1
|
Jiang Z, Song C, Li B, Li X, Yu X, Zhou S, Li T, Huang Q, Mo N, He X, Pang Q, Yao Z, Zhou C, Cao C. Voriconazole Steady-State Trough Concentrations and Clinical Outcomes in Patients with Talaromycosis. Mycopathologia 2025; 190:24. [PMID: 39907935 DOI: 10.1007/s11046-024-00915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 11/01/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Voriconazole (VRC) has been used as an alternative treatment for talaromycosis. However, there are few studies reporting the VRC plasma concentration in patients with talaromycosis. The purpose of this study was to analyze the correlations between VRC initial steady-state trough concentration and clinical outcomes. METHODS We prospectively enrolled patients who were diagnosed with talaromycosis and received VRC as initial antifungal treatment regime. Medical information, VRC initial steady-state trough concentration, clinical outcomes and adverse events (AEs) were recorded for analysis. RESULTS This study included 69 patients with talaromycosis receiving VRC treatment, including 38 HIV-positive patients and 31 HIV-negative patients. The average age of the HIV-positive patients was 42 years, and that of the HIV-negative patients was 51 years. After 12 weeks of antifungal treatment, 55 patients achieved clinical remission, 3 patients were transferred to amphotericin B treatment because of persistent clinical symptoms, and 5 patients died, 2 patients discontinued VRC treatment due to AEs. Follow up to 6 months, a total of 14 AEs were observed in 12 patients, and 3 patients discontinued VRC treatment due to AEs. The average VRC initial steady-state trough concentration was 5.26 mg/L, with a range of 0.23-16.95 mg/L, indicating high variability. No correlation was found between the VRC initial steady-state trough concentration and treatment failure (P = 0.079). A significant correlation between AEs and the VRC initial steady-state trough concentration was found (P = 0.048). The VRC initial steady-state trough concentration threshold for AEs was 5.88 mg/L according to the ROC curve analysis. In addition, there was a significant correlation between mortality and the APACHE II score (P = 0.029). The risk of death significantly increased when the APACHE II score was > 10. CONCLUSION Voriconazole is an effective antifungal drug for talaromycosis in patients with APACHE II scores < 10. VRC steady-state trough concentration may not be significantly correlated with poor prognosis. A high VRC trough concentration was significantly correlated with AEs, and it may promote the management of AEs.
Collapse
Affiliation(s)
- Zhiwen Jiang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Mycosis Prevention and Treatment, Nanning, 530021, China
- Guangxi Scientific and Technological Innovation Cooperation Base of Mycosis Prevention and Control, Nanning, 530021, China
| | - Cong Song
- Department of Infectious Diseases, the People's Hospital of Baise (the Southwest Affiliated Hospital of Youjiang Medical University for Nationalities), Baise, 533099, China
| | - Bingkun Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Mycosis Prevention and Treatment, Nanning, 530021, China
- Guangxi Scientific and Technological Innovation Cooperation Base of Mycosis Prevention and Control, Nanning, 530021, China
| | - Xiuying Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Mycosis Prevention and Treatment, Nanning, 530021, China
- Guangxi Scientific and Technological Innovation Cooperation Base of Mycosis Prevention and Control, Nanning, 530021, China
| | - Xiaoshu Yu
- Department of Infectious Diseases, the People's Hospital of Baise (the Southwest Affiliated Hospital of Youjiang Medical University for Nationalities), Baise, 533099, China
| | - Siru Zhou
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Tiantian Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Mycosis Prevention and Treatment, Nanning, 530021, China
- Guangxi Scientific and Technological Innovation Cooperation Base of Mycosis Prevention and Control, Nanning, 530021, China
| | - Qihua Huang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Mycosis Prevention and Treatment, Nanning, 530021, China
- Guangxi Scientific and Technological Innovation Cooperation Base of Mycosis Prevention and Control, Nanning, 530021, China
| | - Nanfang Mo
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Mycosis Prevention and Treatment, Nanning, 530021, China
- Guangxi Scientific and Technological Innovation Cooperation Base of Mycosis Prevention and Control, Nanning, 530021, China
| | - Xiaojuan He
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Mycosis Prevention and Treatment, Nanning, 530021, China
- Guangxi Scientific and Technological Innovation Cooperation Base of Mycosis Prevention and Control, Nanning, 530021, China
| | - Qian Pang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Mycosis Prevention and Treatment, Nanning, 530021, China
- Guangxi Scientific and Technological Innovation Cooperation Base of Mycosis Prevention and Control, Nanning, 530021, China
| | - Zhijian Yao
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Mycosis Prevention and Treatment, Nanning, 530021, China
- Guangxi Scientific and Technological Innovation Cooperation Base of Mycosis Prevention and Control, Nanning, 530021, China
| | - Changjing Zhou
- Department of Infectious Diseases, the People's Hospital of Baise (the Southwest Affiliated Hospital of Youjiang Medical University for Nationalities), Baise, 533099, China.
| | - Cunwei Cao
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Mycosis Prevention and Treatment, Nanning, 530021, China.
