1
|
Jia H, Chen X, Liang Z, Liang R, Wu J, Hu Y, Cui W, Zhang X. Senegenin regulates the mechanism of insomnia through the Keap1/Nrf2/PINK1/Parkin pathway mediated by GAD67. J Sleep Res 2024:e14354. [PMID: 39380353 DOI: 10.1111/jsr.14354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 10/10/2024]
Abstract
GAD67 impacts insomnia as a key enzyme catalysing the conversion of glutamate (Glu) to gamma-aminobutyric acid (GABA). Senegenin enhances neuroprotection and is used widely to treat insomnia and other neurological diseases. This study aimed to investigate how senegenin regulates insomnia through a GAD67-mediated signalling pathway. We measured GAD67 expression levels in insomnia patients and evaluated the expression levels of GAD67 and Keap1/Nrf2/Parkin/PINK1-related cytokines following GAD67 lentiviral transfection in PC12 cells and in rat models. We also assessed cellular reactive oxygen species (ROS) and mitochondrial membrane potential levels. Additionally, EEG/EMG was used to analyse the sleep phases of rats and to assess memory and exploration functions. Pathological changes and the expression of GAD67 and sleep-related proteins in the hippocampus were examined. The results showed that GAD67 expression was increased in insomnia patients, ROS levels were elevated, and the mitochondrial membrane potential was decreased in the GAD67-KD group. Insomnia rats exhibited changes in sleep rhythm, learning, and exploration dysfunction, pathological changes in the CA1 region of the hippocampus, and differential expression of GAD67 and sleep-related factors. Inhibitory neurofactor expression levels were decreased in insomnia rats, showing a positive correlation in the GAD67-KD group and a negative correlation in the GAD67-OE group. Conversely, excitatory factor expression levels were increased in insomnia rats, showing a positive correlation in the GAD67-KD group and a negative correlation in the GAD67-OE group. Senegenin intervention modulated cytokine expression levels. In conclusion, GAD67 negatively regulates insomnia, and senegenin can regulate insomnia by mediating the expression of cytokines in the GAD67-regulated Keap1/Nrf2/Parkin/PINK1 pathway.
Collapse
Affiliation(s)
- Honglin Jia
- Xinjiang Medical University Fourth Clinical Medical College, Urumqi, China
| | - Xu Chen
- Xinjiang Medical University Fourth Clinical Medical College, Urumqi, China
- Xinjiang Medical University, Urumqi, China
| | | | | | - Jinhong Wu
- Xinjiang Medical University Fourth Clinical Medical College, Urumqi, China
| | - Yanling Hu
- Xinjiang Medical University Fourth Clinical Medical College, Urumqi, China
| | - Wenjun Cui
- Xinjiang Medical University Fourth Clinical Medical College, Urumqi, China
| | - Xingping Zhang
- Xinjiang Medical University Fourth Clinical Medical College, Urumqi, China
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
2
|
Du L, Yang D, Wu L, Mei L, Wu S, Ba Y, Bao Y, Su R, Song L. Integration of Gut Microbiota, Serum Metabolomic, and Network Pharmacology to Reveal the Anti Insomnia Mechanism of Mongolian Medicine Sugemule-4 Decoction on Insomnia Model Rats. Drug Des Devel Ther 2024; 18:2617-2639. [PMID: 38957410 PMCID: PMC11217142 DOI: 10.2147/dddt.s455600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
Objective To explored the potential molecular mechanism of Sugemule-4 decoction (MMS-4D) in treating insomnia. Methods DL-4-chlorophenylalanine (PCPA) + chronic unpredictable mild stress stimulation (CUMS) was used to induce an insomnia model in rats. After the model was successfully established, MMS-4D was intervened at low, medium, and high doses for 7 days. The open-field test (OFT) was used to preliminarily evaluate the efficacy. The potential mechanism of MMS-4D in treating insomnia was investigated using gut microbiota, serum metabolomics, and network pharmacology (NP). Experimental validation of the main components of the key pathways was carried out using ELISA and Western blot. Results The weights of the insomnia-model rats were significantly raised (p ≤ 0.05), the total exercise distance in the OFT increased (p ≤ 0.05), the rest time shortened, and the number of standing times increased (p ≤ 0.05), after treatment with MMS-4D. Moreover, there was a substantial recovery in the 5-HT, DA, GABA, and Glu levels in the hypothalamus tissue and the 5-HT and GABA levels in the colon tissue of rats. The expression of DAT and DRD1 proteins in the hippocampus of insomnia rats reduced after drug treatment. MMS-4D may treat insomnia by regulating different crucial pathways including 5-HT -, DA -, GABA -, and Glu-mediated neuroactive light receiver interaction, cAMP signaling pathway, serotonergic, glutamatergic, dopaminergic, and GABAergic synapses. Conclusion This study revealed that MMS-4D can improve the general state and behavioral changes of insomnia model rats. Its mechanism may be related to the reversal of abnormal pathways mediated by 5-HT, DA, GABA, and Glu, such as Serotonergic synapse, Dopaminergic synapse, Glutamatergic synapse, and GABAergic synapse.
