillation, ventricular premature beats, and cardiac arrest. Emergency interventions such as cardiopulmonary resuscitation and defibrillation were promptly administered. Additionally, veno-arterial extracorporeal membrane oxygenation (VA-ECMO) therapy was initiated. Successful resuscitation was achieved before ECMO placement, but upon initiation of ECMO, the patient experienced recurrent malignant arrhythmias. ECMO was utilized to maintain hemodynamics and respiration, while continuous blood purification therapy for toxin clearance, mechanical ventilation, and hypothermic brain protection therapy were concurrently administered. On the third day of VA-ECMO support, the patient's respiratory and hemodynamic status stabilized, with only frequent ventricular premature beats observed on electrocardiographic monitoring, and echocardiography indicated recovery of cardiac contractile function. On the fourth day, a significant reduction in toxin levels was observed, along with stable hemodynamic and respiratory functions. Following a successful pump-controlled retrograde trial occlusion test, ECMO assistance was terminated. The patient gradually improved postoperatively and achieved recovery. He was discharged 11 days later. CONCLUSION VA-ECMO can serve as a bridging resuscitation technique for patients with reversible malignant arrhythmias.
Collapse
Affiliation(s)
- Yu-Yao Bian
- Department of Emergency Medicine, Hebei Petro China Central Hospital, Langfang 065000, Hebei Province, China
| | - Jin Hou
- Department of Internal Medicine, Langfang Health Vocational College, Langfang 065000, Hebei Province, China
| | - Sudha Khakurel
- Dallas Campus, UT Health Houston School of Public Health, Dallas, TX 75201, United States
| |
Collapse
|
3
|
Xu T, Wu Z, Yao H, Zhang Y, Chen S, Li Y, Meng XL, Zhang Y, Lin JM. Evaluation of aconitine cardiotoxicity with a heart-on-a-particle prepared by a microfluidic device. Chem Commun (Camb) 2024; 60:4898-4901. [PMID: 38629248 DOI: 10.1039/d4cc00396a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A heart-on-a-particle model based on multicompartmental microgel is proposed to simulate the heart microenvironment and study the cardiotoxicity of drugs. The relevant microgel was fabricated by a biocompatible microfluidic-based approach, where heart function-related HL-1 and HUVEC cells were arranged in separate compartments. Finally, the mechanism of aconitine-induced heart toxicity was elucidated using mass spectrometry and molecular biotechnology.
Collapse
Affiliation(s)
- Tong Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Zengnan Wu
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Hongren Yao
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Yingrui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Shiyu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Yuxuan Li
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Xian-Li Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
4
|
Zhao P, Tian Y, Geng Y, Zeng C, Ma X, Kang J, Lu L, Zhang X, Tang B, Geng F. Aconitine and its derivatives: bioactivities, structure-activity relationships and preliminary molecular mechanisms. Front Chem 2024; 12:1339364. [PMID: 38318112 PMCID: PMC10839071 DOI: 10.3389/fchem.2024.1339364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Aconitine (AC), which is the primary bioactive diterpene alkaloid derived from Aconitum L plants, have attracted considerable interest due to its unique structural feature. Additionally, AC demonstrates a range of biological activities, such as its ability to enhance cardiac function, inhibit tumor growth, reduce inflammation, and provide analgesic effects. However, the structure-activity relationships of AC are remain unclear. A clear understanding of these relationships is indeed critical in developing effective biomedical applications with AC. In line with these challenges, this paper summarized the structural characteristics of AC and relevant functional and bioactive properties and the structure-activity relationships presented in biomedical applications. The primary temporal scope of this review was established as the period spanning from 2010 to 2023. Subsequently, the objective of this review was to provide a comprehensive understanding of the specific action mechanism of AC, while also exploring potential novel applications of AC derivatives in the biomedical field, drawing upon their structural characteristics. In conclusion, this review has provided a comprehensive analysis of the challenges and prospects associated with AC in the elucidation of structure-bioactivity relationships. Furthermore, the importance of exploring modern biotechnology approaches to enhance the potential biomedical applications of AC has been emphasized.
