1
|
Kim D, Shin Y, Cho S, Kim H, Hwang H, Shin H, Chung Y, Jun YH. Dexmedetomidine Stereotaxic Injection Alleviates Neuronal Loss Following Bilateral Common Carotid Artery Occlusion via Up-Regulation of BDNF Expression. In Vivo 2024; 38:184-189. [PMID: 38148065 PMCID: PMC10756478 DOI: 10.21873/invivo.13424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND/AIM Neurogenesis is an important process in the recovery from neurological damage caused by ischemic lesions. Endogenous neurogenesis is insufficient to restore neuronal damage following cerebral ischemia. Dexmedetomidine (DEX) exerts neuroprotective effects against cerebral ischemia and ischemia/reperfusion injury. DEX promotes neurogenesis, including neuronal proliferation and maturation in the hippocampus. In a previous study, we showed that early neurogenesis increased 3 days after bilateral common carotid artery occlusion (BCCAO). In this study, we investigated the effect of DEX on neurogenesis 3 days after BCCAO. MATERIALS AND METHODS Male Sprague-Dawley (SD) rats (7-8 weeks old) were used as a BCCAO model. Right and left common carotid arteries of the rats were occluded using 4-0 silk sutures. Two hours after surgery, an intracranial DEX injection was administered to rats that underwent surgery using a stereotaxic injector. Brains were obtained from control and BCCAO rats 3 days after surgery. Immunohistochemistry was performed on the cortex and dentate gyrus of the hippocampus using a NeuN antibody. Western blot was performed with HIF1α and brain-derived neurotrophic factor (BDNF) antibodies. RESULTS The number of mature neurons decreased 3 days after BCCAO, but DEX treatment alleviated neural loss in the parietal cortex and hippocampus. Up-regulation of BDNF was also observed after dexmedetomidine treatment. CONCLUSION Stereotaxic injection of dexmedetomidine alleviates neural loss following BCCAO by up-regulating BDNF expression.
Collapse
Affiliation(s)
- Dongjoon Kim
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwang-ju, Republic of Korea
| | - Yejin Shin
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwang-ju, Republic of Korea
| | - Suyeon Cho
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwang-ju, Republic of Korea
| | - Haksung Kim
- Department of Neurosurgery, Chosun University Hospital, Gwang-ju, Republic of Korea
| | - Hyoin Hwang
- Department of Anatomy, School of Medicine, Chosun University, Gwang-ju, Republic of Korea
| | - Hyekyoung Shin
- Department of Anatomy, School of Medicine, Chosun University, Gwang-ju, Republic of Korea
| | - Yoonyoung Chung
- Department of Anatomy, School of Medicine, Chosun University, Gwang-ju, Republic of Korea
| | - Yong-Hyun Jun
- Department of Anatomy, School of Medicine, Chosun University, Gwang-ju, Republic of Korea
| |
Collapse
|
2
|
Chen X, Chen A, Wei J, Huang Y, Deng J, Chen P, Yan Y, Lin M, Chen L, Zhang J, Huang Z, Zeng X, Gong C, Zheng X. Dexmedetomidine alleviates cognitive impairment by promoting hippocampal neurogenesis via BDNF/TrkB/CREB signaling pathway in hypoxic-ischemic neonatal rats. CNS Neurosci Ther 2024; 30:e14486. [PMID: 37830170 PMCID: PMC10805444 DOI: 10.1111/cns.14486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
AIMS Dexmedetomidine (DEX) has been reported to alleviate hypoxic-ischemic brain damage (HIBD) in neonates. This study aimed to investigate whether DEX improves cognitive impairment by promoting hippocampal neurogenesis via the BDNF/TrkB/CREB signaling pathway in neonatal rats with HIBD. METHODS HIBD was induced in postnatal day 7 rats using the Rice-Vannucci method, and DEX (25 μg/kg) was administered intraperitoneally immediately after the HIBD induction. The BDNF/TrkB/CREB pathway was regulated by administering the TrkB receptor antagonist ANA-12 through intraperitoneal injection or by delivering adeno-associated virus (AAV)-shRNA-BDNF via intrahippocampal injection. Western blot was performed to measure the levels of BDNF, TrkB, and CREB. Immunofluorescence staining was utilized to identify the polarization of astrocytes and evaluate the levels of neurogenesis in the dentate gyrus of the hippocampus. Nissl and TTC staining were performed to evaluate the extent of neuronal damage. The MWM test was conducted to evaluate spatial learning and memory ability. RESULTS The levels of BDNF and neurogenesis exhibited a notable decrease in the hippocampus of neonatal rats after HIBD, as determined by RNA-sequencing technology. Our results demonstrated that treatment with DEX effectively increased the protein expression of BDNF and the phosphorylation of TrkB and CREB, promoting neurogenesis in the dentate gyrus of the hippocampus in neonatal rats with HIBD. Specifically, DEX treatment significantly augmented the expression of BDNF in hippocampal astrocytes, while decreasing the proportion of detrimental A1 astrocytes and increasing the proportion of beneficial A2 astrocytes in neonatal rats with HIBD. Furthermore, inhibiting the BDNF/TrkB/CREB pathway using either ANA-12 or AAV-shRNA-BDNF significantly counteracted the advantageous outcomes of DEX on hippocampal neurogenesis, neuronal survival, and cognitive improvement. CONCLUSIONS DEX promoted neurogenesis in the hippocampus by activating the BDNF/TrkB/CREB pathway through the induction of polarization of A1 astrocytes toward A2 astrocytes, subsequently mitigating neuronal damage and cognitive impairment in neonates with HIBD.