Collapse
Affiliation(s)
- Lina Du
- College of Mongolian Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Dezhi Yang
- Innovative Mongolian Medical Engineering Research Center, Inner Mongolia International Mongolian Hospital, Hohhot, Inner Mongolia, People’s Republic of China
| | - Lan Wu
- College of Mongolian Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Li Mei
- College of Mongolian Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Sarula Wu
- College of Mongolian Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Yasula Ba
- College of Mongolian Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Yongchang Bao
- College of Mongolian Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Rigugaqiqige Su
- College of Mongolian Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Lin Song
- College of Mongolian Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| |
Collapse
|
3
|
Liu YM, Li JC, Gu YF, Qiu RH, Huang JY, Xue R, Li S, Zhang Y, Zhang K, Zhang YZ. Cannabidiol Exerts Sedative and Hypnotic Effects in Normal and Insomnia Model Mice Through Activation of 5-HT 1A Receptor. Neurochem Res 2024; 49:1150-1165. [PMID: 38296858 DOI: 10.1007/s11064-024-04102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/02/2024]
Abstract
Cannabis sativa has been used for improving sleep for long history. Cannabidiol (CBD) has drown much attention as a non-addictive psychoactive component in Cannabis sativa extract. However, the effects of CBD on sleep architecture and it's acting mechanism remains unclear. In the present study, we evaluated the sedative-hypnotic effect of cannabidiol (CBD), assessed the effects of CBD on sleep using a wireless physiological telemetry system. We further explored the therapeutic effects of CBD using 4-chloro-dl-phenylalanine (PCPA) induced insomnia model and changes in sleep latency, sleep duration and intestinal flora were evaluated. CBD shortened sleep latency and increases sleep duration in both normal and insomnia mice, and those effects were blocked by 5-HT1A receptor antagonist WAY100635. We determined that CBD increases 5-HT1A receptors expression and 5-HT content in the hypothalamus of PCPA-pretreated mice and affects tryptophan metabolism in the intestinal flora. These results showed that activation of 5-HT1A receptors is one of the potential mechanisms underlying the sedative-hypnotic effect of CBD. This study validated the effects of CBD on sleep and evaluated its potential therapeutic effects on insomnia.
Collapse
Affiliation(s)
- Yu-Meng Liu
- Shenyang Pharmaceutical University, Shenyang, 110016, China
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Jin-Cao Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Yong-Fang Gu
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Ren-Hong Qiu
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Jia-Ying Huang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Rui Xue
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Shuo Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Yang Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Kuo Zhang
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - You-Zhi Zhang
- Shenyang Pharmaceutical University, Shenyang, 110016, China.
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China.