- Guangxi Scientific and Technological Innovation Cooperation Base of Mycosis Prevention and Control, Nanning, 530021, China.
| |
Collapse
|
2
|
Jiang L, Lin Z. Voriconazole: a review of adjustment programs guided by therapeutic drug monitoring. Front Pharmacol 2024; 15:1439586. [PMID: 39712496 PMCID: PMC11658975 DOI: 10.3389/fphar.2024.1439586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/12/2024] [Indexed: 12/24/2024] Open
Abstract
Objectives Exploring adjustments to the voriconazole dosing program based on therapeutic drug monitoring results to implement individualized therapy. Methods PubMed and Embase were systematically searched to obtain study about voriconazole dose adjustment program guided by therapeutic drug monitoring. Quality evaluation and summarization of the obtained studies were performed to obtain program adjustments for voriconazole under therapeutic drug monitoring. Results A total of 1,356 and 2,979 studies were searched on PubMed and Embase, respectively, and after removing irrelevant and duplicated studies, a total of 25 studies were included. A loading dose of 5 mg/kg q12 h or 200 mg q12 h and a maintenance dose of 50 mg q12 h or 100 mg q24 h is recommended for patients with Child-Pugh C. And in patients with Child-Pugh C, CYP2C19 genotype had no significant effect on voriconazole blood concentrations. Recommendations for presenting dosing programs based on different CYP2C19 genotypes are inconsistent, and genetic testing is not routinely recommended prior to dosing from a pharmacoeconomic perspective. Additionally, in adult patients, if the voriconazole trough concentration is subtherapeutic, the voriconazole dose should be increased by 25%∼50%. If the voriconazole trough concentration is supratherapeutic,the voriconazole dose should be decreased by 25%∼50%. If a drug-related adverse event occurs, hold 1 dose, decrease subsequent dose by 50%.In pediatric patients, if the voriconazole trough concentration is subtherapeutic, increase the voriconazole dose by 1∼2 mg/kg or increase the voriconazole dose by 50%. If the voriconazole trough concentration is supratherapeutic, reduce the voriconazole dose by 1 mg/kg or hold 1 dose, and decrease the subsequent dose by 25%. Conclusion It is recommended that all patients on voriconazole should have their initial dosing program selected on the basis of their hepatic function or other influencing factors (e.g., pathogens, infections, C-reactive protein, albumin, or obesity), and that therapeutic concentrations should be achieved through appropriate dosage adjustments guided by therapeutic drug monitoring. Routine genetic testing for voriconazole application in patients is not considered necessary at this time. However, there has been a great deal of research and partial consensus on individualized dosing of voriconazole, but there are still some critical issues that have not been resolved.
