1
|
Choi PJ, Tatenaka Y, Noguchi K, Ishiyama M, Denny W, Jose J. Bora-Diaza-Indacene Based Fluorescent Probes for Simultaneous Visualisation of Lipid Droplets and Endoplasmic Reticulum. Chembiochem 2024; 25:e202400415. [PMID: 38749919 DOI: 10.1002/cbic.202400415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Indexed: 06/28/2024]
Abstract
Organelle selective fluorescent probes, especially those capable of concurrent detection of specific organelles, are of benefit to the research community in delineating the interplay between various organelles and the impact of such interaction in maintaining cellular homeostasis and its disruption in the diseased state. Although very useful, such probes are synthetically challenging to design due to the stringent lipophilicity requirement posed by different organelles, and hence, the lack of such probes being reported so far. This work details the synthesis, photophysical properties, and cellular imaging studies of two bora-diaza-indacene based fluorescent probes that can specifically and simultaneously visualise lipid droplets and endoplasmic reticulum; two organelles suggested having close interactions and implicated in stress-induced cellular dysfunction and disease progression.
Collapse
Affiliation(s)
- Peter J Choi
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag, 92019, Auckland 1142, New Zealand
| | - Yuki Tatenaka
- Dojindo Laboratories Co., Ltd, Techno-Research Park Tabaru 2025-5, Mashiki-machi, Kamimashiki-gun, 861-2202, Japan
| | - Katsuya Noguchi
- Dojindo Laboratories Co., Ltd, Techno-Research Park Tabaru 2025-5, Mashiki-machi, Kamimashiki-gun, 861-2202, Japan
| | - Munetaka Ishiyama
- Dojindo Laboratories Co., Ltd, Techno-Research Park Tabaru 2025-5, Mashiki-machi, Kamimashiki-gun, 861-2202, Japan
| | - William Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag, 92019, Auckland 1142, New Zealand
| | - Jiney Jose
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag, 92019, Auckland 1142, New Zealand
| |
Collapse
|
2
|
Su L, Wang J, Liu B, Liu H, Chen Q, Liu J, Li S, Yuan L, An L, Lin H, Feng L, Zheng J, Ren J, Liang L, Li S. Construction of a Near-Infrared Fluorescent Probe for Dynamic Monitoring and Early Diagnosis of Heart Failure. ACS Sens 2024; 9:3075-3084. [PMID: 38807573 DOI: 10.1021/acssensors.4c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Cardiac hypertrophy characterized by abnormal cardiomyocyte viscosity is a typical sign of heart failure (HF) with vital importance for early diagnosis. However, current biochemical and imaging diagnostic methods are unable to detect this subclinical manifestation. In this work, we developed a series of NIR-I fluorescence probes for detecting myocardial viscosity based on the pyridazinone scaffold. The probes showed weak fluorescence due to free intramolecular rotation under low-viscosity conditions, while they displayed strong fluorescence with limited intramolecular rotation in response to a high-viscosity environment. Among them, CarVis2 exhibited higher stability and photobleaching resistance than commercial dyes. Its specific response to viscosity was not influenced by the pH and biological species. Furthermore, CarVis2 showed rapid and accurate responses to the viscosity of isoproterenol (ISO)-treated H9C2 cardiomyocytes with good biocompatibility. More importantly, CarVis2 demonstrated excellent sensitivity in monitoring myocardial viscosity variation in HF mice in vivo, potentially enabling earlier noninvasive identification of myocardial abnormalities compared to traditional clinical imaging and biomarkers. These findings revealed that CarVis2 can serve as a powerful tool to monitor myocardial viscosity, providing the potential to advance insights into a pathophysiological mechanism and offering a new reference strategy for early visual diagnosis of HF.
