1
|
Liu Y, Yin R, Tian Y, Xu S, Meng X. Curcumin nanopreparations: recent advance in preparation and application. Biomed Mater 2024; 19:052009. [PMID: 39189065 DOI: 10.1088/1748-605x/ad6dc7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Curcumin is a natural polyphenolic compound extracted from turmeric with antibacterial, antioxidant, antitumor, preventive and therapeutic neurological disorders and a variety of bioactivities, which is widely used in the field of food and medicine. However, the drawbacks of curcumin such as poor aqueous solubility and stability have limited the practical application of curcumin. To overcome these defects and enhance its functional properties, various nanoscale systems (liposomes, polymer nanoparticles, protein nanoparticles, solid lipid nanoparticles, metal nanoparticles, etc) have been extensively employed for curcumin encapsulation and delivery. Despite the rapid development of curcumin nanoformulations, there is a lack of comprehensive reviews on their preparation and properties. This review provides an overview of the construction of curcumin nano-delivery systems, mechanisms of action, nanocarrier preparation methods and the applications of curcumin nanocarriers in the food and pharmaceutical fields to provide a theoretical basis and technological support for the efficient bio-utilization, product development and early clinical application of curcumin.
Collapse
Affiliation(s)
- Yan Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| | - Rui Yin
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| | - Yuan Tian
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| | - Shujun Xu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| | - Xin Meng
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| |
Collapse
|
2
|
Amin N, Abbasi IN, Wu F, Shi Z, Sundus J, Badry A, Yuan X, Zhao BX, Pan J, Mi XD, Luo Y, Geng Y, Fang M. The Janus face of HIF-1α in ischemic stroke and the possible associated pathways. Neurochem Int 2024; 177:105747. [PMID: 38657682 DOI: 10.1016/j.neuint.2024.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Stroke is the most devastating disease, causing paralysis and eventually death. Many clinical and experimental trials have been done in search of a new safe and efficient medicine; nevertheless, scientists have yet to discover successful remedies that are also free of adverse effects. This is owing to the variability in intensity, localization, medication routes, and each patient's immune system reaction. HIF-1α represents the modern tool employed to treat stroke diseases due to its functions: downstream genes such as glucose metabolism, angiogenesis, erythropoiesis, and cell survival. Its role can be achieved via two downstream EPO and VEGF strongly related to apoptosis and antioxidant processes. Recently, scientists paid more attention to drugs dealing with the HIF-1 pathway. This review focuses on medicines used for ischemia treatment and their potential HIF-1α pathways. Furthermore, we discussed the interaction between HIF-1α and other biological pathways such as oxidative stress; however, a spotlight has been focused on certain potential signalling contributed to the HIF-1α pathway. HIF-1α is an essential regulator of oxygen balance within cells which affects and controls the expression of thousands of genes related to sustaining homeostasis as oxygen levels fluctuate. HIF-1α's role in ischemic stroke strongly depends on the duration and severity of brain damage after onset. HIF-1α remains difficult to investigate, particularly in ischemic stroke, due to alterations in the acute and chronic phases of the disease, as well as discrepancies between the penumbra and ischemic core. This review emphasizes these contrasts and analyzes the future of this intriguing and demanding field.
Collapse
Affiliation(s)
- Nashwa Amin
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; Department of Zoology, Faculty of Science, Aswan University, Egypt; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Irum Naz Abbasi
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Wu
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongjie Shi
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Javaria Sundus
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Azhar Badry
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Yuan
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing-Xin Zhao
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jie Pan
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiao-Dan Mi
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhuan Luo
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Geng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Marong Fang
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
3
|
Baki KB, Sapmaz T, Sevgin K, Topkaraoglu S, Erdem E, Tekayev M, Guler EM, Beyaztas H, Bozali K, Aktas S, Irkorucu O, Sapmaz E. Curcumin and gallic acid have a synergistic protective effect against ovarian surface epithelium and follicle reserve damage caused by autologous intraperitoneal ovary transplantation in rats. Pathol Res Pract 2024; 258:155320. [PMID: 38728794 DOI: 10.1016/j.prp.2024.155320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
The objective of this study to examine the effects of curcumin and gallic acid use against oxidative stress damage in the autologous intraperitoneal ovarian transplantation model created in rats on ovarian follicle reserve, ovarian surface epithelium, and oxidant-antioxidant systems. 42 adult female Sprague Dawley rats (n=7) were allocated into 6 groups. Group 1 served as the control. In Group 2, rats underwent ovarian transplantation (TR) to their peritoneal walls. Group 3 received corn oil (CO) (0.5 ml/day) one day before and 14 days after transplantation. Group 4 was administered curcumin (CUR) (100 mg/kg/day), Group 5 received gallic acid (GA) (20 mg/kg/day), and Group 6 was treated with a combination of curcumin and gallic acid via oral gavage after transplantation. Rats were sacrificed on the 14th postoperative day, and blood along with ovaries were collected for analysis. The removed ovaries were analyzed at light microscopic, fluorescence microscopic, and biochemical levels. In Group 2 and Group 3, while serum and tissue Total Oxidant Levels (TOS) and Oxidative Stress Index (OSI) increased, serum Total Antioxidant Levels (TAS) decreased statistically significantly (p˂0.05) compared to the other groups (Groups 1, 4, 5, and 6). The ovarian follicle reserve was preserved and the changes in the ovarian surface epithelium and histopathological findings were reduced in the antioxidant-treated groups (Groups 4, 5, and 6). In addition, immunofluorescence examination revealed that the expression of Cytochrome C and Caspase 3 was stronger and Ki-67 was weaker in Groups 2 and 3, in comparison to the groups that were given antioxidants. It can be said that curcumin and gallic acid have a histological and biochemical protective effect against ischemia-reperfusion injury due to ovarian transplantation, and this effect is stronger when these two antioxidants are applied together compared to individual use.