Collapse
Affiliation(s)
| | - Zhiqiang Lin
- Department of Pharmacy, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian Province, China
| |
Collapse
|
3
|
Ling J, Yang X, Dong L, Jiang Y, Zou S, Hu N. Influence of C-reactive protein on the pharmacokinetics of voriconazole in relation to the CYP2C19 genotype: a population pharmacokinetics analysis. Front Pharmacol 2024; 15:1455721. [PMID: 39228522 PMCID: PMC11368715 DOI: 10.3389/fphar.2024.1455721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
Voriconazole is a broad-spectrum triazole antifungal agent. A number of studies have revealed that the impact of C-reactive protein (CRP) on voriconazole pharmacokinetics was associated with the CYP2C19 phenotype. However, the combined effects of CYP2C19 genetic polymorphisms and inflammation on voriconazole pharmacokinetics have not been considered in previous population pharmacokinetic (PPK) studies, especially in the Chinese population. This study aimed to analyze the impact of inflammation on the pharmacokinetics of voriconazole in patients with different CYP2C19 genotypes and optimize the dosage of administration. Data were obtained retrospectively from adult patients aged ≥16 years who received voriconazole for invasive fungal infections from October 2020 to June 2023. Plasma voriconazole levels were measured via high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). CYP2C19 genotyping was performed using the fluorescence in situ hybridization method. A PPK model was developed using the nonlinear mixed-effect model (NONMEM). The final model was validated using bootstrap, visual predictive check (VPC), and normalized prediction distribution error (NPDE). The Monte Carlo simulation was applied to evaluate and optimize the dosing regimens. A total of 232 voriconazole steady-state trough concentrations from 167 patients were included. A one-compartment model with first order and elimination adequately described the data. The typical clearance (CL) and the volume of distribution (V) of voriconazole were 3.83 L/h and 134 L, respectively. The bioavailability was 96.5%. Covariate analysis indicated that the CL of voriconazole was substantially influenced by age, albumin, gender, CRP, and CYP2C19 genetic variations. The V of voriconazole was significantly associated with body weight. An increase in the CRP concentration significantly decreased voriconazole CL in patients with the CYP2C19 normal metabolizer (NM) and intermediate metabolizer (IM), but it had no significant effect on patients with the CYP2C19 poor metabolizer (PM). The Monte Carlo simulation based on CRP levels indicated that patients with high CRP concentrations required a decreased dose to attain the therapeutic trough concentration and avoid adverse drug reactions in NM and IM patients. These results indicate that CRP affects the pharmacokinetics of voriconazole and is associated with the CYP2C19 phenotype. Clinicians dosing voriconazole should consider the patient's CRP level, especially in CYP2C19 NMs and IMs.
Collapse
Affiliation(s)
| | | | | | | | | | - Nan Hu
- Department of Pharmacy, The First People’s Hospital of Changzhou/The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
4
|
Xie M, Jiang M, Xu J, Zhu Y, Kong L. Development and validation of a clinical risk score nomogram for predicting voriconazole trough concentration above 5 mg/L: a retrospective cohort study. J Chemother 2024:1-9. [PMID: 38978301 DOI: 10.1080/1120009x.2024.2376453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024]
Abstract
The therapeutic range of voriconazole (VRC) is narrow, this study aimed to explore factors influencing VRC plasma concentrations > 5 mg/L and to construct a clinical risk score nomogram prediction model. Clinical data from 221 patients with VRC prophylaxis and treatment were retrospectively analyzed. The patients were randomly divided into a training cohort and a validation cohort at a 7:3 ratio. Univariate and binary logistic regression analysis was used to select independent risk factors for VRC plasma concentration above the high limit (5 mg/L). Four indicators including age, weight, CYP2C19 genotype, and albumin were selected to construct the nomogram prediction model. The area under the curve values of the training cohort and the validation cohort were 0.841 and 0.802, respectively. The decision curve analysis suggests that the nomogram model had good clinical applicability. In conclusion, the nomogram provides a reference for early screening and intervention in a high-risk population.
Collapse
Affiliation(s)
- Mengyuan Xie
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Manxue Jiang
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Jian Xu
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Yulin Zhu
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Lingti Kong
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- School of Pharmacy, Bengbu Medical University, Bengbu, China
- Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| |
Collapse
|
5
|
Wang Y, Ye Q, Li P, Huang L, Qi Z, Chen W, Zhan Q, Wang C. Renal Replacement Therapy as a New Indicator of Voriconazole Clearance in a Population Pharmacokinetic Analysis of Critically Ill Patients. Pharmaceuticals (Basel) 2024; 17:665. [PMID: 38931333 PMCID: PMC11206427 DOI: 10.3390/ph17060665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
AIMS The pharmacokinetic (PK) profiles of voriconazole in intensive care unit (ICU) patients differ from that in other patients. We aimed to develop a population pharmacokinetic (PopPK) model to evaluate the effects of using extracorporeal membrane oxygenation (ECMO) and continuous renal replacement therapy (CRRT) and those of various biological covariates on the voriconazole PK profile. METHODS Modeling analyses of the PK parameters were conducted using the nonlinear mixed-effects modeling method (NONMEM) with a two-compartment model. Monte Carlo simulations (MCSs) were performed to observe the probability of target attainment (PTA) when receiving CRRT or not under different dosage regimens, different stratifications of quick C-reactive protein (qCRP), and different minimum inhibitory concentration (MIC) ranges. RESULTS A total of 408 critically ill patients with 746 voriconazole concentration-time data points were included in this study. A two-compartment population PK model with qCRP, CRRT, creatinine clearance rate (CLCR), platelets (PLT), and prothrombin time (PT) as fixed effects was developed using the NONMEM. CONCLUSIONS We found that qCRP, CRRT, CLCR, PLT, and PT affected the voriconazole clearance. The most commonly used clinical regimen of 200 mg q12h was sufficient for the most common sensitive pathogens (MIC ≤ 0.25 mg/L), regardless of whether CRRT was performed and the level of qCRP. When the MIC was 0.5 mg/L, 200 mg q12h was insufficient only when the qCRP was <40 mg/L and CRRT was performed. When the MIC was ≥2 mg/L, a dose of 300 mg q12h could not achieve ≥ 90% PTA, necessitating the evaluation of a higher dose.