Collapse
Affiliation(s)
- Lina Su
- Heart Failure Center, Department of Cardiology, China-Japan Friendship Hospital, Beijing 100029, China
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing 100044, China
| | - Junda Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bowei Liu
- Heart Failure Center, Department of Cardiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Hui Liu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qixin Chen
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing 100044, China
| | - Jiang Liu
- Heart Failure Center, Department of Cardiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Shuolei Li
- Laboratory Animal Unit, Peking University People's Hospital, Beijing 100044, China
| | - Lan Yuan
- Medical and Healthy Analytical Center, Peking University, Beijing 100191, China
| | - Lihua An
- Medical and Healthy Analytical Center, Peking University, Beijing 100191, China
| | - Hang Lin
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing 100044, China
| | - Lina Feng
- Heart Failure Center, Department of Cardiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jingang Zheng
- Heart Failure Center, Department of Cardiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jingyi Ren
- Heart Failure Center, Department of Cardiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Lei Liang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Sufang Li
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
3
|
Chen J, Stephan T, Gaedke F, Liu T, Li Y, Schauss A, Chen P, Wulff V, Jakobs S, Jüngst C, Chen Z. An aldehyde-crosslinking mitochondrial probe for STED imaging in fixed cells. Proc Natl Acad Sci U S A 2024; 121:e2317703121. [PMID: 38687792 PMCID: PMC11087744 DOI: 10.1073/pnas.2317703121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
Fluorescence labeling of chemically fixed specimens, especially immunolabeling, plays a vital role in super-resolution imaging as it offers a convenient way to visualize cellular structures like mitochondria or the distribution of biomolecules with high detail. Despite the development of various distinct probes that enable super-resolved stimulated emission depletion (STED) imaging of mitochondria in live cells, most of these membrane-potential-dependent fluorophores cannot be retained well in mitochondria after chemical fixation. This lack of suitable mitochondrial probes has limited STED imaging of mitochondria to live cell samples. In this study, we introduce a mitochondria-specific probe, PK Mito Orange FX (PKMO FX), which features a fixation-driven cross-linking motif and accumulates in the mitochondrial inner membrane. It exhibits high fluorescence retention after chemical fixation and efficient depletion at 775 nm, enabling nanoscopic imaging both before and after aldehyde fixation. We demonstrate the compatibility of this probe with conventional immunolabeling and other strategies commonly used for fluorescence labeling of fixed samples. Moreover, we show that PKMO FX facilitates correlative super-resolution light and electron microscopy, enabling the correlation of multicolor fluorescence images and transmission EM images via the characteristic mitochondrial pattern. Our probe further expands the mitochondrial toolkit for multimodal microscopy at nanometer resolutions.
Collapse
Affiliation(s)
- Jingting Chen
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing100871, China
| | - Till Stephan
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen37075, Germany
| | - Felix Gaedke
- Faculty of Mathematics and Natural Sciences, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne50931, Germany
| | - Tianyan Liu
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Yiyan Li
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Astrid Schauss
- Faculty of Mathematics and Natural Sciences, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne50931, Germany
| | - Peng Chen
- Peking University-Nanjing Institute of Translational Medicine, Nanjing211800, China
- Genvivo Biotech (PuHaiJingShan), Nanjing211800, China
| | - Veronika Wulff
- Faculty of Mathematics and Natural Sciences, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne50931, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen37075, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology Translational, Neuroinflammation and Automated Microscopy, Göttingen37075, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells”, University of Göttingen, Göttingen37099, Germany
| | - Christian Jüngst
- Faculty of Mathematics and Natural Sciences, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne50931, Germany
| | - Zhixing Chen
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
- Peking University-Nanjing Institute of Translational Medicine, Nanjing211800, China
- Genvivo Biotech (PuHaiJingShan), Nanjing211800, China
| |
Collapse
|
4
|
Pareek N, Mendiratta S, Kalita N, Sivaramakrishnan S, Khan RS, Samanta A. Unraveling Ferroptosis Mechanisms: Tracking Cellular Viscosity with Small Molecular Fluorescent Probes. Chem Asian J 2024; 19:e202400056. [PMID: 38430218 DOI: 10.1002/asia.202400056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/03/2024]
Abstract
Ferroptosis is a recently identified form of regulated cell death characterized by iron accumulation and lipid peroxidation. Numerous functions for ferroptosis have been identified in physiological as well as pathological processes, most notably in the treatment of cancer. The intricate balance of redox homeostasis is profoundly altered during ferroptosis, leading to alteration in cellular microenvironment. One such microenvironment is viscosity among others such as pH, polarity, and temperature. Therefore, understanding the dynamics of ferroptosis associated viscosity levels within organelles is crucial. To date, there are a very few reviews that detects ferroptosis assessing reactive species. In this review, we have summarized organelle's specific fluorescent probes that detects dynamics of microviscosity during ferroptosis. Also, we offer the readers an insight of their design strategy, photophysics and associated bioimaging concluding with the future perspective and challenges in the related field.
