1
|
Zhang R, Zhang X, Zhu X, Li T, Li Y, Zhang P, Chen Y, Li G, Han X. Nanoparticles transfected with plasmid-encoded lncRNA-OIP5-AS1 inhibit renal ischemia-reperfusion injury in mice via the miR-410-3p/Nrf2 axis. Ren Fail 2024; 46:2319327. [PMID: 38419565 PMCID: PMC10906121 DOI: 10.1080/0886022x.2024.2319327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
Nanostructures composed of liposomes and polydopamine (PDA) have demonstrated efficacy as carriers for delivering plasmids, effectively alleviating renal cell carcinoma. However, their role in acute kidney injury (AKI) remains unclear. This study aimed to investigate the effects of the plasmid-encoded lncRNA-OIP5-AS1@PDA nanoparticles (POP-NPs) on renal ischemia/reperfusion (RI/R) injury and explore the underlying mechanisms. RI/R or OGD/R models were established in mice and HK-2 cells, respectively. In vivo, vector or POP-NPs were administered (10 nmol, IV) 48 h after RI/R treatment. In the RI/R mouse model, the OIP5-AS1 and Nrf2/HO-1 expressions were down-regulated, while miR-410-3p expression was upregulated. POP-NPs treatment effectively reversed RI/R-induced renal tissue injury, restoring altered levels of blood urea nitrogen, creatinine, malondialdehyde, inflammatory factors (IL-8, IL-6, TNF-α), ROS, apoptosis, miR-410-3p, as well as the suppressed expression of SOD and Nrf2/HO-1 in the model mice. Similar results were obtained in cell models treated with POP-NPs. Additionally, miR-410-3p mimics could reverse the effects of POP-NPs on cellular models, partially counteracted by Nrf2 agonists. The binding relationship between OIP5-AS1 and miR-410-3p, alongside miR-410-3p and Nrf2, has been substantiated by dual-luciferase reporter and RNA pull-down assays. The study revealed that POP-NPs can attenuate RI/R-induced injury through miR-410-3p/Nrf2 axis. These findings lay the groundwork for future targeted therapeutic approaches utilizing nanoparticles for RI/R-induced AKI.
Collapse
Affiliation(s)
- Rongjie Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Xin Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Xuhui Zhu
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Tao Li
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Yansheng Li
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Peng Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Yuanhao Chen
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Gao Li
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Xiuwu Han
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| |
Collapse
|
2
|
Mi L, Jin J, Zhang Y, Chen M, Cui J, Chen R, Zheng X, Jing C. Chitinase 3-like 1 overexpression aggravates hypoxia-reoxygenation injury in IEC-6 cells by inhibiting the PI3K/AKT signalling pathway. Exp Physiol 2024; 109:2073-2087. [PMID: 39480684 DOI: 10.1113/ep091768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/14/2024] [Indexed: 11/02/2024]
Abstract
Intestinal ischaemia-reperfusion (I/R) is a common clinical pathology with high incidence and mortality rates. However, the mechanisms underlying intestinal I/R injury remain unclear. In this study, we investigated the role and mechanism of chitinase 3-like 1 (CHI3L1) during intestinal I/R injury. Therefore, we analysed the expression levels of CHI3L1 in the intestinal tissue of an intestinal I/R rat model and explored its effects and mechanism in a hypoxia-reoxygenation (H/R) IEC-6 cell model. We found that intestinal I/R injury elevated CHI3L1 levels in the serum, ileum and duodenum, whereas H/R enhanced CHI3L1 expression in IEC-6 cells. The H/R-induced inhibition of proliferation and apoptosis was alleviated by CHI3L1 knockdown and aggravated by CHI3L1 overexpression. In addition, CHI3L1 knockdown alleviated, and CHI3L1 overexpression aggravated, the H/R-induced inflammatory response and oxidative stress. Mechanistically, CHI3L1 overexpression weakened the activation of the phosphoinositide 3-kinase (PI3K)/AKT pathway, suppressed the nuclear translocation of Nrf2, and promoted the nuclear translocation of nuclear factor κB (NF-κB). Moreover, CHI3L1 knockdown had the opposite effect on the PI3K/AKT pathway, Nrf2, and NF-κB. Moreover, the PI3K inhibitor LY294002 blocked the effect of CHI3L1 knockdown on the H/R-induced inhibition of proliferation, apoptosis, inflammatory response and oxidative stress. In conclusion, CHI3L1 expression was induced during intestinal I/R and H/R injury in IEC-6 cells, and CHI3L1 overexpression aggravated H/R injury in IEC-6 cells by inhibiting the PI3K/AKT signalling pathway. Therefore, CHI3L1 may be an effective target for controlling intestinal I/R injury.
