1
|
Jagielska A, Sałaciak K, Pytka K. Beyond the blur: Scopolamine's utility and limits in modeling cognitive disorders across sexes - Narrative review. Ageing Res Rev 2024; 104:102635. [PMID: 39653154 DOI: 10.1016/j.arr.2024.102635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024]
Abstract
Scopolamine, widely regarded as the gold standard in preclinical studies of memory impairments, acts as a non-selective antagonist of central and peripheral muscarinic receptors. While its application in modeling dementia primarily involves antagonism at the M1 receptor, its non-selective peripheral actions may introduce adverse effects that influence behavioral test outcomes. This review analyzes preclinical findings to consolidate knowledge on scopolamine's use and elucidate potential mechanisms responsible for its amnestic effects. We focused on recognition, spatial, and emotional memory processes, alongside executive functions such as attention, cognitive flexibility, and working memory. The cognitive effects of scopolamine are highly dose-dependent, influenced by factors such as species, age, and sex of subjects. Notably, scopolamine rapidly induces observable memory impairments across species, from fish to rodents and primates, often with deficits that can persist for days. However, the compound's broad action on muscarinic receptors and its peripheral side effects, including pupil dilation and reduced salivation, complicates result interpretation, particularly in tasks requiring visual discrimination or food intake. The review also highlights scopolamine's translational value in modeling dementia and Alzheimer's disease, emphasizing the importance of considering individual factors and task-specific designs. Despite its widespread use, scopolamine's limited specificity for cholinergic dysfunction and inability to fully mimic the complex pathophysiology of cognitive disorders like Alzheimer's and Parkinson's disease point to the need for complementary models. This review aims to guide researchers in using scopolamine for modeling cognitive impairments, ensuring attention to factors impacting experimental outcomes.
Collapse
Affiliation(s)
- Angelika Jagielska
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland; Jagiellonian University Medical College, Doctoral School of Medical and Health Sciences, Krakow, Poland
| | - Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
2
|
Lazarova M, Stefanova M, Tsvetanova E, Georgieva A, Tasheva K, Radeva L, Yoncheva K. Resveratrol-Loaded Pluronic Micelles Ameliorate Scopolamine-Induced Cognitive Dysfunction Targeting Acetylcholinesterase Activity and Programmed Cell Death. Int J Mol Sci 2024; 25:12777. [PMID: 39684486 DOI: 10.3390/ijms252312777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Numerous experimental studies suggest the potential for resveratrol (RVT) to be useful in the Alzheimer's disease treatment, but its low bioavailability limits its application. This study aimed to assess the potential of resveratrol-loaded micelles as a neuronal delivery platform to protect rats from scopolamine-induced memory impairment. Resveratrol was incorporated into Pluronic micelles, and the effects of micellar (mRVT) and pure resveratrol (RVT) were compared in the model of scopolamine-induced dementia in male Wistar rats. Memory performance was assessed by a T maze test. The effect of the treatment on specific neurotransmitter levels and protein expression in the cortex and the hippocampus were evaluated biochemically. Our results revealed that the polymeric micelles were in nanoscale (approximately 33 nm) and reached 79% encapsulation efficiency. The treatment with mRVT demonstrated better spatial memory protective effect. The biochemical assays showed that mRVT in a dose of 10 mg/kg enhanced the effects of the pure drug in regard to noradrenalin neurotransmission and acetylcholinesterase inhibitory activity in the hippocampus. Furthermore, micellar resveratrol increased the cAMP-response element-binding protein expression in the cortex and hippocampus of rats as well as the Bcl2/BAX ratio, which indicated an anti-apoptotic effect in the experimental dementia model. In conclusion, our results indicated the potential of a micellar system loaded with resveratrol for neurodegenerative diseases treatment.