Collapse
Affiliation(s)
- Pengyu Zhao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ye Tian
- Guizhou Yunfeng Pharmaceutical Co., Ltd., Qianxinan Buyi and Miao Autonomous Prefecture, China
| | - Yuefei Geng
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
| | - Chenjuan Zeng
- Guizhou Yunfeng Pharmaceutical Co., Ltd., Qianxinan Buyi and Miao Autonomous Prefecture, China
| | - Xiuying Ma
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
| | - Jie Kang
- Guizhou Yunfeng Pharmaceutical Co., Ltd., Qianxinan Buyi and Miao Autonomous Prefecture, China
| | - Lin Lu
- Sichuan Engineering Research Center for Medicinal Animals, Chengdu, China
| | - Xin Zhang
- Sichuan Good Doctor Pharmaceutical Group, Chengdu, China
| | - Bo Tang
- Sichuan Engineering Research Center for Medicinal Animals, Chengdu, China
| | - Funeng Geng
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Xiang G, Xing N, Wang S, Zhang Y. Antitumor effects and potential mechanisms of aconitine based on preclinical studies: an updated systematic review and meta-analysis. Front Pharmacol 2023; 14:1172939. [PMID: 37180714 PMCID: PMC10174313 DOI: 10.3389/fphar.2023.1172939] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Background: Herbs originating from the Aconitum L. (Ranunculaceae), such as Aconitum carmichaelii Debeaux. (Wutou), Aconitum pendulum Busch. (Tiebangchui), and Aconitum kusnezoffii Reichb. (Caowu), etc. are highly valued for their medicinal properties. The roots and tubers of these herbs are commonly used to treat an array of ailments, including joint pain and tumors. The alkaloids present in them are the primary active components, with aconitine being the most notable. Aconitine has gained attention for its exceptional anti-inflammatory and analgesic properties, as well as its potential as an anti-tumor and cardiotonic agent. However, the exact process through which aconitine hinders the growth of cancerous cells and triggers their programmed cell death remains unclear. Therefore, we have undertaken a comprehensive systematic review and meta-analysis of the current research on the potential antitumor properties of aconitine. Methods: We conducted a thorough search of relevant preclinical studies in databases including PubMed, Web of Science, VIP, WanFang Data, CNKI, Embase, Cochrane Library, and National Center for Biotechnology Information (NCBI). The search was conducted up until 15 September 2022, and the data were statistically analyzed using RevMan 5.4 software. The number of tumor cell value-added, tumor cell apoptosis rate, thymus index (TI), and Bcl-2 gene expression level were the main indicators to be analyzed. Results: After applying the final inclusion criteria, a total of thirty-seven studies, comprising both in vivo and in vitro research were analyzed. The results showed that treatment with aconitine led to a significant reduction in tumor cell proliferation, a noteworthy increase in the rate of apoptosis among tumor cells, a decrease in the thymus index, and a reduction in the expression level of Bcl-2. These results suggested that aconitine could inhibit the proliferation, invasion, and migration abilities of tumor cells by regulating Bcl-2 etc., thereby enhancing the anti-tumor effects. Conclusion: In summary, our present study demonstrated that aconitine effectively reduced tumor size and volume, indicating a strong anti-tumor effect. Additionally, aconitine could increase the expression levels of caspase-3, Bax and other targets. Mechanistically, it may regulate the expression levels of Bax and Bcl-2 through the NF-κB signaling pathway, ultimately inhibiting tumor cell proliferation through autophagy.
Collapse
Affiliation(s)
- Gelin Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Shaohui Wang, ; Yi Zhang,
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Shaohui Wang, ; Yi Zhang,
| |
Collapse
|
6
|
Liao YP, Shen LH, Cai LH, Chen J, Shao HQ. Acute myocardial necrosis caused by aconitine poisoning: A case report. World J Clin Cases 2022; 10:12416-12421. [PMID: 36483800 PMCID: PMC9724530 DOI: 10.12998/wjcc.v10.i33.12416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Herbal medicine has a long history of use in the prevention and treatment of disease and is becoming increasingly popular globally. However, there are also widespread concerns about its safety. Among them, the cardiotoxicity of aconitine has been described.
CASE SUMMARY We report a case of a 61-year-old male with aconitine poisoning presenting with malignant arrhythmia and severe cardiogenic shock, which was successfully managed with aggressive advanced life support and heart transplantation.
CONCLUSION This is the first case wherein in vivo cardiac pathology was obtained, confirming that aconitine caused acute myocardial necrosis.
Collapse
Affiliation(s)
- Yu-Ping Liao
- Department of Critical Care Medicine, Dongguan People’s Hospital, Dongguan 523058, Guangdong Province, China
| | - Li-Han Shen
- Department of Critical Care Medicine, Dongguan People’s Hospital, Dongguan 523058, Guangdong Province, China
| | - Li-Hua Cai
- Department of Critical Care Medicine, Dongguan People’s Hospital, Dongguan 523058, Guangdong Province, China
| | - Jie Chen
- Department of Critical Care Medicine, Dongguan People’s Hospital, Dongguan 523058, Guangdong Province, China
| | - Han-Quan Shao
- Department of Critical Care Medicine, Dongguan People’s Hospital, Dongguan 523058, Guangdong Province, China
| |
Collapse
|