1
|
Roseti L, Borciani G, Grassi F, Desando G, Gambari L, Grigolo B. Nutraceuticals in osteoporosis prevention. Front Nutr 2024; 11:1445955. [PMID: 39416651 PMCID: PMC11479890 DOI: 10.3389/fnut.2024.1445955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Nutraceuticals are gaining popularity as they can contribute to bone health by delaying the onset or slowing down the progression of pathological bone loss. Osteoporosis's bone loss is a concern for older adults and a crucial aspect of aging. Maintaining healthy bones is the key to living a full and active life. Our review explores the current knowledge on the role of nutraceuticals in preventing osteoporosis by focusing on three main aspects. First, we provide an overview of osteoporosis. Second, we discuss the latest findings on natural nutraceuticals and their efficacy in reducing bone loss, emphasizing clinical trials. Third, we conduct a structured analysis to evaluate nutraceuticals' pros and cons and identify translational gaps. In conclusion, we must address several challenges to consolidate our knowledge, better support clinicians in their prescriptions, and provide people with more reliable nutritional recommendations to help them lead healthier lives.
Collapse
Affiliation(s)
| | - Giorgia Borciani
- RAMSES Laboratory, Rizzoli RIT-Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | | | | | | |
Collapse
|
2
|
Xia X, Fang Z, Qian Y, Zhou Y, Huang H, Xu F, Luo Z, Wang Q. Role of oxidative stress in the concurrent development of osteoporosis and tendinopathy: Emerging challenges and prospects for treatment modalities. J Cell Mol Med 2024; 28:e18508. [PMID: 38953556 PMCID: PMC11217991 DOI: 10.1111/jcmm.18508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
Both osteoporosis and tendinopathy are widely prevalent disorders, encountered in diverse medical contexts. Whilst each condition has distinct pathophysiological characteristics, they share several risk factors and underlying causes. Notably, oxidative stress emerges as a crucial intersecting factor, playing a pivotal role in the onset and progression of both diseases. This imbalance arises from a dysregulation in generating and neutralising reactive oxygen species (ROS), leading to an abnormal oxidative environment. Elevated levels of ROS can induce multiple cellular disruptions, such as cytotoxicity, apoptosis activation and reduced cell function, contributing to tissue deterioration and weakening the structural integrity of bones and tendons. Antioxidants are substances that can prevent or slow down the oxidation process, including Vitamin C, melatonin, resveratrol, anthocyanins and so on, demonstrating potential in treating these overlapping disorders. This comprehensive review aims to elucidate the complex role of oxidative stress within the interlinked pathways of these comorbid conditions. By integrating contemporary research and empirical findings, our objective is to outline new conceptual models and innovative treatment strategies for effectively managing these prevalent diseases. This review underscores the importance of further in-depth research to validate the efficacy of antioxidants and traditional Chinese medicine in treatment plans, as well as to explore targeted interventions focused on oxidative stress as promising areas for future medical advancements.
Collapse
Affiliation(s)
- Xianting Xia
- Department of OrthopaedicsKunshan Sixth People's HospitalKunshanJiangsuChina
| | - Zhengyuan Fang
- The First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityDalianLiaoningChina
| | - Yinhua Qian
- Department of OrthopaedicsKunshan Hospital of Chinese MedicineKunshanJiangsuChina
| | - Yu Zhou
- Department of OrthopaedicsKunshan Hospital of Chinese MedicineKunshanJiangsuChina
| | - Haoqiang Huang
- Department of OrthopaedicsKunshan Hospital of Chinese MedicineKunshanJiangsuChina
| | - Feng Xu
- Department of OrthopaedicsKunshan Hospital of Chinese MedicineKunshanJiangsuChina
| | - Zhiwen Luo
- Department of OrthopaedicsKunshan Hospital of Chinese MedicineKunshanJiangsuChina
- Department of Sports MedicineHuashan Hospital, Fudan UniverstiyShanghaiChina
| | - Qing Wang
- Department of OrthopaedicsKunshan Hospital of Chinese MedicineKunshanJiangsuChina
| |
Collapse
|
3
|