Collapse
Affiliation(s)
- Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Science, 1113 Sofia, Bulgaria
| | - Miroslava Stefanova
- Institute of Neurobiology, Bulgarian Academy of Science, 1113 Sofia, Bulgaria
| | - Elina Tsvetanova
- Institute of Neurobiology, Bulgarian Academy of Science, 1113 Sofia, Bulgaria
| | - Almira Georgieva
- Institute of Neurobiology, Bulgarian Academy of Science, 1113 Sofia, Bulgaria
| | - Krasimira Tasheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Lyubomira Radeva
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | | |
Collapse
|
3
|
Fava de Souza M, Maurino dos Santos J, Mariano dos Santos S, Cruz de Oliveira Junior P, Alberto Marangoni Faoro J, Arena AC, Nagaoka LT, Gauze GDF, Oliveira RJ, Henrique Barbim Rech M, Mara Mussury Franco Silva R, Formagio ASN. Duguetia furfuracea (A.ST. Hil.) Saff.: Neuroprotective Effect on Chemically Induced Amnesia, Anxiolytic Effects and Preclinical Safety Evaluation in Mice. BIOLOGY 2024; 13:981. [PMID: 39765648 PMCID: PMC11726886 DOI: 10.3390/biology13120981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 01/15/2025]
Abstract
Duguetia furfuracea, "araticum-seco", is known to contain several bioactive compounds that can mitigate oxidative stress and act on the central nervous system (CNS). This effect is partly attributed to its potent antioxidant and acetylcholinesterase (AChE) inhibitors. In this study, the effects were explored of the methanolic extract (MEDF) and alkaloid fraction (AFDF) of D. furfuracea (leaves) on cognitive behaviors in male mice with scopolamine (Scop)-induced cognitive impairment and biochemical parameters. Additionally, anxiolytic behavior, subacute toxicity, molecular docking and antioxidant activity were reported. MEDF (30, 100 or 300 mg/kg) or AFDF (30 mg/kg) were orally administered for 16 days and Scop (intraperitoneally, i.p.) between days 11 and 16. The anxiolytic behavior (open field test and marble burying) in healthy mice, and the Scop-induced memory impairment (object recognition test and Morris water maze (MWM)) were assessed, and the biochemical parameters (malondialdehyde (MDA) and AChE levels) were measured after euthanasia. The subacute toxicological impact of MEDF was assessed in female Swiss mice for 28 days. MEDF and AFDF were available for the DPPH, ABTS and β-carotene/linoleic acid models. The results revealed that MEDF and AFDF exhibit anxiolytic effects and significantly alleviated Sco-induced memory impairment, inhibited AChE in the cortex (40%) and MDA (51.51%) levels. Reticuline was reported in AFDF and molecular coupling with AChE involves link-type hydrogen bonds and van der Waals interactions. MEDF exhibited antioxidant capacity (DPPH, IC50 = 18.10 ± 1.70 µg/mL; ABTS, IC50 = 10.41 ± 1.69 µg/mL). MEDF did not reveal signs of toxicity. In conclusion, D. furfuracea shows promise in mitigating scopolamine-induced memory deficits, potentially because it inhibits AChE activity, reduces MDA levels, and enhances antioxidant activities.
Collapse
Affiliation(s)
- Maiara Fava de Souza
- College of Health Science, Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil; (M.F.d.S.); (J.M.d.S.); (S.M.d.S.); (J.A.M.F.)
| | - Jéssica Maurino dos Santos
- College of Health Science, Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil; (M.F.d.S.); (J.M.d.S.); (S.M.d.S.); (J.A.M.F.)
| | - Sidney Mariano dos Santos
- College of Health Science, Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil; (M.F.d.S.); (J.M.d.S.); (S.M.d.S.); (J.A.M.F.)
| | - Pedro Cruz de Oliveira Junior
- College of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil; (P.C.d.O.J.); (R.M.M.F.S.)
| | - Janaine Alberto Marangoni Faoro
- College of Health Science, Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil; (M.F.d.S.); (J.M.d.S.); (S.M.d.S.); (J.A.M.F.)
