1
|
Yue P, Chen Y, Ogese MO, Sun S, Zhang X, Esan T, Buolamwini JK, Turkson J. Small Molecule Induces Time-Dependent Inhibition of Stat3 Dimerization and DNA-Binding Activity and Regresses Human Breast Tumor Xenografts. Chembiochem 2024; 25:e202400351. [PMID: 39168826 DOI: 10.1002/cbic.202400351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/26/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
Aberrantly-active signal transducer and activator of transcription (Stat)3 has a causal role in many human cancers and represents a validated anticancer drug target, though it has posed significant challenge to drug development. A new small molecule, JKB887, was identified through library screening and is predicted to interact with Lys591, Arg609 and Pro63 in the phospho-tyrosine (pTyr)-binding pocket of the Stat3 SH2 domain. JKB887 inhibited Stat3 DNA-binding activity in vitro in a time-dependent manner, with IC50 of 2.2-4.5 μM at 30-60-min incubation. It directly disrupted both the Stat3 binding to the cognate, high-affinity pTyr (pY) peptide, GpYLPQTV-NH2 in fluorescent polarization assay with IC50 of 3.5-5.5 μM at 60-90-min incubation, and to the IL-6 receptor/gp130 or Src in treated malignant cells. Treatment with JKB887 selectively blocked constitutive Stat3 phosphorylation, nuclear translocation and transcriptional activity, and Stat3-regulated gene expression, and decreased viable cell numbers, cell growth, colony formation, migration, and survival in human or mouse tumor cells. By contrast, JKB887 had minimal effects on Stat1, pErk1/2MAPK, pShc, pJAK2, or pSrc induction, or on cells that do not harbor aberrantly-active Stat3. Additionally, JKB887 inhibited growth of human breast cancer xenografts in mice. JKB887 is a Stat3-selective inhibitor with demonstrable antitumor effects against Stat3-dependent human cancers.
Collapse
Affiliation(s)
- Peibin Yue
- Department of Medicine, Division of Hematology-Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd, Davis 5065, Los Angeles, CA, 90048, USA
- Cancer Biology Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Yue Chen
- Department of Medicine, Division of Hematology-Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd, Davis 5065, Los Angeles, CA, 90048, USA
- Cancer Biology Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
- Current adress: Department of Basic Medicine, Suzhou Vocational Health College, Suzhou, 215009, China
| | - Monday O Ogese
- Department of Medicine, Division of Hematology-Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd, Davis 5065, Los Angeles, CA, 90048, USA
- Cancer Biology Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Shan Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 847 Monroe Avenue, Suite 327, Memphis, TN, 38163, USA
| | - Xiaolei Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical, Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Taiwo Esan
- Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064-3095, USA
| | - John K Buolamwini
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 847 Monroe Avenue, Suite 327, Memphis, TN, 38163, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064-3095, USA
| | - James Turkson
- Department of Medicine, Division of Hematology-Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd, Davis 5065, Los Angeles, CA, 90048, USA
- Cancer Biology Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| |
Collapse
|
2
|
Chen M, Wang T, Tian D, Hai C, Qiu Z. Induction, growth, drug resistance, and metastasis: A comprehensive summary of the relationship between STAT3 and gastric cancer. Heliyon 2024; 10:e37263. [PMID: 39309860 PMCID: PMC11416542 DOI: 10.1016/j.heliyon.2024.e37263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Gastric cancer is a prevalent and highly lethal malignancy that poses substantial challenges to healthcare systems globally. Owing to its often asymptomatic nature in early stages, diagnosis frequently occurs at advanced stages when surgical intervention is no longer a viable option, forcing most patients to rely on nonsurgical treatments such as chemotherapy, targeted therapies, and emerging immunotherapies. Unfortunately, the therapeutic response rates for these treatments are suboptimal, and even among responders, the eventual development of drug resistance remains a significant clinical hurdle. Signal transducer and activator of transcription 3 (STAT3) is a widely expressed cellular protein that plays crucial roles in regulating cellular processes such as growth, metabolism, and immune function. Aberrant activation of the STAT3 pathway has been implicated in the initiation, progression, and therapeutic resistance of several cancers, with gastric cancer being particularly affected. Dysregulated STAT3 signaling not only drives tumorigenesis but also facilitates the development of resistance to chemotherapy and targeted therapies, as well as promotes metastatic dissemination. In this study, we explored the critical role of the STAT3 signaling cascade in the pathogenesis of gastric cancer, its contribution to drug resistance, and its involvement in the metastatic process. Furthermore, we assess recent advances in the development of STAT3 inhibitors and their potential application as therapeutic agents in the treatment of gastric cancer. This work provides a comprehensive overview of the current understanding of STAT3 in gastric cancer and offers a foundation for future research aimed at improving therapeutic outcomes in this challenging disease.