Collapse
Affiliation(s)
- Lei Mi
- Department of Gastrointestinal Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Tai'an, China
| | - Jie Jin
- Department of Traditional Chinese Medicine, The Affiliated Taian City Central Hospital of Qingdao University, Tai'an, China
| | - Yingying Zhang
- Department of Gastrointestinal Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Tai'an, China
| | - Ming Chen
- Department of Gastrointestinal Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Tai'an, China
| | - JianLi Cui
- Department of Gastrointestinal Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Tai'an, China
| | - Rui Chen
- Department of Gastrointestinal Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Tai'an, China
| | - Xiao Zheng
- Department of Gastrointestinal Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Tai'an, China
| | - Changqing Jing
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
3
|
Lv T, Wang C, Guo L, Fan Z. Effects of noncoding RNAs in intestinal ischemia-reperfusion. Asian J Surg 2024:S1015-9584(24)02037-2. [PMID: 39266346 DOI: 10.1016/j.asjsur.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Affiliation(s)
- Tingcong Lv
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Cong Wang
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Lipeng Guo
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, The Third People's Hospital of Dalian, Dalian University of Technology, Dalian, China.
| | - Zhe Fan
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China; Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, The Third People's Hospital of Dalian, Dalian University of Technology, Dalian, China.
| |
Collapse
|
4
|
Chiu YW, Lee CH, Lo HC. Oral post-treatment supplementation with a combination of glutamine, citrulline, and antioxidant vitamins additively mitigates jejunal damage, oxidative stress, and inflammation in rats with intestinal ischemia and reperfusion. PLoS One 2024; 19:e0298334. [PMID: 38306371 PMCID: PMC10836685 DOI: 10.1371/journal.pone.0298334] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024] Open
Abstract
INTRODUCTION Intestinal ischemia and reperfusion (IIR) injury is closely associated with oxidative stress. Evidence shows that oral supplementation with glutamine and citrulline alleviates IIR-induced jejunal damage. We investigated the effects of a combination of glutamine, citrulline, and antioxidant vitamins on IIR-induced jejunal damage, oxidative stress, and inflammation. METHOD Male Wistar rats that underwent 60 min of superior mesenteric artery occlusion were orally administered glutamine plus citrulline (GC), vitamin C plus E (CE), or a combination of GC and CE 15 min before and 3, 9, and 21 h after reperfusion. Healthy rats without IIR were used as controls. RESULTS After reperfusion for 24 h, rats with IIR showed lower levels of red blood cells, hemoglobin, serum glucose, and jejunal DNA and increased white blood cell counts compared to controls (1-way ANOVA with the least significant difference, P < 0.05). The IIR-induced decrease in serum albumin and increase in plasma interleukin-6 and jejunal thiobarbituric acid-reactive substances (TBARS) were significantly reversed by GC and/or CE. The results of the 2-way ANOVA indicated that GC was the main factor that increased jejunal villus height and muscularis DNA, and CE was the main factor that increased jejunal muscularis protein and decreased jejunal proinflammatory cytokine levels and myeloperoxidase activity. In addition, GC and CE are the main factors that decrease plasma proinflammatory cytokine levels and the jejunal apoptotic index. CONCLUSION Oral post-treatment supplementation with glutamine and citrulline, combined with vitamins C and E, may alleviate IIR-induced oxidative stress, inflammation, and jejunal damage.
