1
|
Suleman M, Khattak A, Akbar F, Rizwan M, Tayyab M, Yousaf M, Khan A, Albekairi NA, Agouni A, Crovella S. Analysis of E2F1 single-nucleotide polymorphisms reveals deleterious non-synonymous substitutions that disrupt E2F1-RB protein interaction in cancer. Int J Biol Macromol 2024; 260:129559. [PMID: 38242392 DOI: 10.1016/j.ijbiomac.2024.129559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Cancer is a medical condition that is caused by the abnormal growth and division of cells, leading to the formation of tumors. The E2F1 and RB pathways are critical in regulating cell cycle, and their dysregulation can contribute to the development of cancer. In this study, we analyzed experimentally reported SNPs in E2F1 and assessed their effects on the binding affinity with RB. Out of 46, nine mutations were predicted as deleterious, and further analysis revealed four highly destabilizing mutations (L206W, R232C, I254T, A267T) that significantly altered the protein structure. Molecular docking of wild-type and mutant E2F1 with RB revealed a docking score of -242 kcal/mol for wild-type, while the mutant complexes had scores ranging from -217 to -220 kcal/mol. Molecular simulation analysis revealed variations in the dynamics features of both mutant and wild-type complexes due to the acquired mutations. Furthermore, the total binding free energy for the wild-type E2F1-RB complex was -64.89 kcal/mol, while those of the L206W, R232C, I254T, and A267T E2F1-RB mutants were -45.90 kcal/mol, -53.52 kcal/mol, -55.67 kcal/mol, and -61.22 kcal/mol, respectively. Our study is the first to extensively analyze E2F1 gene mutations and identifies candidate mutations for further validation and potential targeting for cancer therapeutics.
Collapse
Affiliation(s)
- Muhammad Suleman
- Laboratory of Animal Research Center (LARC) Qatar University, Doha, Qatar; Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| | - Aishma Khattak
- Department of Bioinformatics, Shaheed Benazir butto women university Peshawar, Pakistan
| | - Fazal Akbar
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| | - Muhammad Rizwan
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| | - Muhammad Tayyab
- Institute of Biotechnology and Genetic Engineering, the University of Agriculture Peshawar.
| | - Muhammad Yousaf
- Centre for Animal Sciences and Fisheries, University of Swat, Swat, Pakistan.
| | - Abbas Khan
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia.
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC) Qatar University, Doha, Qatar.
| |
Collapse
|
2
|
Suleman M, Ishaq I, Khan H, Ullah khan S, Masood R, Albekairi NA, Alshammari A, Crovella S. Elucidating the binding mechanism of SARS-CoV-2 NSP6-TBK1 and structure-based designing of phytocompounds inhibitors for instigating the host immune response. Front Chem 2024; 11:1346796. [PMID: 38293247 PMCID: PMC10824840 DOI: 10.3389/fchem.2023.1346796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/31/2023] [Indexed: 02/01/2024] Open
Abstract
SARS-CoV-2, also referred to as severe acute respiratory syndrome coronavirus 2, is the virus responsible for causing COVID-19, an infectious disease that emerged in Wuhan, China, in December 2019. Among its crucial functions, NSP6 plays a vital role in evading the human immune system by directly interacting with a receptor called TANK-binding kinase (TBK1), leading to the suppression of IFNβ production. Consequently, in the present study we used the structural and biophysical approaches to analyze the effect of newly emerged mutations on the binding of NSP6 and TBK1. Among the identified mutations, four (F35G, L37F, L125F, and I162T) were found to significantly destabilize the structure of NSP6. Furthermore, the molecular docking analysis highlighted that the mutant NSP6 displayed its highest binding affinity with TBK1, exhibiting docking scores of -1436.2 for the wildtype and -1723.2, -1788.6, -1510.2, and -1551.7 for the F35G, L37F, L125F, and I162T mutants, respectively. This suggests the potential for an enhanced immune system evasion capability of NSP6. Particularly, the F35G mutation exhibited the strongest binding affinity, supported by a calculated binding free energy of -172.19 kcal/mol. To disrupt the binding between NSP6 and TBK1, we conducted virtual drug screening to develop a novel inhibitor derived from natural products. From this screening, we identified the top 5 hit compounds as the most promising candidates with a docking score of -6.59 kcal/mol, -6.52 kcal/mol, -6.32 kcal/mol, -6.22 kcal/mol, and -6.21 kcal/mol. The molecular dynamic simulation of top 3 hits further verified the dynamic stability of drugs-NSP6 complexes. In conclusion, this study provides valuable insight into the higher infectivity of the SARS-CoV-2 new variants and a strong rationale for the development of novel drugs against NSP6.