Collapse
Affiliation(s)
- Kubra Basol Baki
- University of Health Sciences, Hamidiye Institute of Health Sciences, Department of Histology and Embryology, Istanbul 34668, Türkiye; Bezmialem Vakif University, Medical Faculty, Department of Histology and Embryology, Istanbul, Türkiye
| | - Tansel Sapmaz
- University of Health Sciences, Hamidiye Faculty of Medicine, Department of Histology and Embryology, Istanbul 34668, Türkiye.
| | - Kubra Sevgin
- University of Health Sciences, International Faculty of Medicine, Department of Histology and Embryology, Istanbul 34668, Türkiye
| | - Sude Topkaraoglu
- University of Health Sciences, Hamidiye Institute of Health Sciences, Department of Histology and Embryology, Istanbul 34668, Türkiye; University of Health Sciences, Hamidiye Faculty of Medicine, Department of Histology and Embryology, Istanbul 34668, Türkiye
| | - Esra Erdem
- University of Health Sciences, Vocational School of Health Services, Department of Medical Services and Techniques, Pathology Laboratory Techniques Program, Istanbul 34668, Türkiye
| | - Muhammetnur Tekayev
- University of Health Sciences, Hamidiye Institute of Health Sciences, Department of Histology and Embryology, Istanbul 34668, Türkiye
| | - Eray Metin Guler
- University of Health Sciences, Hamidiye Faculty of Medicine, Haydarpasa Numune Health Application and Research Center, Department of Medical Biochemistry, Istanbul, Türkiye; University of Health Sciences, Hamidiye Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Türkiye
| | - Hakan Beyaztas
- University of Health Sciences, Hamidiye Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Türkiye
| | - Kubra Bozali
- University of Health Sciences, Hamidiye Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Türkiye
| | - Selman Aktas
- University of Health Sciences, Hamidiye Faculty of Medicine, Department of Biostatistics and Medical Informatics, Istanbul, Türkiye
| | - Oktay Irkorucu
- University of Sharjah, College of Medicine, Department of Clinical Sciences, Sharjah, United Arab Emirates
| | - Ekrem Sapmaz
- University of Health Sciences, Adana City Training and Research Hospital, Department of Gynecology and Obstetrics, Adana, Türkiye
| |
Collapse
|
4
|
Jin X, Jin W, Li G, Zheng J, Xu X. Erythropoietin alleviates lung ischemia-reperfusion injury by activating the FGF23/FGFR4/ERK signaling pathway. PeerJ 2024; 12:e17123. [PMID: 38560469 PMCID: PMC10981413 DOI: 10.7717/peerj.17123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Background The purpose of the present study was to investigate the effect of erythropoietin (EPO) on lung ischemia-reperfusion injury (LIRI). Methods Sprague Dawley rats and BEAS-2B cells were employed to construct an ischemia-reperfusion (I/R)-induced model in vivo and in vitro, respectively. Afterward, I/R rats and tert-butyl hydroperoxide (TBHP)-induced cells were treated with different concentrations of EPO. Furthermore, 40 patients with LIRI and healthy controls were enrolled in the study. Results It was observed that lung tissue damage, cell apoptosis and the expression of BAX and caspase-3 were higher in the LIRI model in vivo and in vitro than in the control group, nevertheless, the Bcl-2, FGF23 and FGFR4 expression level was lower than in the control group. EPO administration significantly reduced lung tissue damage and cell apoptosis while also up-regulating the expression of FGF23 and FGFR4. Rescue experiments indicated that EPO exerted a protective role associated with the FGF23/FGFR4/p-ERK1/2 signal pathway. Notably, the expression of serum EPO, FGF23, FGFR4 and Bcl-2 was decreased in patients with LIRI, while the expression of caspase-3 and BAX was higher. Conclusion EPO could effectively improve LIRI, which might be related to the activation of the FGF23/FGFR4/p-ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Xiaosheng Jin
- Pulmonary and Critical Care Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Weijing Jin
- Department of Neonatology, Hangzhou Children’s Hospital, Hangzhou, China
| | - Guoping Li
- Pulmonary and Critical Care Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Jisheng Zheng
- Pulmonary and Critical Care Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xianrong Xu
- Pulmonary and Critical Care Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
5
|