Collapse
Affiliation(s)
- Yu-Wen Chiu
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
- Lee’s Endocrinology Clinic, Pingtung City, Pingtung County, Taiwan
| | - Chien-Hsing Lee
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Surgery, Division of Pediatric Surgery, China Medical University Children’s Hospital, Taichung, Taiwan
| | - Hui-Chen Lo
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
5
|
Matkovic Z, Aleksic Z. Medical, Surgical and Experimental Approaches to Acute Mesenteric Ischemia and Reperfusion. Mater Sociomed 2024; 36:77-81. [PMID: 38590590 PMCID: PMC10999141 DOI: 10.5455/msm.2024.36.77-81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/25/2024] [Indexed: 04/10/2024] Open
Abstract
Background Acute mesenteric ishemia(AMI) is a rare but very serious disease with high rate of mortality and morbidity. About 1-2% of all gastrointestinal disease is AMI. Mortality is about 60-80% and depends of time between starting of symptoms and establishing of diagnosis, type AMI, comorbidities. AMI is often in older population with coronary syndrom and atrial fibrilation. AMI may be occlusive(embolisatio arteriae mesentericae superior(AMS), or thrombosis of AMS, mesenterial vein thrombosis) and nonoclusive form(NOMI). NOMI is rising in critical ill patients in shock or sepsis. Pathophysiology of AMI is very complex and significant role in this proces has ischemia and also reperfusion. Reperfusion injury including oxidative stres, inflamation, infection. The best diagnostic approach is CT angiography but after high clinical suspicion on AMI. Patients have sudden, catastrophic abdominal pain, vomitus, bloody diarrhoea. Therapy is multidisciplinary-basic treatment(resuscitation with cristaloids, antibiotic, anticoagulans...), surgical treatment-resection necrotic segments of intestinum without anastomosis or endovascular treatment. In early phases conservative treatment is possible( vasodilatation, thrombolysis). In some countries there are Intestinal Stroke Centers (ISC) in which patients with AMI have better prognosis. Because of progressive nature of AMI( rapide worsening) rare are clinical study,but there are many experimental study on animal models. Most of experimental study investigate protective effects of some supstances on damage on intestinum and remote organs during ishemia and reperfusion. Objective To present literature data of clinical and experimental study, describe experiments on animal models and mention supstances whit promising results in protective strategies during AMI. Methods We analysed Pubmed by using mesh terms such as acute mesenteric ischemia, intestinal injury, reperfusion, experimental study, clinical and therapeutic approach. Results: Sudden abdominal pain resists on opioids analgetics, high rate of CRP, hyperlactatemia, increase of D dimer is enough for suspicion of AMI. Often is delayed in establishing of diagnosis of AMI. CT angiography has sensitivity of 94%. Pneumatosis is sign of necrosis of intestinal wall. Classical surgical approach is dominant, more than 70%,. Endovascular treatment became often last few years. Experimental studies investigate occlusion of AMS with atraumatic clamp, with schemia and reperfusion in different intervals Most animals models are on wistar male rats. Conclusion AMI has still high rate of mortality. Better diagnostic and therapeutic principles (shorter interval between appearance of symptoms and starting of therapy, multidisciplinary approach, higher percent of endovascular procedures), could decrease mortality. Experimental studies on animal models may be succesfull in development of new clinical, conservative approaches in the early phases of AMI in the future.