Collapse
Affiliation(s)
- Yuqiong Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China; (Y.W.); (C.W.)
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
| | - Qinghua Ye
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
| | - Pengmei Li
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China;
| | - Linna Huang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
| | - Zhijiang Qi
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
| | - Wenqian Chen
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China;
| | - Qingyuan Zhan
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China; (Y.W.); (C.W.)
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
| | - Chen Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China; (Y.W.); (C.W.)
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
6
|
Zhao Y, Liu H, Xiao C, Hou J, Zhang B, Li J, Zhang M, Jiang Y, Sandaradura I, Ding X, Yan M. Enhancing voriconazole therapy in liver dysfunction: exploring administration schemes and predictive factors for trough concentration and efficacy. Front Pharmacol 2024; 14:1323755. [PMID: 38239188 PMCID: PMC10794455 DOI: 10.3389/fphar.2023.1323755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction: The application of voriconazole in patients with liver dysfunction lacks pharmacokinetic data. In previous study, we proposed to develop voriconazole dosing regimens for these patients according to their total bilirubin, but the regimens are based on Monte Carlo simulation and has not been further verified in clinical practice. Besides, there are few reported factors that significantly affect the efficacy of voriconazole. Methods: We collected the information of patients with liver dysfunction hospitalized in our hospital from January 2018 to May 2022 retrospectively, including their baseline information and laboratory data. We mainly evaluated the efficacy of voriconazole and the target attainment of voriconazole trough concentration. Results: A total of 157 patients with liver dysfunction were included, from whom 145 initial and 139 final voriconazole trough concentrations were measured. 60.5% (95/157) of patients experienced the adjustment of dose or frequency. The initial voriconazole trough concentrations were significantly higher than the final (mean, 4.47 versus 3.90 μg/mL, p = 0.0297). Furthermore, daily dose, direct bilirubin, lymphocyte counts and percentage, platelet, blood urea nitrogen and creatinine seven covariates were identified as the factors significantly affect the voriconazole trough concentration. Binary logistic regression analysis revealed that the lymphocyte percentage significantly affected the efficacy of voriconazole (OR 1.138, 95% CI 1.016-1.273), which was further validated by the receiver operating characteristic curve. Conclusion: The significant variation in voriconazole trough concentrations observed in patients with liver dysfunction necessitates caution when prescribing this drug. Clinicians should consider the identified factors, particularly lymphocyte percentage, when dosing voriconazole in this population.
Collapse
Affiliation(s)
- Yichang Zhao
- Department of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Huaiyuan Liu
- Department of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chenlin Xiao
- Department of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jingjing Hou
- Department of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jiakai Li
- Department of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Min Zhang
- Department of Infectious Disease, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yongfang Jiang
- Department of Infectious Disease, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Indy Sandaradura
- School of Medicine, University of Sydney, Sydney, NSW, Australia
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney, NSW, Australia
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Miao Yan
- Department of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
7
|
Boglione-Kerrien C, Zerrouki S, Le Bot A, Camus C, Marchand T, Bellissant E, Tron C, Verdier MC, Gangneux JP, Lemaitre F. Can we predict the influence of inflammation on voriconazole exposure? An overview. J Antimicrob Chemother 2023; 78:2630-2636. [PMID: 37796931 DOI: 10.1093/jac/dkad293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Voriconazole is a triazole antifungal indicated for invasive fungal infections that exhibits a high degree of inter-individual and intra-individual pharmacokinetic variability. Voriconazole pharmacokinetics is non-linear, making dosage adjustments more difficult. Therapeutic drug monitoring is recommended by measurement of minimum plasma concentrations. Several factors are responsible for the high pharmacokinetic variability of voriconazole: age, feeding (which decreases absorption), liver function, genetic polymorphism of the CYP2C19 gene, drug interactions and inflammation. Invasive fungal infections are indeed very frequently associated with inflammation, which engenders a risk of voriconazole overexposure. Many studies have reviewed this topic in both the adult and paediatric populations, but few studies have focused on the specific point of the prediction, to evaluate the influence of inflammation on voriconazole pharmacokinetics. Predicting the impact of inflammation on voriconazole pharmacokinetics could help optimize antifungal therapy and improve patient management. This review summarizes the existing data on the influence of inflammation on voriconazole pharmacokinetics in adult populations. We also evaluate the role of C-reactive protein, the impact of inflammation on patient metabolic phenotypes, and the tools that can be used to predict the effect of inflammation on voriconazole pharmacokinetics.