Collapse
Affiliation(s)
- Niharika Pareek
- Department of Chemistry, School of Natural Sciences Institution, Shiv Nadar Institution of Eminence (SNIoE), Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Sana Mendiratta
- Department of Chemistry, School of Natural Sciences Institution, Shiv Nadar Institution of Eminence (SNIoE), Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Nripankar Kalita
- Department of Chemistry, School of Natural Sciences Institution, Shiv Nadar Institution of Eminence (SNIoE), Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Shreya Sivaramakrishnan
- Department of Chemistry, School of Natural Sciences Institution, Shiv Nadar Institution of Eminence (SNIoE), Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Rafique Sanu Khan
- Department of Chemistry, School of Natural Sciences Institution, Shiv Nadar Institution of Eminence (SNIoE), Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Animesh Samanta
- Department of Chemistry, School of Natural Sciences Institution, Shiv Nadar Institution of Eminence (SNIoE), Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| |
Collapse
|
5
|
Cai XM, Lin Y, Zhang J, Li Y, Tang Z, Zhang X, Jia Y, Wang W, Huang S, Alam P, Zhao Z, Tang BZ. Chromene-based BioAIEgens: 'in-water' synthesis, regiostructure-dependent fluorescence and ER-specific imaging. Natl Sci Rev 2023; 10:nwad233. [PMID: 38188025 PMCID: PMC10769509 DOI: 10.1093/nsr/nwad233] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 01/09/2024] Open
Abstract
Exploration of artificial aggregation-induced emission luminogens (AIEgens) has garnered extensive interest in the past two decades. In particular, AIEgens possessing natural characteristics (BioAIEgens) have received more attention recently due to the advantages of biocompatibility, sustainability and renewability. However, the extremely limited number of BioAIEgens extracted from natural sources have retarded their development. Herein, a new class of BioAIEgens based on the natural scaffold of chromene have been facilely synthesized via green reactions in a water system. These compounds show regiostructure-, polymorphism- and substituent-dependent fluorescence, which clearly illustrates the close relationship between the macroscopic properties and hierarchical structure of aggregates. Due to the superior biocompatibility of the natural scaffold, chromene-based BioAIEgens can specifically target the endoplasmic reticulum (ER) via the introduction of tosyl amide. This work has provided a new chromene scaffold for functional BioAIEgens on the basis of green and sustainable 'in-water' synthesis, applicable regiostructure-dependent fluorescence, and effective ER-specific imaging.