Collapse
Affiliation(s)
- Muyang Chen
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Tongshan Wang
- Gastric Cancer Center, Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dianzhe Tian
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chaorui Hai
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zixuan Qiu
- School of Public Health, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
3
|
Chiang YC, Selvam P, Liu YX, Shih PC, Chen NF, Kuo HM, Lin HYH, Wen ZH, Chen WF. STAT3 phosphorylation inhibitor Bt354 exhibits anti-neoplastic activity in glioblastoma multiforme cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:3292-3303. [PMID: 38415901 DOI: 10.1002/tox.24178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/28/2023] [Accepted: 01/18/2024] [Indexed: 02/29/2024]
Abstract
The high mortality rate of glioblastoma multiforme (GBM), a lethal primary brain tumor, is attributable to postsurgical recurrence. STAT3, an oncogenic protein, is a signal transducer and transcription activator encourages cancer cell migration and proliferation, which results in resistance to therapy. STAT3 inhibition reduces cancer metastasis and improves patient prognosis. Bt354, a small molecule STAT inhibitor, exhibits significant cytotoxic and anti-proliferative activities against certain cancer types. Here, we demonstrated that exposure of GBM cells (U87 MG) to Bt354 had a significant, concentration-dependent growth suppression. Bt354 also induced apoptosis and downregulated the expression of the epithelial-mesenchymal transition genes. Therefore, this study suggests the potential of Bt354 for treating GBM owing to its ability to induce cytotoxicity.
Collapse
Affiliation(s)
- Yi-Chun Chiang
- Department of Surgery, Division of Neurosurgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Padhmavathi Selvam
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - You-Xuan Liu
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Po-Chang Shih
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Nan-Fu Chen
- Department of Surgery, Division of Neurosurgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsiao-Mei Kuo
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Hugo You-Hsien Lin
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Wang W, Lopez McDonald MC, Hariprasad R, Hamilton T, Frank DA. Oncogenic STAT Transcription Factors as Targets for Cancer Therapy: Innovative Strategies and Clinical Translation. Cancers (Basel) 2024; 16:1387. [PMID: 38611065 PMCID: PMC11011165 DOI: 10.3390/cancers16071387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Despite advances in our understanding of molecular aspects of oncogenesis, cancer remains a leading cause of death. The malignant behavior of a cancer cell is driven by the inappropriate activation of transcription factors. In particular, signal transducers and activators of transcription (STATs), which regulate many critical cellular processes such as proliferation, apoptosis, and differentiation, are frequently activated inappropriately in a wide spectrum of human cancers. Multiple signaling pathways converge on the STATs, highlighting their importance in the development and progression of oncogenic diseases. STAT3 and STAT5 are two members of the STAT protein family that are the most frequently activated in cancers and can drive cancer pathogenesis directly. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations in the last decade, although effective treatment options remain limited. In this review, we investigate the specific roles of STAT3 and STAT5 in normal physiology and cancer biology, discuss the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators, and offer insights into novel therapeutic strategies to identify STAT inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Weiyuan Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| | - Melanie Cristina Lopez McDonald
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| | | | - Tiara Hamilton
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| | - David A. Frank
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| |
Collapse
|
5
|
Wang W, Lopez McDonald MC, Kim C, Ma M, Pan Z(T, Kaufmann C, Frank DA. The complementary roles of STAT3 and STAT1 in cancer biology: insights into tumor pathogenesis and therapeutic strategies. Front Immunol 2023; 14:1265818. [PMID: 38022653 PMCID: PMC10663227 DOI: 10.3389/fimmu.2023.1265818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
STATs are a family of transcription factors that regulate many critical cellular processes such as proliferation, apoptosis, and differentiation. Dysregulation of STATs is frequently observed in tumors and can directly drive cancer pathogenesis. STAT1 and STAT3 are generally viewed as mediating opposite roles in cancer development, with STAT1 suppressing tumorigenesis and STAT3 promoting oncogenesis. In this review, we investigate the specific roles of STAT1 and STAT3 in normal physiology and cancer biology, explore their interactions with each other, and offer insights into therapeutic strategies through modulating their transcriptional activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David A. Frank
