1
|
Yu X, Wang S, Ji Z, Meng J, Mou Y, Wu X, Yang X, Xiong P, Li M, Guo Y. Ferroptosis: An important mechanism of disease mediated by the gut-liver-brain axis. Life Sci 2024; 347:122650. [PMID: 38631669 DOI: 10.1016/j.lfs.2024.122650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/27/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
AIMS As a unique iron-dependent non-apoptotic cell death, Ferroptosis is involved in the pathogenesis and development of many human diseases and has become a research hotspot in recent years. However, the regulatory role of ferroptosis in the gut-liver-brain axis has not been elucidated. This paper summarizes the regulatory role of ferroptosis and provides theoretical basis for related research. MATERIALS AND METHODS We searched PubMed, CNKI and Wed of Science databases on ferroptosis mediated gut-liver-brain axis diseases, summarized the regulatory role of ferroptosis on organ axis, and explained the adverse effects of related regulatory effects on various diseases. KEY FINDINGS According to our summary, the main way in which ferroptosis mediates the gut-liver-brain axis is oxidative stress, and the key cross-talk of ferroptosis affecting signaling pathway network is Nrf2/HO-1. However, there were no specific marker between different organ axes mediate by ferroptosis. SIGNIFICANCE Our study illustrates the main ways and key cross-talk of ferroptosis mediating the gut-liver-brain axis, providing a basis for future research.
Collapse
Affiliation(s)
- Xinxin Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Shihao Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Zhongjie Ji
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Jiaqi Meng
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Yunying Mou
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Xinyi Wu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Xu Yang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Panyang Xiong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Mingxia Li
- Nursing School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Yinghui Guo
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China.
| |
Collapse
|
2
|
He X, Zhou Y, Yu J, Huang Q, Chen Z, Xiao R, Liu C, Gui S, Xiong T. JiaGaSongTang improves chronic cholestasis via enhancing FXR-mediated bile acid metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155347. [PMID: 38493717 DOI: 10.1016/j.phymed.2024.155347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/29/2023] [Accepted: 01/07/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Bile acid (BA) enterohepatic circulation disorders are a main feature of chronic cholestatic diseases. Promoting BA metabolism is thus a potential method of improving enterohepatic circulation disorders, and treat enterohepatic inflammation, oxidative stress and fibrosis due to cholestasis. PURPOSE To investigate the effect of JiaGaSongTang (JGST) and its blood-absorbed ingredient 6-gingerol on α-naphthylisothiocyanate (ANIT)-induced chronic cholestasis, as well as elucidate the underlying regulatory mechanism. METHODS Chronic cholestasis was induced in mice via subcutaneous injection of ANIT (50 mg/kg) every other day for 14 d. Treatment groups were administered JGST orally daily. Damage to the liver and intestine was observed using histopathological techniques. Biochemical techniques were employed to assess total BA (TBA) levels in the serum, liver, and ileum samples. Liquid chromatograph-mass spectrometry/mass spectrometry (LC-MS/MS) was used to analyze fecal BA components. Bioinformatic methods were adopted to screen the core targets and pathways. The blood-absorbed ingredients of JGST were scrutinized via LC-MS/MS. The effects of the major JGST ingredients on farnesoid X receptor (FXR) transactivation were validated using dual luciferase reporter genes. Lastly, the effects of the FXR inhibitor, DY268, on JGST and 6-gingerol pharmacodynamics were observed at the cellular and animal levels. RESULTS JGST ameliorated pathological impairments in the liver and intestine, diminishing TBA levels in the serum, liver and gut. Fecal BA profiling revealed that JGST enhanced the excretion of toxic BA constituents, including deoxycholic acid. Bioinformatic analyses indicated that JGST engaged in anti-inflammatory mechanisms, attenuating collagen accumulation, and orchestrating BA metabolism via interactions with FXR and other pertinent targets. LC-MS/MS analysis identified six ingredients absorbed to the bloodstream, including 6-gingerol. Surface plasmon resonance (SPR) and dual luciferase reporter gene assays confirmed the abilities of 6-gingerol to bind to FXR and activate its transactivation. Ultimately, in both cellular and animal models, the therapeutic efficacy of JGST and 6-gingerol in chronic cholestasis was attenuated in the presence of FXR inhibitors. CONCLUSION The findings, for the first time, demonstrated that 6-gingerol, a blood-absorbed ingredient of JGST, can activate FXR to affect BA metabolism, and thereby attenuate ANIT-induced liver and intestinal injury in chronic cholestasis mice model via inhibition of inflammation, oxidative stress, and liver fibrosis, in part in a FXR-dependent mechanism.