Zhang L, Zhao L, Xiao X, Zhang X, He L, Zhang Q. Association of dietary carbohydrate and fiber ratio with postmenopausal bone mineral density and prevalence of osteoporosis: A cross-sectional study. PLoS One 2024; 19:e0297332. [PMID: 38354209 PMCID: PMC10866481 DOI: 10.1371/journal.pone.0297332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/03/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND This study aimed to investigate the associations of carbohydrate to dietary fiber ratio with bone mineral density (BMD) and the prevalence of osteoporosis in postmenopausal women. METHODS This cross-sectional study retrieved the data of 2829 postmenopausal women from the National Health and Nutrition Examination Survey (NHANES) database. Weighted univariable logistic regression models were used to investigate the correlations of carbohydrate, dietary fiber, or carbohydrate to fiber ratio with osteoporosis. RESULTS Higher dietary fiber intake was correlated with decreased odds ratio of osteoporosis [odds ratio(OR) = 0.96, 95% confidence interval (CI): 0.93 to 0.99]. The odds ratio of osteoporosis in postmenopausal women was elevated as the increase of carbohydrate to fiber ratio (OR = 1.80, 95%CI: 1.10 to 2.96). Carbohydrate to fiber ratio >17.09 was related to increased odds ratio of osteoporosis (OR = 1.63, 95%CI: 1.04 to 2.56). Compared to the carbohydrate to fiber ratio ≤11.59 group, carbohydrate to fiber ratio >17.09 was associated with decreased total femur BMD (β = -0.015, 95%CI: -0.028 to -0.001) and femur neck BMD (β = -0.020, 95%CI: -0.033 to -0.006) in postmenopausal women. The femur neck BMD in postmenopausal women was decreased with the increase of carbohydrate to fiber ratio (β = -0.015, 95%CI: -0.028 to -0.001). CONCLUSION In postmenopausal women, a high carbohydrate/fiber ratio >17.09 is associated with an increased risk of osteoporosis and lower hip BMD and high fiber intake is associated with less osteoporosis and higher hip BMD.
Collapse
Affiliation(s)
- Lushuang Zhang
- Department of Obstetrics and Gynecology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liubiqi Zhao
- Department of Obstetrics and Gynecology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyu Xiao
- Department of Obstetrics and Gynecology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobin Zhang
- Department of Gynecology, Guangxi Guigang people’s Hospital, Guigang, China
| | - Li He
- Department of Obstetrics and Gynecology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiang Zhang
- Department of Obstetrics and Gynecology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Zhao Y, Peng X, Wang Q, Zhang Z, Wang L, Xu Y, Yang H, Bai J, Geng D. Crosstalk Between the Neuroendocrine System and Bone Homeostasis. Endocr Rev 2024; 45:95-124. [PMID: 37459436 DOI: 10.1210/endrev/bnad025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 01/05/2024]
Abstract
The homeostasis of bone microenvironment is the foundation of bone health and comprises 2 concerted events: bone formation by osteoblasts and bone resorption by osteoclasts. In the early 21st century, leptin, an adipocytes-derived hormone, was found to affect bone homeostasis through hypothalamic relay and the sympathetic nervous system, involving neurotransmitters like serotonin and norepinephrine. This discovery has provided a new perspective regarding the synergistic effects of endocrine and nervous systems on skeletal homeostasis. Since then, more studies have been conducted, gradually uncovering the complex neuroendocrine regulation underlying bone homeostasis. Intriguingly, bone is also considered as an endocrine organ that can produce regulatory factors that in turn exert effects on neuroendocrine activities. After decades of exploration into bone regulation mechanisms, separate bioactive factors have been extensively investigated, whereas few studies have systematically shown a global view of bone homeostasis regulation. Therefore, we summarized the previously studied regulatory patterns from the nervous system and endocrine system to bone. This review will provide readers with a panoramic view of the intimate relationship between the neuroendocrine system and bone, compensating for the current understanding of the regulation patterns of bone homeostasis, and probably developing new therapeutic strategies for its related disorders.