| | - Arielle Cristina Arena
- Institute of Biosciences of Botucatu, Department of Structural and Functional Biology, University Estadual Paulista—Botucatu (UNESP), São Paulo 18618-689, SP, Brazil; (A.C.A.); (L.T.N.)
| | - Lívia Trippe Nagaoka
- Institute of Biosciences of Botucatu, Department of Structural and Functional Biology, University Estadual Paulista—Botucatu (UNESP), São Paulo 18618-689, SP, Brazil; (A.C.A.); (L.T.N.)
| | | | - Rodrigo Juliano Oliveira
- Centro de Estudos em Células-Tronco, Terapia Celular e Genética Toxicológica (CeTroGen), Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (R.J.O.); (M.H.B.R.)
| | - Matheus Henrique Barbim Rech
- Centro de Estudos em Células-Tronco, Terapia Celular e Genética Toxicológica (CeTroGen), Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (R.J.O.); (M.H.B.R.)
| | - Rosilda Mara Mussury Franco Silva
- College of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil; (P.C.d.O.J.); (R.M.M.F.S.)
| | - Anelise Samara Nazari Formagio
- College of Health Science, Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil; (M.F.d.S.); (J.M.d.S.); (S.M.d.S.); (J.A.M.F.)
- College of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil; (P.C.d.O.J.); (R.M.M.F.S.)
| |
Collapse
|
4
|
Verma S, Sivanandam TM. Analysis of Differential microRNA Expression in the Hippocampus of Scopolamine-Induced Amnesic Mouse Model. Mol Neurobiol 2024:10.1007/s12035-024-04573-y. [PMID: 39495226 DOI: 10.1007/s12035-024-04573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Amnesia is characterized by memory deficits linked to various neurodegenerative pathologies and can be induced by the administration of scopolamine, a cholinergic antagonist. Scopolamine-induced amnesia is a well-studied pharmacological animal model that simulates memory impairment caused by aging, brain illnesses, neuropathologies, and trauma. However, the molecular mechanism of amnesia, more importantly in terms of microRNA (miRNA) regulation, is not well understood. Therefore, this study aimed to analyze miRNA profiles in the hippocampus of both control mice and those treated with scopolamine (amnesic mice). Initially, a short cDNA library was prepared for each sample and then sequenced on the Illumina platform. Among the total differentially expressed miRNAs, 113 were significantly upregulated and 96 were downregulated in the scopolamine group in comparison to the control group. Ten upregulated and ten downregulated miRNAs were validated to confirm the reliability of the sequencing results using qRT-PCR (quantitative real-time PCR). Furthermore, we performed a target prediction analysis intersecting the results from TargetScan, miRDB (miRNA database), and Miranda to analyze the targets of the dysregulated miRNAs. We also conducted a pathway analysis to investigate the molecular, cellular, and biological functions of these targets. miRNA‒target interactions were found to play roles in various signaling pathways during amnesia. These results provide an initial insight for the contribution of miRNAs to scopolamine-induced amnesia, as well as their possible application as markers of disease pathology.
Collapse
Affiliation(s)
- Samita Verma
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Thamil Mani Sivanandam
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
5
|
Singh I, Anand S, Gowda DJ, Kamath A, Singh AK. Caloric restriction mimetics improve gut microbiota: a promising neurotherapeutics approach for managing age-related neurodegenerative disorders. Biogerontology 2024; 25:899-922. [PMID: 39177917 PMCID: PMC11486790 DOI: 10.1007/s10522-024-10128-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
The gut microbiota (GM) produces various molecules that regulate the physiological functionality of the brain through the gut-brain axis (GBA). Studies suggest that alteration in GBA may lead to the onset and progression of various neurological dysfunctions. Moreover, aging is one of the prominent causes that contribute to the alteration of GBA. With age, GM undergoes a shift in population size and species of microflora leading to changes in their secreted metabolites. These changes also hamper communications among the HPA (hypothalamic-pituitary-adrenal), ENS (enteric nervous system), and ANS (autonomic nervous system). A therapeutic intervention that has recently gained attention in improving health and maintaining communication between the gut and the brain is calorie restriction (CR), which also plays a critical role in autophagy and neurogenesis processes. However, its strict regime and lifelong commitment pose challenges. The need is to produce similar beneficial effects of CR without having its rigorous compliance. This led to an exploration of calorie restriction mimetics (CRMs) which could mimic CR's functions without limiting diet, providing long-term health benefits. CRMs ensure the efficient functioning of the GBA through gut bacteria and their metabolites i.e., short-chain fatty acids, bile acids, and neurotransmitters. This is particularly beneficial for elderly individuals, as the GM deteriorates with age and the body's ability to digest the toxic accumulates declines. In this review, we have explored the beneficial effect of CRMs in extending lifespan by enhancing the beneficial bacteria and their effects on metabolite production, physiological conditions, and neurological dysfunctions including neurodegenerative disorders.