Feng Q, Ling L, Yuan H, Guo Z, Ma J. Ginsenoside Rd: A promising target for ischemia-reperfusion injury therapy (A mini review). Biomed Pharmacother 2024; 171:116111. [PMID: 38181712 DOI: 10.1016/j.biopha.2023.116111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) represents a prevalent pathological phenomenon. Traditional treatment approaches primarily aim at restoring blood supply to ischemic organs, disregarding the consequent damage caused by IRI. Belonging to the class of protopanaxadiol ginsenosides that are found in Panax ginseng, ginsenoside Rd (GSRd) demonstrates notable safety alongside a diverse range of biological functions. Its active components exhibit diverse pharmacological effects, encompassing anti-inflammatory, anti-tumor, neuroprotective, cardiovascular-protective, and immune-regulatory properties, making it a promising candidate for addressing multiple medical conditions. GSRd shields against I/R injury by employing crucial cellular mechanisms, including the attenuation of oxidative stress, reduction of inflammation, promotion of cell survival signaling pathways, and inhibition of apoptotic pathways. Additionally, GSRd regulates mitochondrial function, maintains calcium homeostasis, and modulates the expression of genes involved in I/R injury. This review seeks to consolidate the pharmacological mechanism of action of GSRd within the context of IRI. Our objective is to contribute to the advancement of GSRd-related pharmaceuticals and provide novel insights for clinicians involved in developing IRI treatment strategies.
Collapse
Affiliation(s)
- Qiupeng Feng
- Department of Emergency Medicine, Affiliated Kunshan Hospital of Jiangsu University, No. 566 Qianjin East Road, Kunshan 215300, China
| | - Lijing Ling
- Department of Emergency Medicine, Affiliated Kunshan Hospital of Jiangsu University, No. 566 Qianjin East Road, Kunshan 215300, China
| | - Hua Yuan
- Department of Emergency Medicine, Affiliated Kunshan Hospital of Jiangsu University, No. 566 Qianjin East Road, Kunshan 215300, China
| | - Zhiqiang Guo
- Department of Emergency Medicine, Affiliated Kunshan Hospital of Jiangsu University, No. 566 Qianjin East Road, Kunshan 215300, China
| | - Jin Ma
- Department of Emergency Medicine, Affiliated Kunshan Hospital of Jiangsu University, No. 566 Qianjin East Road, Kunshan 215300, China.
| |
Collapse
|
6
|
Adeli OA, Heidari-Soureshjani S, Rostamian S, Azadegan-Dehkordi Z, Khaghani A. Effects and Mechanisms of Fisetin against Ischemia-reperfusion Injuries: A Systematic Review. Curr Pharm Biotechnol 2024; 25:2138-2153. [PMID: 38310454 DOI: 10.2174/0113892010281821240102105415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is a well-known ailment that can disturb organ function. OBJECTIVES This systematic review study investigated fisetin's effects and possible mechanisms in attenuating myocardial, cerebral, renal, and hepatic IRIs. METHODS This systematic review included studies earlier than Sep 2023 by following the PRISMA statement 2020. After determining inclusion and exclusion criteria and related keywords, bibliographic databases, such as Cochrane Library, PubMed, Web of Science, Embase, and Scopus databases, were used to search the relevant studies. Studies were imported in End- Note X8, and the primary information was recorded in Excel. RESULTS Fisetin reduced reactive oxygen species (ROS) generation and upregulated antioxidant enzymes, such as superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), and glutathione peroxidase (GPx), in ischemic tissues. Moreover, fisetin can attenuate oxidative stress by activating phosphoinositide-3-kinase-protein kinase B/Akt (PI3K/Akt) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. Fisetin has been indicated to prevent the activation of several pro-inflammatory signaling pathways, including NF-κB (Nuclear factor kappa-light-chain-enhancer of activated B cells) and MAPKs (Mitogen-activated protein kinases). It also inhibits the production of pro-inflammatory cytokines and enzymes like tumor necrosis factor-a (TNF-α), inducible-NO synthase (iNOS), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), interleukin-1β (IL-1β), IL-1, and IL-6. Fisetin attenuates IRI by improving mitochondrial function, anti-apoptotic effects, promoting autophagy, and preserving tissues from histological changes induced by IRIs. CONCLUSION Fisetin, by antioxidant, anti-inflammatory, mitochondrial protection, promoting autophagy, and anti-apoptotic properties, can reduce cell injury due to myocardial, cerebral renal, and hepatic IRIs without any significant side effects.
Collapse
Affiliation(s)
- Omid-Ali Adeli
- Department of Pathology, Lorestan University of Medical Sciences, Khorramabad, Iran
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Sahar Rostamian
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Zahra Azadegan-Dehkordi
- Oriented Nursing Midwifery Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Armin Khaghani
- Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|