Collapse
Affiliation(s)
- Christelle Boglione-Kerrien
- Rennes University Hospital, Department of Biological Pharmacology, 2, rue Henri le Guilloux, F-35000 Rennes, France
| | - Selim Zerrouki
- Rennes University Hospital, Department of Biochemistry, Rennes, France
| | - Audrey Le Bot
- Rennes University Hospital, Department of Infectious Diseases, Rennes, France
| | - Christophe Camus
- Rennes University Hospital, Department of Intensive Care Medicine, Rennes, France
| | - Tony Marchand
- Rennes University Hospital, Department of Clinical Haematology, Rennes, France
| | - Eric Bellissant
- Rennes University Hospital, Department of Biological Pharmacology, 2, rue Henri le Guilloux, F-35000 Rennes, France
- INSERM, CIC-P 1414 Clinical Investigation Centre, Rennes, France
- Rennes University Hospital, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) -UMR_S 1085, F-35000 Rennes, France
| | - Camille Tron
- Rennes University Hospital, Department of Biological Pharmacology, 2, rue Henri le Guilloux, F-35000 Rennes, France
- INSERM, CIC-P 1414 Clinical Investigation Centre, Rennes, France
- Rennes University Hospital, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) -UMR_S 1085, F-35000 Rennes, France
| | - Marie-Clémence Verdier
- Rennes University Hospital, Department of Biological Pharmacology, 2, rue Henri le Guilloux, F-35000 Rennes, France
- INSERM, CIC-P 1414 Clinical Investigation Centre, Rennes, France
- Rennes University Hospital, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) -UMR_S 1085, F-35000 Rennes, France
| | - Jean-Pierre Gangneux
- Rennes University Hospital, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) -UMR_S 1085, F-35000 Rennes, France
- Rennes University Hospital, Department of Parasitology and Mycology, National Reference Centre for Mycoses and Antifungals (LA Asp-C) and European Excellence Centre in Medical Mycology (ECMM EC), Rennes, France
| | - Florian Lemaitre
- Rennes University Hospital, Department of Biological Pharmacology, 2, rue Henri le Guilloux, F-35000 Rennes, France
- INSERM, CIC-P 1414 Clinical Investigation Centre, Rennes, France
- Rennes University Hospital, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) -UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
8
|
Voriconazole exposure is influenced by inflammation: A population pharmacokinetic model. Int J Antimicrob Agents 2023; 61:106750. [PMID: 36758777 DOI: 10.1016/j.ijantimicag.2023.106750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Voriconazole is an antifungal drug used for the treatment of invasive fungal infections. Due to highly variable drug exposure, therapeutic drug monitoring (TDM) has been recommended. TDM may be helpful to predict exposure accurately, but covariates, such as severe inflammation, that influence the metabolism of voriconazole have not been included in the population pharmacokinetic (popPK) models suitable for routine TDM. OBJECTIVES To investigate whether the effect of inflammation, reflected by C-reactive protein (CRP), could improve a popPK model that can be applied in clinical care. PATIENTS AND METHODS Data from two previous studies were included in the popPK modelling. PopPK modelling was performed using Edsim++. Different popPK models were compared using Akaike Information Criterion and goodness-of-fit plots. RESULTS In total, 1060 voriconazole serum concentrations from 54 patients were included in this study. The final model was a one-compartment model with non-linear elimination. Only CRP was a significant covariate, and was included in the final model and found to affect the maximum rate of enzyme activity (Vmax). For the final popPK model, the mean volume of distribution was 145 L [coefficient of variation percentage (CV%)=61%], mean Michaelis-Menten constant was 5.7 mg/L (CV%=119%), mean Vmax was 86.4 mg/h (CV%=99%) and mean bioavailability was 0.83 (CV%=143%). Internal validation using bootstrapping resulted in median values close to the population parameter estimates. CONCLUSIONS This one-compartment model with non-linear elimination and CRP as a covariate described the pharmacokinetics of voriconazole adequately.
Collapse
|