Collapse
Affiliation(s)
- Zoran Matkovic
- Department of Abdominal Surgery, General Hospital Doboj. Doboj, Bosnia and Herzegovina
| | - Zoran Aleksic
- Clinic for General and Abdominal surgery, University Clinical Centre of the Republic of Srpska, BanjaLuka. Banja Luka, Bosnia and Herzegovina
- Faculty of Medicine, University of Banja Luka. Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
6
|
Yili S, Xinyi D, Kerui F, Kun C, Yang Y, Zhang L, Hu K. Activation of GPR81 aggravated intestinal ischemia/reperfusion injury-induced acute lung injury via HMGB1-mediated neutrophil extracellular traps formation. Int J Immunopathol Pharmacol 2023; 37:3946320231193832. [PMID: 37698122 PMCID: PMC10498694 DOI: 10.1177/03946320231193832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/25/2023] [Indexed: 09/13/2023] Open
Abstract
INTRODUCTION Intestinal ischemia/reperfusion (II/R) injury is a life-threatening situation accompanied by severe organ injury, especially acute lung injury (ALI). A great body of evidence indicates that II/R injury is usually associated with hyperlactatemia. G-protein-coupled receptor 81 (GPR81), a receptor of lactate, has been recognized as a regulatory factor in inflammation, but whether it was involved in II/R injury-induced ALI is still unknown. METHODS To establish the II/R injury model, the superior mesenteric artery of the mice was occluded gently by a microvascular clamp for 45 min to elicit intestinal ischemia and then a 90-min reperfusion was performed. Broncho-alveolar lavage fluid (BALF) and lung tissues were obtained to evaluate the lung injury after II/R. The pulmonary histopathological alteration was evaluated by H&E staining. The concentration of proteins, the number of infiltrated cells, and the level of IL-6 were measured in BALF. The formation of neutrophil extracellular traps (NETs) was evaluated by the level of double-stranded DNA (dsDNA) and myeloperoxidase- double-stranded DNA (MPO-dsDNA) complex in BALF, and the content of citrullinated histone H3 (Cit-H3) in lung tissue. The level of HMGB1 in the BALF and plasma was measured by enzyme linked immunosorbent assay (ELISA). RESULTS Administration of the GPR81 agonist 3,5-dihydroxybenzoic acid (DHBA) aggravated II/R injury-induced lung histological abnormalities, upregulated the concentration of proteins, the number of infiltrated cells, and the level of IL-6 in BALF. In addition, DHBA treatment increased the level of dsDNA and MPO-dsDNA complex in BALF, and promoted the elevation of Cit-H3 in lung tissue and the release of HMGB1 in BALF and plasma. CONCLUSION After induction of ALI by II/R, the administration of DHBA aggravated ALI through NETs formation in the lung.
Collapse
Affiliation(s)
- Sun Yili
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Dai Xinyi
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Fan Kerui
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Chen Kun
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Yongqiang Yang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Kai Hu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Wan Y, Dong P, Zhu X, Lei Y, Shen J, Liu W, Liu K, Zhang X. Bibliometric and visual analysis of intestinal ischemia reperfusion from 2004 to 2022. Front Med (Lausanne) 2022; 9:963104. [PMID: 36052333 PMCID: PMC9426633 DOI: 10.3389/fmed.2022.963104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Intestinal ischemia/reperfusion (I/R) injury is a common tissue-organ damage occurring in surgical practice. This study aims to comprehensively review the collaboration and impact of countries, institutions, authors, subject areas, journals, keywords, and critical literature on intestinal I/R injury from a bibliometric perspective, and to assess the evolution of clustering of knowledge structures and identify hot trends and emerging topics. Methods Articles and reviews related to intestinal I/R were retrieved through subject search from Web of Science Core Collection. Bibliometric analyses were conducted on Excel 365, CiteSpace, VOSviewer, and Bibliometrix (R-Tool of R-Studio). Results A total of 1069 articles and reviews were included from 2004 to 2022. The number of articles on intestinal I/R injury gradually plateaued, but the number of citations increased. These publications were mainly from 985 institutions in 46 countries, led by China and the United States. Liu Kx published the most papers, while Chiu Cj had the largest number of co-citations. Analysis of the journals with the most outputs showed that most journals focused on surgical sciences, cell biology, and immunology. Macroscopic sketch and microscopic characterization of the entire knowledge domain were achieved through co-citation analysis. The roles of cell death, exosomes, intestinal flora, and anesthetics in intestinal I/R injury are the current and developing research focuses. The keywords "dexmedetomidine", "proliferation", and "ferroptosis" may also become new trends and focus of future research. Conclusion This study comprehensively reviews the research on intestinal I/R injury using bibliometric and visualization methods, and will help scholars better understand the dynamic evolution of intestinal I/R injury and provide directions for future research.
Collapse
Affiliation(s)
- Yantong Wan
- College of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Peng Dong
- College of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Xiaobing Zhu
- Department of Anesthesiology, Hospital of Traditional Chinese Medicine of Zhongshan City, Zhongshan, China
| | - Yuqiong Lei
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Junyi Shen
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Weifeng Liu
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Kexuan Liu
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Xiyang Zhang
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|