| |
Collapse
|
4
|
Tian D, Zhang W, Lu L, Yu Y, Yu Y, Zhang X, Li W, Shi W, Liu G. Enrofloxacin exposure undermines gut health and disrupts neurotransmitters along the microbiota-gut-brain axis in zebrafish. CHEMOSPHERE 2024; 356:141971. [PMID: 38604519 DOI: 10.1016/j.chemosphere.2024.141971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
The environmental prevalence of antibiotic residues poses a potential threat to gut health and may thereby disrupt brain function through the microbiota-gut-brain axis. However, little is currently known about the impacts of antibiotics on gut health and neurotransmitters along the microbiota-gut-brain axis in fish species. Taking enrofloxacin (ENR) as a representative, the impacts of antibiotic exposure on the gut structural integrity, intestinal microenvironment, and neurotransmitters along the microbiota-gut-brain axis were evaluated in zebrafish in this study. Data obtained demonstrated that exposure of zebrafish to 28-day environmentally realistic levels of ENR (6 and 60 μg/L) generally resulted in marked elevation of two intestinal integrity biomarkers (diamine oxidase (DAO) and malondialdehyde (MDA), upregulation of genes that encode inter-epithelial tight junction proteins, and histological alterations in gut as well as increase of lipopolysaccharide (LPS) in plasma, indicating an evident impairment of the structural integrity of gut. Moreover, in addition to significantly altered neurotransmitters, markedly higher levels of LPS while less amount of two short-chain fatty acids (SCFAs), namely acetic acid and valeric acid, were detected in the gut of ENR-exposed zebrafish, suggesting a disruption of gut microenvironment upon ENR exposure. Along with corresponding changes detected in gut, significant disruption of neurotransmitters in brain indicated by marked alterations in the contents of neurotransmitters, the activity of acetylcholin esterase (AChE), and the expression of neurotransmitter-related genes were also observed. These findings suggest exposure to environmental antibiotic residues may impair gut health and disrupt neurotransmitters along the microbiota-gut-brain axis in zebrafish. Considering the prevalence of antibiotic residues in environments and the high homology of zebrafish to other vertebrates including human, the risk of antibiotic exposure to the health of wild animals as well as human deserves more attention.
Collapse
Affiliation(s)
- Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weifeng Li
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
5
|
Si Q, Sun W, Liang B, Chen B, Meng J, Xie D, Feng L, Jiang P. Systematic Metabolic Profiling of Mice with Sleep-Deprivation. Adv Biol (Weinh) 2024; 8:e2300413. [PMID: 37880935 DOI: 10.1002/adbi.202300413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Adequate sleep is essential for the biological maintenance of physical energy. Lack of sleep can affect thinking, lead to emotional anxiety, reduce immunity, and interfere with endocrine and metabolic processes, leading to disease. Previous studies have focused on long-term sleep deprivation and the risk of cancer, heart disease, diabetes, and obesity. However, systematic metabolomics analyses of blood, heart, liver, spleen, kidney, brown adipose tissue, and fecal granules have not been performed. This study aims to systematically assess the metabolic changes in the target organs caused by sleep deprivation in vivo, to search for differential metabolites and the involved metabolic pathways, to further understand the impact of sleep deprivation on health, and to provide strong evidence for the need for early intervention.
Collapse
Affiliation(s)
- Qingying Si
- Department of Endocrinology, Tengzhou Central People's Hospital, Tengzhou, 277599, People's Republic of China
| | - Wenxue Sun
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| | - Benhui Liang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410000, People's Republic of China
| | - Beibei Chen
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| | - Junjun Meng
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| | - Dadi Xie
- Department of Endocrinology, Tengzhou Central People's Hospital, Tengzhou, 277599, People's Republic of China
| | - Lei Feng
- Department of Neurosurgery, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| |
Collapse
|
6
|
Du Y, Yan T, Wu B, He B, Jia Y. Research on the mechanism of antidepressive effect of Suanzaoren Decoction through TLR4/MyD88/NF-κB pathway and Wnt/β-catenin pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117190. [PMID: 37739105 DOI: 10.1016/j.jep.2023.117190] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Increased inflammatory response and disruption of neuroplasticity are important mechanisms in the hypothesis of the pathogenesis of depression. Thus, these two aspects are conducive to the development of treatments for depression. Suanzaoren Decoction (SZRD) is a classic traditional Chinese medicine compound for the treatment of insomnia, which can clinically relieve depression symptoms, but its antidepressant pharmacological mechanism remains to be elucidated. AIM OF THIS STUDY Based on the hypothesis of inflammation and neuroplasticity in depression, this study aimed to investigate the antidepressant effect of SZRD and its specific molecular mechanism through chronic unpredictable mild stress (CUMS) induced SD rat model and lipopolysaccharide (LPS) induced BV2 cell neuroinflammation model. MATERIALS AND METHODS