Collapse
Affiliation(s)
- Yuhu Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhiyu Zhang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230022, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
5
|
Cardinali DP. Melatonin as a chronobiotic/cytoprotective agent in bone. Doses involved. J Pineal Res 2024; 76:e12931. [PMID: 38083808 DOI: 10.1111/jpi.12931] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/21/2024]
Abstract
Because the chronobiotic and cytoprotective molecule melatonin diminishes with age, its involvement in postmenopausal and senescence pathology has been considered since long. One relevant melatonin target site in aging individuals is bone where melatonin chronobiotic effects mediated by MT1 and MT2 receptors are demonstrable. Precursors of bone cells located in bone marrow are exposed to high quantities of melatonin and the possibility arises that melatonin acts a cytoprotective compound via an autacoid effect. Proteins that are incorporated into the bone matrix, like procollagen type I c-peptide, augment after melatonin exposure. Melatonin augments osteoprotegerin, an osteoblastic protein that inhibits the differentiation of osteoclasts. Osteoclasts are target cells for melatonin as they degrade bone partly by generating free radicals. Osteoclast activity and bone resorption are impaired via the free radical scavenger properties of melatonin. The administration of melatonin in chronobiotic doses (less than 10 mg daily) is commonly used in clinical studies on melatonin effect on bone. However, human equivalent doses allometrically derived from animal studies are in the 1-1.5 mg/kg/day range for a 75 kg human adult, a dose rarely used clinically. In view of the absence of toxicity of melatonin in phase 1 pharmacological studies with doses up to 100 mg in normal volunteers, further investigation is needed to determine whether high melatonin doses have higher therapeutic efficacy in preventing bone loss.
Collapse
Affiliation(s)
- Daniel P Cardinali
- CENECON, Faculty of Medical Sciences, Universidad de Buenos Aires, Buenos Aires, Argentina
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| |
Collapse
|
6
|
Hajivalizadeh S, Akhondzadeh S. Novel Osteoporosis Therapeutic Targets Derived from Medical Biotechnology. Avicenna J Med Biotechnol 2024; 16:1-2. [PMID: 38605738 PMCID: PMC11005397 DOI: 10.18502/ajmb.v16i1.14164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 04/13/2024] Open
Abstract
The Article Abstract is not available.
Collapse
Affiliation(s)
- Sepideh Hajivalizadeh
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Wang X, Jiang W, Pan K, Tao L, Zhu Y. Melatonin induces RAW264.7 cell apoptosis via the BMAL1/ROS/MAPK-p38 pathway to improve postmenopausal osteoporosis. Bone Joint Res 2023; 12:677-690. [PMID: 37907083 PMCID: PMC10618049 DOI: 10.1302/2046-3758.1211.bjr-2022-0425.r3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Aims Currently, the effect of drug treatment for osteoporosis is relatively poor, and the side effects are numerous and serious. Melatonin is a potential drug to improve bone mass in postmenopausal women. Unfortunately, the mechanism by which melatonin improves bone metabolism remains unclear. The aim of this study was to further investigate the potential mechanism of melatonin in the treatment of osteoporosis. Methods The effects of melatonin on mitochondrial apoptosis protein, bmal1 gene, and related pathway proteins of RAW264.7 (mouse mononuclear macrophage leukaemia cells) were analyzed by western blot. Cell Counting Kit-8 was used to evaluate the effect of melatonin on cell viability. Flow cytometry was used to evaluate the effect of melatonin on the apoptosis of RAW264.7 cells and mitochondrial membrane potential. A reactive oxygen species (ROS) detection kit was used to evaluate the level of ROS in osteoclast precursors. We used bmal1-small interfering RNAs (siRNAs) to downregulate the Bmal1 gene. We established a postmenopausal mouse model and verified the effect of melatonin on the bone mass of postmenopausal osteoporosis in mice via micro-CT. Bmal1 lentiviral activation particles were used to establish an in vitro model of overexpression of the bmal1 gene. Results Melatonin promoted apoptosis of RAW264.7 cells and increased the expression of BMAL1 to inhibit the activation of ROS and phosphorylation of mitogen-activated protein kinase (MAPK)-p38. Silencing the bmal1 gene weakened the above effects of melatonin. After that, we used dehydrocorydaline (DHC) to enhance the activation of MAPK-p38, and the effects of melatonin on reducing ROS levels and promoting apoptosis of RAW264.7 cells were also blocked. Then, we constructed a mouse model of postmenopausal osteoporosis and administered melatonin. The results showed that melatonin improves bone loss in ovariectomized mice. Finally, we established a model of overexpression of the bmal1 gene, and these results suggest that the bmal1 gene can regulate ROS activity and change the level of the MAPK-p38 signalling pathway. Conclusion Our study confirmed that melatonin promotes the apoptosis of RAW264.7 cells through BMAL1/ROS/MAPK-p38, and revealed the therapeutic effect and mechanism of melatonin in postmenopausal osteoporosis. This finding enriches BMAL1 as a potential target for the treatment of osteoporosis and the pathogenesis of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Xiaochuan Wang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Wen Jiang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Kexin Pan
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Zhivodernikov IV, Kirichenko TV, Markina YV, Postnov AY, Markin AM. Molecular and Cellular Mechanisms of Osteoporosis. Int J Mol Sci 2023; 24:15772. [PMID: 37958752 PMCID: PMC10648156 DOI: 10.3390/ijms242115772] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Osteoporosis is a widespread systemic disease characterized by a decrease in bone mass and an imbalance of the microarchitecture of bone tissue. Experimental and clinical studies devoted to investigating the main pathogenetic mechanisms of osteoporosis revealed the important role of estrogen deficiency, inflammation, oxidative stress, cellular senescence, and epigenetic factors in the development of bone resorption due to osteoclastogenesis, and decreased mineralization of bone tissue and bone formation due to reduced function of osteoblasts caused by apoptosis and age-depended differentiation of osteoblast precursors into adipocytes. The current review was conducted to describe the basic mechanisms of the development of osteoporosis at molecular and cellular levels and to elucidate the most promising therapeutic strategies of pathogenetic therapy of osteoporosis based on articles cited in PubMed up to September 2023.