Collapse
Affiliation(s)
- Muhammad Suleman
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Iqra Ishaq
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Haji Khan
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Safir Ullah khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Rehana Masood
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
| |
Collapse
|
3
|
Suleman M, Said A, Khan H, Rehman SU, Alshammari A, Crovella S, Yassine HM. Mutational analysis of SARS-CoV-2 ORF6-KPNA2 binding interface and identification of potent small molecule inhibitors to recuse the host immune system. Front Immunol 2024; 14:1266776. [PMID: 38283360 PMCID: PMC10811244 DOI: 10.3389/fimmu.2023.1266776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surfaced on 31 December, 2019, and was identified as the causative agent of the global COVID-19 pandemic, leading to a pneumonia-like disease. One of its accessory proteins, ORF6, has been found to play a critical role in immune evasion by interacting with KPNA2 to antagonize IFN signaling and production pathways, resulting in the inhibition of IRF3 and STAT1 nuclear translocation. Since various mutations have been observed in ORF6, therefore, a comparative binding, biophysical, and structural analysis was used to reveal how these mutations affect the virus's ability to evade the human immune system. Among the identified mutations, the V9F, V24A, W27L, and I33T, were found to have a highly destabilizing effect on the protein structure of ORF6. Additionally, the molecular docking analysis of wildtype and mutant ORF6 and KPNA2 revealed the docking score of - 53.72 kcal/mol for wildtype while, -267.90 kcal/mol, -258.41kcal/mol, -254.51 kcal/mol and -268.79 kcal/mol for V9F, V24A, W27L, and I33T respectively. As compared to the wildtype the V9F showed a stronger binding affinity with KPNA2 which is further verified by the binding free energy (-42.28 kcal/mol) calculation. Furthermore, to halt the binding interface of the ORF6-KPNA2 complex, we used a computational molecular search of potential natural products. A multi-step virtual screening of the African natural database identified the top 5 compounds with best docking scores of -6.40 kcal/mol, -6.10 kcal/mol, -6.09 kcal/mol, -6.06 kcal/mol, and -6.03 kcal/mol for tophit1-5 respectively. Subsequent all-atoms simulations of these top hits revealed consistent dynamics, indicating their stability and their potential to interact effectively with the interface residues. In conclusion, our study represents the first attempt to establish a foundation for understanding the heightened infectivity of new SARS-CoV-2 variants and provides a strong impetus for the development of novel drugs against them.