Collapse
Affiliation(s)
- Xu-Min Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| | - Yuting Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Ying Li
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| | - Zhenguo Tang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xuedan Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ying Jia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjin Wang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Parvej Alam
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| |
Collapse
|
6
|
Chan KH, Wang Y, Zheng BX, Long W, Feng X, Wong WL. RNA-Selective Small-Molecule Ligands: Recent Advances in Live-Cell Imaging and Drug Discovery. ChemMedChem 2023; 18:e202300271. [PMID: 37649155 DOI: 10.1002/cmdc.202300271] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
RNA structures, including those formed from coding and noncoding RNAs, alternative to protein-based drug targets, could be a promising target of small molecules for drug discovery against various human diseases, particularly in anticancer, antibacterial and antivirus development. The normal cellular activity of cells is critically dependent on the function of various RNA molecules generated from DNA transcription. Moreover, many studies support that mRNA-targeting small molecules may regulate the synthesis of disease-related proteins via the non-covalent mRNA-ligand interactions that do not involve gene modification. RNA-ligand interaction is thus an attractive approach to address the challenge of "undruggable" proteins in drug discovery because the intracellular activity of these proteins is hard to be suppressed with small molecule ligands. We selectively surveyed a specific area of RNA structure-selective small molecule ligands in fluorescence live cell imaging and drug discovery because the area was currently underexplored. This state-of-the-art review thus mainly focuses on the research published within the past three years and aims to provide the most recent information on this research area; hopefully, it could be complementary to the previously reported reviews and give new insights into the future development on RNA-specific small molecule ligands for live cell imaging and drug discovery.
Collapse
Affiliation(s)
- Ka Hin Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR 999077, P. R. China
| | - Yakun Wang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Bo-Xin Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR 999077, P. R. China
| | - Wei Long
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR 999077, P. R. China
| | - Xinxin Feng
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR 999077, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
7
|
Kim J, Jangili P, Kim J, Lucia SE, Ryu JR, Prasad R, Zi S, Kim P, Sun W, Kim JS. Mitochondrial NIR imaging probe mitigating oxidative damage by targeting HDAC6. Chem Commun (Camb) 2023; 59:10109-10112. [PMID: 37528768 DOI: 10.1039/d3cc03259k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Despite the apparent copious fluorescent probes targeting mitochondria, the development of low cytotoxic probes is still needed for improving validation of mitochondrial function assessment. Herein, we report a novel cyanine-based NIR fluorescent probe, T2, which selectively targets mitochondria with significantly low toxicity by modulating the intracellular redox status. Additionally, T2 inhibits oxidative stress-induced cell death in cortical neurons. This study provides new insight into developing low-toxic mitochondrial imaging agents by regulating redox homeostasis.
Collapse
Affiliation(s)
- Jungryun Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | - Paramesh Jangili
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | - Jeongah Kim
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - Stephani Edwina Lucia
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Jae Ryun Ryu
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - Renuka Prasad
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - Soyu Zi
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Woong Sun
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
8
|
Jiao S, Dong X, Zhao W. Meso pyridinium BODIPY-based long wavelength infrared mitochondria-targeting fluorescent probe with high photostability. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:3149-3155. [PMID: 37334656 DOI: 10.1039/d3ay00660c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Mito-tracker deep red (MTDR) as a commercially available mitochondria-targeting probe was easily bleached upon imaging. We designed and synthesized a family of meso-pyridinium BODIPY and introduced lipophilic methyl or benzyl as the head moiety to develop a mitochondria-targeting deep red probe. Moreover, we changed the substitution of the 3,5-phenyl moieties with the methoxy or methoxyethoxyethyl group to balance hydrophilicity. The designed BODIPY dyes possessed long absorption and good fluorescence emission. Among them, meso ortho-pyridinium BODIPYs with benzyl head and glycol substitution on phenyl moiety (3h) with favorable Stokes shift were found to have the best mitochondrial targeting performance. 3h was easily uptaken by cells and was less toxic and more photostable than MTDR. An immobilizable probe (3i) was further developed, and nice mitochondria targeting properties under the damaging condition of mitochondria membrane potential were maintained. BODIPY 3h or 3i may become alternative long-wavelength mitochondria targeting probes apart from MTDR and be suitable for long-term mitochondrial tracking studies.
Collapse
Affiliation(s)
- Shenghe Jiao
- School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| | - Xiaochun Dong
- School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| | - Weili Zhao
- School of Pharmacy, Fudan University, Shanghai 201203, PR China.