Collapse
Affiliation(s)
- Xiaoliang He
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Outer Ring Road, Guangzhou, Guangdong 510006, China
| | - Yingya Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Outer Ring Road, Guangzhou, Guangdong 510006, China
| | - Jingtao Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Outer Ring Road, Guangzhou, Guangdong 510006, China
| | - Qinpo Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Outer Ring Road, Guangzhou, Guangdong 510006, China
| | - Zhengyuan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Outer Ring Road, Guangzhou, Guangdong 510006, China
| | - Ru Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Outer Ring Road, Guangzhou, Guangdong 510006, China
| | - Changhui Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Outer Ring Road, Guangzhou, Guangdong 510006, China.
| | - Shuhua Gui
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Outer Ring Road, Guangzhou, Guangdong 510006, China.
| | - Tianqin Xiong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Outer Ring Road, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
3
|
Shu X, Wang J, Zhao L, Wang J, Wang P, Zhang F, Wang R. Bifidobacterium lactis TY-S01 protects against alcoholic liver injury in mice by regulating intestinal barrier function and gut microbiota. Heliyon 2023; 9:e17878. [PMID: 37539263 PMCID: PMC10395298 DOI: 10.1016/j.heliyon.2023.e17878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023] Open
Abstract
Alcohol-induced liver injury poses a significant threat to human health. Probiotics have been proven to prevent and treat alcohol-induced liver injury. In this study, the preventive effect of Bifidobacterium lactis TY-S01 on alcohol-induced liver injury in mice was investigated. TY-S01 pretreatment effectively protected mice against alcohol-induced liver injury by preserving the levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, triglyceride and high-density lipoprotein-cholesterol in serum and maintaining the levels of the inflammatory cytokines tumor necrosis factor-α, interleukin-6 and interleukin-1β in liver tissue. Additionally, TY-S01 could maintain the endotoxin levels in serum, maintain the mRNA expression levels of zonula occluden-1, occludin, claudin-1 and claudin-3 in the gut, and prevent gut microbiota dysbiosis in mice with alcoholic liver injury. Spearman's correlation analysis revealed that there was a clear correlation among serum indicators, inflammatory cytokines and gut microbiota. In conclusion, TY-S01 attenuates alcohol-induced liver injury by protecting the integrity of the intestinal barrier and maintaining the balance of the gut microbiota.
Collapse
Affiliation(s)
- Xi Shu
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Jing Wang
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Liang Zhao
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Jian Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Pengjie Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Feng Zhang
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| |
Collapse
|
4
|
Shu X, Wang J, Zhao L, Wang J, Wang P, Zhang F, Wang R. Bifidobacterium lactis TY-S01 protects against alcoholic liver injury in mice by regulating intestinal barrier function and gut microbiota. Heliyon 2023; 9:e17878. [PMID: 37539263 DOI: 10.1016/j.heliyon.2023.e17878if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2024] Open
Abstract
Alcohol-induced liver injury poses a significant threat to human health. Probiotics have been proven to prevent and treat alcohol-induced liver injury. In this study, the preventive effect of Bifidobacterium lactis TY-S01 on alcohol-induced liver injury in mice was investigated. TY-S01 pretreatment effectively protected mice against alcohol-induced liver injury by preserving the levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, triglyceride and high-density lipoprotein-cholesterol in serum and maintaining the levels of the inflammatory cytokines tumor necrosis factor-α, interleukin-6 and interleukin-1β in liver tissue. Additionally, TY-S01 could maintain the endotoxin levels in serum, maintain the mRNA expression levels of zonula occluden-1, occludin, claudin-1 and claudin-3 in the gut, and prevent gut microbiota dysbiosis in mice with alcoholic liver injury. Spearman's correlation analysis revealed that there was a clear correlation among serum indicators, inflammatory cytokines and gut microbiota. In conclusion, TY-S01 attenuates alcohol-induced liver injury by protecting the integrity of the intestinal barrier and maintaining the balance of the gut microbiota.
Collapse
Affiliation(s)
- Xi Shu
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Jing Wang
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Liang Zhao
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Jian Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Pengjie Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Feng Zhang
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| |
Collapse
|