Collapse
Affiliation(s)
- Muhammad Suleman
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Afsheen Said
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Haji Khan
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Shoaib Ur Rehman
- Department of Biotechnology, University of Science and Technology, Bannu, Pakistan
- Wilhelm Johansen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, The PANUM Institute, University of Copenhagen, Copenhagen, Denmark
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
| | - Hadi M. Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
- College of Health Sciences-Qatar University (QU) Health, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Wang QX, Zhang PY, Li QQ, Tong ZJ, Wu JZ, Yu SP, Yu YC, Ding N, Leng XJ, Chang L, Xu JG, Sun SL, Yang Y, Li NG, Shi ZH. Challenges for the development of mutant isocitrate dehydrogenases 1 inhibitors to treat glioma. Eur J Med Chem 2023; 257:115464. [PMID: 37235998 DOI: 10.1016/j.ejmech.2023.115464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Glioma is one of the most common types of brain tumors, and its high recurrence and mortality rates threaten human health. In 2008, the frequent isocitrate dehydrogenase 1 (IDH1) mutations in glioma were reported, which brought a new strategy in the treatment of this challenging disease. In this perspective, we first discuss the possible gliomagenesis after IDH1 mutations (mIDH1). Subsequently, we systematically investigate the reported mIDH1 inhibitors and present a comparative analysis of the ligand-binding pocket in mIDH1. Additionally, we also discuss the binding features and physicochemical properties of different mIDH1 inhibitors to facilitate the future development of mIDH1 inhibitors. Finally, we discuss the possible selectivity features of mIDH1 inhibitors against WT-IDH1 and IDH2 by combining protein-based and ligand-based information. We hope that this perspective can inspire the development of mIDH1 inhibitors and bring potent mIDH1 inhibitors for the treatment of glioma.
Collapse
Affiliation(s)
- Qing-Xin Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Peng-Yu Zhang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Zhen-Jiang Tong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jia-Zhen Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Shao-Peng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Liang Chang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jin-Guo Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
5
|
Aziz A, Suleman M, Shah A, Ullah A, Rashid F, Khan S, Iqbal A, Luo S, Xie L, Xie Z. Comparative mutational analysis of the Zika virus genome from different geographical locations and its effect on the efficacy of Zika virus-specific neutralizing antibodies. Front Microbiol 2023; 14:1098323. [PMID: 36910181 PMCID: PMC9992208 DOI: 10.3389/fmicb.2023.1098323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
The Zika virus (ZIKV), which originated in Africa, has become a significant global health threat. It is an RNA virus that continues to mutate and accumulate multiple mutations in its genome. These genetic changes can impact the virus's ability to infect, cause disease, spread, evade the immune system, and drug resistance. In this study genome-wide analysis of 175 ZIKV isolates deposited at the National Center for Biotechnology Information (NCBI), was carried out. The comprehensive mutational analysis of these isolates was carried out by DNASTAR and Clustal W software, which revealed 257 different substitutions at the proteome level in different proteins when compared to the reference sequence (KX369547.1). The substitutions were capsid (17/257), preM (17/257), envelope (44/257), NS1 (34/257), NS2A (30/257), NS2B (11/257), NS3 (37/257), NS4A (6/257), 2K (1/257), NS4B (15/257), and NS5 (56/257). Based on the coexisting mutational analysis, the MN025403.1 isolate from Guinea was identified as having 111 substitutions in proteins and 6 deletions. The effect of coexisting/reoccurring mutations on the structural stability of each protein was also determined by I-mutant and MUpro online servers. Furthermore, molecular docking and simulation results showed that the coexisting mutations (I317V and E393D) in Domain III (DIII) of the envelope protein enhanced the bonding network with ZIKV-specific neutralizing antibodies. This study, therefore, highlighted the rapid accumulation of different substitutions in various ZIKV proteins circulating in different geographical regions of the world. Surveillance of such mutations in the respective proteins will be helpful in the development of effective ZIKV vaccines and neutralizing antibody engineering.
Collapse
Affiliation(s)
- Abdul Aziz
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Muhammad Suleman
- Centre for Biotechnology and Microbiology, University of Swat, Mingora, Pakistan
| | - Abdullah Shah
- Department of Biotechnology, Shaheed Benazir Bhutto University, Upper Dir, Pakistan
| | - Ata Ullah
- New Cross Hospital, The Royal Wolverhampton NHS Trust, Wolverhampton, United Kingdom
| | - Farooq Rashid
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Sikandar Khan
- Department of Biotechnology, Shaheed Benazir Bhutto University, Upper Dir, Pakistan
| | - Arshad Iqbal
- Centre for Biotechnology and Microbiology, University of Swat, Mingora, Pakistan
| | - Sisi Luo
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China.,Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China.,Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Liji Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China.,Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China.,Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Zhixun Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China.,Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China.,Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| |
Collapse
|