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, PR China
| |
Collapse
|
9
|
Huang Y, Li M, Zan Q, Wang R, Shuang S, Dong C. Mitochondria-Targeting Multifunctional Fluorescent Probe toward Polarity, Viscosity, and ONOO - and Cell Imaging. Anal Chem 2023. [PMID: 37376771 DOI: 10.1021/acs.analchem.2c05733] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Abnormal changes occurring in the mitochondrial microenvironment are important markers indicating mitochondrial and cell dysfunction. Herein, we designed and synthesized a multifunctional fluorescent probe DPB that responds to polarity, viscosity, and peroxynitrite (ONOO-). DPB is composed of an electron donor (diethylamine group) and electron acceptor (coumarin, pyridine cations, and phenylboronic acid esters), in which the pyridine group with a positive charge is responsible for targeting to mitochondria. D-π-A structure with strong intramolecular charge transfer (ICT) and twisted intramolecular charge transfer (TICT) properties give rise to respond to polarity and viscosity. The introduction of cyanogroup and phenylboronic acid esters increases the electrophilicity of the probe, which is prone to oxidation triggered by ONOO-. The integrated architecture satisfies the multiple response requirements. As the polarity increases, the fluorescence intensity of probe DPB at 470 nm is quenched by 97%. At 658 nm, the fluorescence intensity of DPB increases with viscosity and decreases with the concentration of ONOO-. Furthermore, the probe is not only successfully used to monitor mitochondrial polarity, viscosity, and endogenous/exogenous ONOO- level fluctuations but also to distinguish cancer cells from normal cells by multiple parameters. Therefore, as-prepared probe provides a reliable tool for better understanding of the mitochondrial microenvironment and also a potential approach for the diagnosis of disease.
Collapse
Affiliation(s)
- Yue Huang
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Minglu Li
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Qi Zan
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, and Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, People's Republic of China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Chuan Dong
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan 030006, People's Republic of China
| |
Collapse
|
10
|
Zhang K, Lan Y, Wang F, Gou Z, Yan M, Zuo Y. Versatile Switchable Targeted Polysiloxanes for High-Resolution Visualization of Mitochondrial and Lysosomal Interactions during Ferroptosis. Anal Chem 2023; 95:6303-6311. [PMID: 37014207 DOI: 10.1021/acs.analchem.2c05137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Ferroptosis is an iron-dependent process that regulates cell death and is essential for maintaining normal cell and tissue survival. The explosion of reactive oxygen species characterizes ferroptosis in a significant way. Peroxynitrite (ONOO-) is one of the endogenous reactive oxygen species. Abnormal ONOO- concentrations cause damage to subcellular organelles and further interfere with organelle interactions. However, the proper conduct of organelle interactions is critical for cellular signaling and the maintenance of cellular homeostasis. Therefore, investigating the effect of ONOO- on organelle interactions during ferroptosis is a highly attractive topic. To date, it has been challenging to visualize the full range of ONOO- fluctuations in mitochondria and lysosomes during ferroptosis. In this paper, we constructed a switchable targeting polysiloxane platform. During the selective modification of NH2 groups located in the side chain, the polysiloxane platform successfully constructed fluorescent probes targeting lysosomes and mitochondria (Si-Lyso-ONOO, Si-Mito-ONOO), respectively. Real-time detection of ONOO- in lysosomes and mitochondria during ferroptosis was successfully achieved. Remarkably, the occurrence of autophagy during late ferroptosis and the interaction between mitochondria and lysosomes was observed via the differentiated responsive strategy. We expect that this switchable targeting polysiloxane functional platform will broaden the application of polymeric materials in bioimaging and provide a powerful tool for further deeper understanding of the ferroptosis process.
Collapse
Affiliation(s)
- Kun Zhang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Ying Lan
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Fanfan Wang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Zhiming Gou
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Yujing Zuo
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| |
Collapse
|