Collapse
Affiliation(s)
- Xiaohui Chen
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Andi Chen
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Jianjie Wei
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Yongxin Huang
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Jianhui Deng
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Pinzhong Chen
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Yanlin Yan
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Mingxue Lin
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Lifei Chen
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Jiuyun Zhang
- Fujian Provincial Key Laboratory of Emergency MedicineFuzhouChina
| | - Zhibin Huang
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Xiaoqian Zeng
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Cansheng Gong
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Xiaochun Zheng
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
- Fujian Provincial Key Laboratory of Emergency MedicineFuzhouChina
- Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial Co‐Constructed Laboratory of “Belt and Road”FuzhouChina
| |
Collapse
|
3
|
Deng J, Liao Y, Chen J, Chen A, Wu S, Huang Y, Qian H, Gao F, Wu G, Chen Y, Chen X, Zheng X. N6-methyladenosine demethylase FTO regulates synaptic and cognitive impairment by destabilizing PTEN mRNA in hypoxic-ischemic neonatal rats. Cell Death Dis 2023; 14:820. [PMID: 38092760 PMCID: PMC10719319 DOI: 10.1038/s41419-023-06343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Hypoxic-ischemic brain damage (HIBD) can result in significant global rates of neonatal death or permanent neurological disability. N6-methyladenosine (m6A) modification of RNA influences fundamental aspects of RNA metabolism, and m6A dysregulation is implicated in various neurological diseases. However, the biological roles and clinical significance of m6A in HIBD remain unclear. We currently evaluated the effect of HIBD on cerebral m6A methylation in RNAs in neonatal rats. The m6A dot blot assay showed a global augmentation in RNA m6A methylation post-HI. Herein, we also report on demethylase FTO, which is markedly downregulated in the hippocampus and is the main factor involved with aberrant m6A modification following HI. By conducting a comprehensive analysis of RNA-seq data and m6A microarray results, we found that transcripts with m6A modifications were more highly expressed overall than transcripts without m6A modifications. The overexpression of FTO resulted in the promotion of Akt/mTOR pathway hyperactivation, while simultaneously inhibiting autophagic function. This is carried out by the demethylation activity of FTO, which selectively demethylates transcripts of phosphatase and tensin homolog (PTEN), thus promoting its degradation and reduced protein expression after HI. Moreover, the synaptic and neurocognitive disorders induced by HI were effectively reversed through the overexpression of FTO in the hippocampus. Cumulatively, these findings demonstrate the functional importance of FTO-dependent hippocampal m6A methylome in cognitive function and provides novel mechanistic insights into the therapeutic potentials of FTO in neonatal HIBD.
Collapse
Affiliation(s)
- Jianhui Deng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Yanling Liao
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Jianghu Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Andi Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Shuyan Wu
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Yongxin Huang
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Haitao Qian
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Fei Gao
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Guixi Wu
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Yisheng Chen
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Xiaohui Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China.
| | - Xiaochun Zheng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China.
- Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Co-Constructed Laboratory of Belt and Road, Fuzhou, China.
| |
Collapse
|
4
|
Qian H, Gao F, Wu X, Lin D, Huang Y, Chen A, Deng J, Gong C, Chen X, Zheng X. Activation of the CD200/CD200R1 axis attenuates neuroinflammation and improves postoperative cognitive dysfunction via the PI3K/Akt/NF-κB signaling pathway in aged mice. Inflamm Res 2023; 72:2127-2144. [PMID: 37902837 DOI: 10.1007/s00011-023-01804-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/28/2023] [Accepted: 10/02/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a neurological complication occurring after anesthesia and surgery. Neuroinflammation plays a critical role in the pathogenesis of POCD, and the activation of the cluster of differentiation 200 (CD200)/CD200R1 axis improves neurological recovery in various neurological disorders by modulating inflammation. The aim of this study was to investigate the impact and underlying mechanism of CD200/CD200R1 axis on POCD in aged mice. METHODS The model of POCD was established in aged mice. To assess the learning and memory abilities of model mice, the Morris water maze test was implemented. CD200Fc (CD200 fusion protein), CD200R1 Ab (anti-CD200R1 antibody), and 740Y-P (a specific PI3K activator) were used to evaluate the effects of the CD200/CD200R1/PI3K/Akt/NF-κB signaling pathway on hippocampal microglial polarization, neuroinflammation, synaptic activity, and cognition in mice. RESULTS It was observed that anesthesia/surgery induced cognitive decline in aged mice, increased the levels of tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1 β and decreased the levels of postsynaptic density protein 95 (PSD-95), synaptophysin (SYN) in the hippocampus. Moreover, CD200Fc and 740Y-P attenuated neuroinflammation and synaptic deficits and reversed cognitive impairment via the phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (Akt)/nuclear factor-kappa B (NF-κB) signaling pathway, whereas CD200R1 Ab administration exerted the opposite effects. Our results further show that the CD200/CD200R1 axis modulates M1/M2 polarization in hippocampal microglia via the PI3K/Akt/NF-κB signaling pathway. CONCLUSIONS Our findings indicate that the activation of the CD200/CD200R1 axis reduces neuroinflammation, synaptic deficits, and cognitive impairment in the hippocampus of aged mice by regulating microglial M1/M2 polarization via the PI3K/Akt/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Haitao Qian
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Fei Gao
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Xuyang Wu
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Daoyi Lin
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Yongxin Huang
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Andi Chen
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Jianhui Deng
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Cansheng Gong
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Xiaohui Chen
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China.
| | - Xiaochun Zheng
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China.
- Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Co-Constructed Laboratory of "Belt and Road", Fuzhou, China.
| |
Collapse
|
5
|
Pisani A, Paciello F, Del Vecchio V, Malesci R, De Corso E, Cantone E, Fetoni AR. The Role of BDNF as a Biomarker in Cognitive and Sensory Neurodegeneration. J Pers Med 2023; 13:jpm13040652. [PMID: 37109038 PMCID: PMC10140880 DOI: 10.3390/jpm13040652] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has a crucial function in the central nervous system and in sensory structures including olfactory and auditory systems. Many studies have highlighted the protective effects of BDNF in the brain, showing how it can promote neuronal growth and survival and modulate synaptic plasticity. On the other hand, conflicting data about BDNF expression and functions in the cochlear and in olfactory structures have been reported. Several clinical and experimental research studies showed alterations in BDNF levels in neurodegenerative diseases affecting the central and peripheral nervous system, suggesting that BDNF can be a promising biomarker in most neurodegenerative conditions, including Alzheimer's disease, shearing loss, or olfactory impairment. Here, we summarize current research concerning BDNF functions in brain and in sensory domains (olfaction and hearing), focusing on the effects of the BDNF/TrkB signalling pathway activation in both physiological and pathological conditions. Finally, we review significant studies highlighting the possibility to target BDNF as a biomarker in early diagnosis of sensory and cognitive neurodegeneration, opening new opportunities to develop effective therapeutic strategies aimed to counteract neurodegeneration.
Collapse
Affiliation(s)
- Anna Pisani
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Valeria Del Vecchio
- Department of Neuroscience, Reproductive Sciences and Dentistry-Audiology Section, University of Naples Federico II, 80131 Naples, Italy
| | - Rita Malesci
- Department of Neuroscience, Reproductive Sciences and Dentistry-Audiology Section, University of Naples Federico II, 80131 Naples, Italy
| | - Eugenio De Corso
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Elena Cantone
- Department of Neuroscience, Reproductive Sciences and Dentistry-ENT Section, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Rita Fetoni
- Department of Neuroscience, Reproductive Sciences and Dentistry-Audiology Section, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|