Collapse
Affiliation(s)
- Ishika Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Shashi Anand
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Deepashree J Gowda
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Amitha Kamath
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India.
| |
Collapse
|
6
|
Abdul Manap AS, Almadodi R, Sultana S, Sebastian MG, Kavani KS, Lyenouq VE, Shankar A. Alzheimer's disease: a review on the current trends of the effective diagnosis and therapeutics. Front Aging Neurosci 2024; 16:1429211. [PMID: 39185459 PMCID: PMC11341404 DOI: 10.3389/fnagi.2024.1429211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
The most prevalent cause of dementia is Alzheimer's disease. Cognitive decline and accelerating memory loss characterize it. Alzheimer's disease advances sequentially, starting with preclinical stages, followed by mild cognitive and/or behavioral impairment, and ultimately leading to Alzheimer's disease dementia. In recent years, healthcare providers have been advised to make an earlier diagnosis of Alzheimer's, prior to individuals developing Alzheimer's disease dementia. Regrettably, the identification of early-stage Alzheimer's disease in clinical settings can be arduous due to the tendency of patients and healthcare providers to disregard symptoms as typical signs of aging. Therefore, accurate and prompt diagnosis of Alzheimer's disease is essential in order to facilitate the development of disease-modifying and secondary preventive therapies prior to the onset of symptoms. There has been a notable shift in the goal of the diagnosis process, transitioning from merely confirming the presence of symptomatic AD to recognizing the illness in its early, asymptomatic phases. Understanding the evolution of disease-modifying therapies and putting effective diagnostic and therapeutic management into practice requires an understanding of this concept. The outcomes of this study will enhance in-depth knowledge of the current status of Alzheimer's disease's diagnosis and treatment, justifying the necessity for the quest for potential novel biomarkers that can contribute to determining the stage of the disease, particularly in its earliest stages. Interestingly, latest clinical trial status on pharmacological agents, the nonpharmacological treatments such as behavior modification, exercise, and cognitive training as well as alternative approach on phytochemicals as neuroprotective agents have been covered in detailed.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Reema Almadodi
- Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Selangor, Malaysia
| | - Shirin Sultana
- Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Selangor, Malaysia
| | | | | | - Vanessa Elle Lyenouq
- Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Selangor, Malaysia
| | - Aravind Shankar
- Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Selangor, Malaysia
| |
Collapse
|
7
|
Kaur G, Devi S, Sharma A, Sood P. Pharmacological insights and role of bufalin (bufadienolides) in inflammation modulation: a narrative review. Inflammopharmacology 2024:10.1007/s10787-024-01517-9. [PMID: 39012431 DOI: 10.1007/s10787-024-01517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Bufadienolides, specifically bufalin, have garnered attention for their potential therapeutic application in modulating inflammatory pathways. Bufalin is derived from toad venom and exhibits promising anti-inflammatory properties. Its anti-inflammatory effects have been demonstrated by influencing crucial signaling pathways like NF-B, MAPK, and JAK-STAT, resulting in the inhibition of pro-inflammatory substances like cytokines, chemokines, and adhesion molecules. Bufalin blocks inflammasome activation and reduces oxidative stress, hence increasing its anti-inflammatory properties. Bufalin has shown effectiveness in reducing inflammation-related diseases such as cancer, cardiovascular problems, and autoimmune ailments in preclinical investigations. Furthermore, producing new approaches of medication delivery and combining therapies with bufalin shows potential for improving its effectiveness and reducing adverse effects. This review explores the pharmacological effects and mechanistic approaches of bufalin as an anti-inflammatory agent, which further highlights its potential for therapy and offers the basis for further study on its therapeutic application in inflammation-related disorders.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Chitkara University School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Akhil Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Parul Sood