The body weight and behavioral indexes of CUMS model rats treated with orally or without oral SZRD for 4 weeks were detected. Hematoxylin and eosin staining was used to observe brain pathological damage. Terminal-deoxynucleoitidyl Transferase Mediated Nick End Labeling (TUNEL) staining was used to observe neuronal apoptosis. Immunofluorescence, ELISA kit and Western blotting were used to detect the inflammatory index Iba-1 and inflammatory factors, as well as the important inflammatory pathway TLR4/MyD88/NF-κB. Enzyme linked immunosorbent assay (ELISA) and western blotting were used to detect neuroplasticity indexes proteins-brain-derived neurotrophic factor (BDNF), presynaptic membrane protein-synaptophysin (SYP), and postsynaptic protein- 95(PSD95), and the key pathway Wnt/β-catenin. The possible mechanism of SZRD antidepressant was further explored in LPS-induced BV2 cells. RESULTS In vivo and in vitro experiments showed that SZRD treatment significantly reversed the depression-like behaviors in rats, decreased the levels of inflammatory factors and increased the expression levels of BDNF, SYP, PSD95 in depression model rats. Furthermore, SZRD treatment inhibited the activation of TLR4/MyD88/NF-κB and Wnt/β-catenin pathways and reduced the massive nuclear translocation of NF-κB and β-catenin. The addition of NF-κB pathway agonists could partially offset the inhibitory effect of SZRD on the Wnt pathway, and the addition of Wnt pathway agonists could also partially offset the inhibitory effect of SZRD on the TLR4 pathway. CONCLUSION This study suggestted that SZRD may exert its antidepressant effect by regulating TLR4/MyD88/NF-κB pathway and Wnt/β-catenin pathway in combination.
Collapse
Affiliation(s)
- Yiyang Du
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Tingxu Yan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Bo Wu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Bosai He
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China.
| | - Ying Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
7
|
Chen P, Ban W, Wang W, You Y, Yang Z. The Devastating Effects of Sleep Deprivation on Memory: Lessons from Rodent Models. Clocks Sleep 2023; 5:276-294. [PMID: 37218868 DOI: 10.3390/clockssleep5020022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
In this narrative review article, we discuss the role of sleep deprivation (SD) in memory processing in rodent models. Numerous studies have examined the effects of SD on memory, with the majority showing that sleep disorders negatively affect memory. Currently, a consensus has not been established on which damage mechanism is the most appropriate. This critical issue in the neuroscience of sleep remains largely unknown. This review article aims to elucidate the mechanisms that underlie the damaging effects of SD on memory. It also proposes a scientific solution that might explain some findings. We have chosen to summarize literature that is both representative and comprehensive, as well as innovative in its approach. We examined the effects of SD on memory, including synaptic plasticity, neuritis, oxidative stress, and neurotransmitters. Results provide valuable insights into the mechanisms by which SD impairs memory function.
Collapse
Affiliation(s)
- Pinqiu Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Weikang Ban
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Wenyan Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yuyang You
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Zhihong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
8
|
Zhang JB, Li MX, Zhang YF, Qin YW, Li Y, Su LL, Li L, Bian ZH, Lu TL. E-eye, flash GC E-nose and HS-GC-MS combined with chemometrics to identify the adulterants and geographical origins of Ziziphi Spinosae Semen. Food Chem 2023; 424:136270. [PMID: 37207600 DOI: 10.1016/j.foodchem.2023.136270] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 05/21/2023]
Abstract
Ziziphi Spinosae Semen (ZSS), a valuable seed food, has faced increasing authenticity issues. In this study, the adulterants and geographical origins of ZSS were successfully identified by electronic eye, flash gas chromatography electronic nose (Flash GC e-nose) and headspace gas chromatography-mass spectrometry (HS-GC-MS). As a result, there were color differences between ZSS and adulterants, mainly represented by the a* value of ZSS was less than adulterants. In ZSS, 29 and 32 compounds were detected by Flash GC e-nose and HS-GC-MS. Spicy, sweety, fruity and herbal were the main flavor of ZSS. Five compounds were determined to be responsible for flavor differences between different geographical origins. In the HS-GC-MS analysis, the relative content of Hexanoic acid was the highest in ZSS from Hebei and Shandong, while 2,4-Decadien-1-ol was the highest in Shaanxi. Overall, this study provided a meaningful strategy for addressing authenticity problems of ZSS and other seed foods.
Collapse
Affiliation(s)
- Jiu-Ba Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ming-Xuan Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yun-Fei Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu-Wen Qin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lian-Lin Su
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lin Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhen-Hua Bian
- Department of Pharmacy, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China.
| | - Tu-Lin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|