Collapse
Affiliation(s)
| | | | - Yuliya V. Markina
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991 Moscow, Russia; (I.V.Z.); (T.V.K.); (A.Y.P.); (A.M.M.)
| | | | | |
Collapse
|
9
|
Li W, Li W, Zhang W, Wang H, Yu L, Yang P, Qin Y, Gan M, Yang X, Huang L, Hao Y, Geng D. Exogenous melatonin ameliorates steroid-induced osteonecrosis of the femoral head by modulating ferroptosis through GDF15-mediated signaling. Stem Cell Res Ther 2023; 14:171. [PMID: 37400902 DOI: 10.1186/s13287-023-03371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/04/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Ferroptosis is an iron-related form of programmed cell death. Accumulating evidence has identified the pathogenic role of ferroptosis in multiple orthopedic disorders. However, the relationship between ferroptosis and SONFH is still unclear. In addition, despite being a common disease in orthopedics, there is still no effective treatment for SONFH. Therefore, clarifying the pathogenic mechanism of SONFH and investigating pharmacologic inhibitors from approved clinical drugs for SONFH is an effective strategy for clinical translation. Melatonin (MT), an endocrine hormone that has become a popular dietary supplement because of its excellent antioxidation, was supplemented from an external source to treat glucocorticoid-induced damage in this study. METHODS Methylprednisolone, a commonly used glucocorticoid in the clinic, was selected to simulate glucocorticoid-induced injury in the current study. Ferroptosis was observed through the detection of ferroptosis-associated genes, lipid peroxidation and mitochondrial function. Bioinformatics analysis was performed to explore the mechanism of SONFH. In addition, a melatonin receptor antagonist and shGDF15 were applied to block the therapeutic effect of MT to further confirm the mechanism. Finally, cell experiments and the SONFH rat model were used to detect the therapeutic effects of MT. RESULTS MT alleviated bone loss in SONFH rats by maintaining BMSC activity through suppression of ferroptosis. The results are further verified by the melatonin MT2 receptor antagonist that can block the therapeutic effects of MT. In addition, bioinformatic analysis and subsequent experiments confirmed that growth differentiation factor 15 (GDF15), a stress response cytokine, was downregulated in the process of SONFH. On the contrary, MT treatment increased the expression of GDF15 in bone marrow mesenchymal stem cells. Lastly, rescue experiments performed with shGDF15 confirmed that GDF15 plays a key role in the therapeutic effects of melatonin. CONCLUSIONS We proposed that MT attenuated SONFH by inhibiting ferroptosis through the regulation of GDF15, and supplementation with exogenous MT might be a promising method for the treatment of SONFH.
Collapse
Affiliation(s)
- Wenming Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, China
| | - Wenhao Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, China
| | - Wei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, China
| | - Hongzhi Wang
- Department of Orthopedics, Taizhou People's Hospital, Taizhou, 225300, China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, China
| | - Peng Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, China
| | - Yi Qin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, China
| | - Minfeng Gan
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, China
| | - Xing Yang
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215006, China
| | - Lixin Huang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215006, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, China.
| |
Collapse
|