- Chitkara University School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| |
Collapse
|
8
|
Lee JY, Wong CY, Koh RY, Lim CL, Kok YY, Chye SM. Natural Bioactive Compounds from Macroalgae and Microalgae for the Treatment of Alzheimer's Disease: A Review. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:205-224. [PMID: 38947104 PMCID: PMC11202106 DOI: 10.59249/jnkb9714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Neuroinflammation, toxic protein aggregation, oxidative stress, and mitochondrial dysfunction are key pathways in neurodegenerative diseases like Alzheimer's disease (AD). Targeting these mechanisms with antioxidants, anti-inflammatory compounds, and inhibitors of Aβ formation and aggregation is crucial for treatment. Marine algae are rich sources of bioactive compounds, including carbohydrates, phenolics, fatty acids, phycobiliproteins, carotenoids, fatty acids, and vitamins. In recent years, they have attracted interest from the pharmaceutical and nutraceutical industries due to their exceptional biological activities, which include anti-inflammation, antioxidant, anticancer, and anti-apoptosis properties. Multiple lines of evidence have unveiled the potential neuroprotective effects of these multifunctional algal compounds for application in treating and managing AD. This article will provide insight into the molecular mechanisms underlying the neuroprotective effects of bioactive compounds derived from algae based on in vitro and in vivo models of neuroinflammation and AD. We will also discuss their potential as disease-modifying and symptomatic treatment strategies for AD.
Collapse
Affiliation(s)
- Jia Yee Lee
- School of Health Sciences, International Medical
University, Kuala Lumpur, Malaysia
| | - Chiew Yen Wong
- Department of Applied Biomedical Science and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- Department of Applied Biomedical Science and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| | - Chooi Ling Lim
- Department of Applied Biomedical Science and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| | - Yih Yih Kok
- Department of Applied Biomedical Science and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Department of Applied Biomedical Science and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Pagotto GLDO, dos Santos LMO, Osman N, Lamas CB, Laurindo LF, Pomini KT, Guissoni LM, de Lima EP, Goulart RDA, Catharin VMCS, Direito R, Tanaka M, Barbalho SM. Ginkgo biloba: A Leaf of Hope in the Fight against Alzheimer's Dementia: Clinical Trial Systematic Review. Antioxidants (Basel) 2024; 13:651. [PMID: 38929090 PMCID: PMC11201198 DOI: 10.3390/antiox13060651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD) is a stealthy and progressive neurological disorder that is a leading cause of dementia in the global elderly population, imposing a significant burden on both the elderly and society. Currently, the condition is treated with medications that alleviate symptoms. Nonetheless, these drugs may not consistently produce the desired results and can cause serious side effects. Hence, there is a vigorous pursuit of alternative options to enhance the quality of life for patients. Ginkgo biloba (GB), an herb with historical use in traditional medicine, contains bioactive compounds such as terpenoids (Ginkgolides A, B, and C), polyphenols, organic acids, and flavonoids (quercetin, kaempferol, and isorhamnetin). These compounds are associated with anti-inflammatory, antioxidant, and neuroprotective properties, making them valuable for cognitive health. A systematic search across three databases using specific keywords-GB in AD and dementia-yielded 1702 documents, leading to the selection of 15 clinical trials for synthesis. In eleven studies, GB extract/EGb 761® was shown to improve cognitive function, neuropsychiatric symptoms, and functional abilities in both dementia types. In four studies, however, there were no significant differences between the GB-treated and placebo groups. Significant improvements were observed in scores obtained from the Mini-Mental State Examination (MMSE), Short Cognitive Performance Test (SKT), and Neuropsychiatric Inventory (NPI). While the majority of synthesized clinical trials show that Ginkgo biloba has promising potential for the treatment of these conditions, more research is needed to determine optimal dosages, effective delivery methods, and appropriate pharmaceutical formulations. Furthermore, a thorough assessment of adverse effects, exploration of long-term use implications, and investigation into potential drug interactions are critical aspects that must be carefully evaluated in future studies.
