1
|
Embarez DH, Razek ASA, Basalious EB, Mahmoud M, Hamdy NM. Acetaminophen-traces bioremediation with novel phenotypically and genotypically characterized 2 Streptomyces strains using chemo-informatics, in vivo, and in vitro experiments for cytotoxicity and biological activity. J Genet Eng Biotechnol 2023; 21:171. [PMID: 38112983 PMCID: PMC10730784 DOI: 10.1186/s43141-023-00602-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
We isolated two novel bacterial strains, active against the environmental pollutant acetaminophen/Paracetamol®. Streptomyces chrestomyceticus (symbol RS2) and Flavofuscus (symbol M33) collected from El-Natrun Valley, Egypt-water, sediment, and sand samples, taxonomically characterized using a transmission electron microscope (TEM). Genotypic identification, based on 16S rRNA gene sequence analysis followed by BLAST alignment, were deposited on the NCBI as 2 novel strains https://www.ncbi.nlm.nih.gov/nuccore/OM665324 and https://www.ncbi.nlm.nih.gov/nuccore/OM665325 . The phylogenetic tree was constructed. Acetaminophen secondary or intermediate product's chemical structure was identified by GC/LC MS. Some selected acetaminophen secondary-product extracts and derived compounds were examined against a panel of test micro-organisms and fortunately showed a good anti-microbial effect. In silico chemo-informatics Swiss ADMET evaluation was used in the selected bio-degradation extracts for absorption (gastric), distribution (to CNS), metabolism (hepatic), excretion (renal), and finally not toxic, being non-mutagenic/teratogenic or genotoxic, virtually. Moreover, in vitro cytotoxic activity of these selected bio-degradation secondary products was examined against HepG2 and MCF7 cancer cell lines, where M33 and RS2 extract effects on acetaminophen/paracetamol bio-degradation products were safe, with higher IC50 on HepG2 and MCF7 than the acetaminophen/paracetamol IC50 of 108.5 μg/ml. Moreover, an in vivo oral acute single-dose toxicity experiment was conducted, to confirm these in vitro and in silico lower toxicity (better safety) than acetaminophen/paracetamol.
Collapse
Affiliation(s)
- Donia H Embarez
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Abassia, Egypt
| | - Ahmed S Abdel Razek
- Microbial Chemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, 12622, Dokki, Egypt
| | - Emad B Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Al Kasr El-Aini, Egypt
| | - Magdi Mahmoud
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Abassia, Egypt
| | - Nadia M Hamdy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Abassia, Egypt.
| |
Collapse
|
2
|
Fedorov DG. Site-Specific Ionization Potentials and Electron Affinities in Large Molecular Systems at Coupled Cluster Level. J Phys Chem A 2023; 127:9357-9364. [PMID: 37782030 DOI: 10.1021/acs.jpca.3c04847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
A many-body expansion of ionization potentials and electron affinities is developed based on a combination of the fragment molecular orbital method and equation-of-motion coupled-cluster (EOM-CC). In addition to site-specific values, obtained as one-body properties, pair and triple corrections are added to account for nonlocal EOM-CC contributions of the molecular environment of a chromophore. The developed method is applied to carboxylic acids, alkyl cations, a protein ubiquitin (Protein Data Bank ID 1UBQ), and a nano ribbon of white graphene elucidating the effect of environment on ionization potential and electron affinity.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
3
|
Deschamps E, Calabrese V, Schmitz I, Hubert-Roux M, Castagnos D, Afonso C. Advances in Ultra-High-Resolution Mass Spectrometry for Pharmaceutical Analysis. Molecules 2023; 28:2061. [PMID: 36903305 PMCID: PMC10003995 DOI: 10.3390/molecules28052061] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Pharmaceutical analysis refers to an area of analytical chemistry that deals with active compounds either by themselves (drug substance) or when formulated with excipients (drug product). In a less simplistic way, it can be defined as a complex science involving various disciplines, e.g., drug development, pharmacokinetics, drug metabolism, tissue distribution studies, and environmental contamination analyses. As such, the pharmaceutical analysis covers drug development to its impact on health and the environment. Moreover, due to the need for safe and effective medications, the pharmaceutical industry is one of the most heavily regulated sectors of the global economy. For this reason, powerful analytical instrumentation and efficient methods are required. In the last decades, mass spectrometry has been increasingly used in pharmaceutical analysis both for research aims and routine quality controls. Among different instrumental setups, ultra-high-resolution mass spectrometry with Fourier transform instruments, i.e., Fourier transform ion cyclotron resonance (FTICR) and Orbitrap, gives access to valuable molecular information for pharmaceutical analysis. In fact, thanks to their high resolving power, mass accuracy, and dynamic range, reliable molecular formula assignments or trace analysis in complex mixtures can be obtained. This review summarizes the principles of the two main types of Fourier transform mass spectrometers, and it highlights applications, developments, and future perspectives in pharmaceutical analysis.
Collapse
Affiliation(s)
- Estelle Deschamps
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnières, CEDEX, 76821 Mont-Saint-Aignan, France
- ORIL Industrie, Servier Group, 13 r Auguste Desgenétais, 76210 Bolbec, France
| | - Valentina Calabrese
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnières, CEDEX, 76821 Mont-Saint-Aignan, France
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, 5 Rue de La Doua, F-69100 Villeurbanne, France
| | - Isabelle Schmitz
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnières, CEDEX, 76821 Mont-Saint-Aignan, France
| | - Marie Hubert-Roux
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnières, CEDEX, 76821 Mont-Saint-Aignan, France
| | - Denis Castagnos
- ORIL Industrie, Servier Group, 13 r Auguste Desgenétais, 76210 Bolbec, France
| | - Carlos Afonso
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnières, CEDEX, 76821 Mont-Saint-Aignan, France
| |
Collapse
|