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
6
|
Zheng L, Chen X, Zhang L, Qin N, An J, Zhu J, Jin H, Tuo B. A potential tumor marker: Chaperonin containing TCP‑1 controls the development of malignant tumors (Review). Int J Oncol 2023; 63:106. [PMID: 37539774 PMCID: PMC10552740 DOI: 10.3892/ijo.2023.5554] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023] Open
Abstract
Due to concealment, high invasiveness and a lack of indicators, malignant tumors have emerged as one of the deadliest diseases worldwide and their incidence is rising yearly. Research has revealed that the chaperonin family member, chaperonin containing TCP‑1 (CCT), serves a crucial role in malignant tumors. CCT is involved in the growth of numerous malignant tumors such as lung cancer, breast cancer, hepatocellular carcinoma and colorectal cancer and assists the folding of a number of proteins linked to cancer, such as KRAS, p53 and STAT3. According to clinical data, CCT is highly expressed in a range of tumor cells and is associated with poor patient prognosis. In addition, through controlling the cell cycle or interacting with other proteins (including YAP1, HoXB2 and SMAD2), CCT has an effect on the proliferation, invasion and migration of cancer cells. As a result, it is possible that CCT will become a new tumor marker or therapeutic target, which will provide some guidance for early tumor screening or late tumor prognosis. In the present review, the molecular properties of CCT are introduced, alongside a summary of its interactions with other cancer‑related proteins and a discussion of its function in common malignant tumors. It is expected that the present review will offer fresh approaches to the treatment of cancer.
Collapse
Affiliation(s)
- Liming Zheng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Xingyue Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Nannan Qin
- Department of Critical Care Medicine of the First People's Hospital of Zunyi (The Third Affiliated Hospital), Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| |
Collapse
|
7
|
Xu Q, Pan G, Wang Z, Wang L, Tang Y, Dong J, Qin JJ. Platycodin-D exerts its anti-cancer effect by promoting c-Myc protein ubiquitination and degradation in gastric cancer. Front Pharmacol 2023; 14:1138658. [PMID: 36950011 PMCID: PMC10025306 DOI: 10.3389/fphar.2023.1138658] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Platycodin D (PD) is a triterpene saponin extracted from the root of Platycodon grandiflorum. It has been reported to exhibit multiple pharmacological and biological properties. There is substantial evidence to support that PD displays a wide range of anti-tumor activities. However, the detailed molecular mechanism still needs further elaboration. In the present study, to explore whether PD inhibits gastric cancer (GC) cell viability, eight GC cell lines and the GES-1 cell line (a gastric mucosal cell line) were tested. We found that PD exhibited better inhibitory activity on GC cell lines than on the non-tumor cell line. Besides, treatment with PD led to a significant cell cycle arrest, thereby causing subsequent apoptosis. Regarding the cell growth inhibition mechanism, PD can downregulate the protein level of c-Myc rather than its mRNA level in a dose-dependent manner. Further studies revealed that PD disturbed the overall ubiquitination level in GC cell lines and enhanced the ubiquitination-dependent degradation of c-Myc. Interestingly, the inhibition of cell viability by PD could be restored to a certain extent when the expression of c-Myc was recovered, suggesting that PD-mediated GC cell growth inhibition is closely associated with c-Myc expression. Our study proposes a novel molecular mechanism for PD inhibiting GC cell proliferation and growth by destabilizing the c-Myc protein. This work may lay a preliminary foundation for developing PD as an anti-cancer therapy.
Collapse
Affiliation(s)
- Qianqian Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Guangzhao Pan
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- *Correspondence: Guangzhao Pan, ; Jiang-Jiang Qin,
| | - Zhonglan Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Lingling Wang
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Yancheng Tang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jinyun Dong
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
| | - Jiang-Jiang Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- *Correspondence: Guangzhao Pan, ; Jiang-Jiang Qin,
| |
Collapse
|