Collapse
Affiliation(s)
- Guilherme Lopes de Oliveira Pagotto
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Livia Maria Oliveira dos Santos
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Najwa Osman
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Caroline Barbalho Lamas
- Department of Gerontology, Universidade Federal de São Carlos, UFSCar, São Carlos 13565-905, SP, Brazil;
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil
| | - Karina Torres Pomini
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Leila M. Guissoni
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Virginia M. C. Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil
| |
Collapse
|
10
|
Talwar A, Chatterjee S, Sherer J, Abughosh S, Johnson M, Aparasu RR. Cumulative Anticholinergic Burden and its Predictors among Older Adults with Alzheimer's Disease Initiating Cholinesterase Inhibitors. Drugs Aging 2024; 41:339-355. [PMID: 38467994 DOI: 10.1007/s40266-024-01103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Cumulative anticholinergic burden refers to the cumulative effect of multiple medications with anticholinergic properties. However, concomitant use of cholinesterase inhibitors (ChEIs) and anticholinergic burden can nullify the benefit of the treatment and worsen Alzheimer's disease (AD). A literature gap exists regarding the extent of the cumulative anticholinergic burden and associated risk factors in AD. Therefore, this study evaluated the prevalence and predictors of cumulative anticholinergic burden among patients with AD initiating ChEIs. METHODS A retrospective longitudinal cohort study was conducted using the Medicare claims data involving parts A, B, and D from 2013 to 2017. The study sample included older adults (65 years and older) diagnosed with AD and initiating ChEIs (donepezil, rivastigmine, or galantamine). The cumulative anticholinergic burden was calculated based on the Anticholinergic Cognitive Burden scale and patient-specific dosing using the defined daily dose over the 1 year follow-up period after ChEI initiation. Incremental anticholinergic burden levels were dichotomized into moderate-high (sum of standardized daily anticholinergic exposure over a year (TSDD) score ≥ 90) versus low-no (score 0-89). The Andersen Behavioral Model was used as the conceptual framework for selecting the predictors under the predisposing, enabling, and need categories. A multivariable logistic regression model was used to evaluate the predictors of high-moderate versus low-no cumulative anticholinergic burden. A multinomial logistic regression model was also used to determine the factors associated with patients having moderate and high burdens compared to low/no burdens. RESULTS The study included 222,064 older adults with AD with incident ChEI use (mean age 82.24 ± 7.29, 68.9% females, 83.6% White). Overall, 80.48% had some anticholinergic burden during the follow-up, with 36.26% patients with moderate (TSDD scores 90-499), followed by 24.76% high (TSDD score > 500), and 19.46% with low (TSDD score 1-89) burden categories. Predisposing factors such as age; African American, Asian, or Hispanic race; and need factors included comorbidities such as dyslipidemia, syncope, delirium, fracture, pneumonia, epilepsy, and claims-based frailty index were less likely to be associated with the moderate-high anticholinergic burden. The factors that increased the odds of moderate-high burden were predisposing factors such as female sex; enabling factors such as dual eligibility and diagnosis year; and need factors such as baseline burden, behavioral and psychological symptoms of dementia, depression, insomnia, urinary incontinence, irritable bowel syndrome, anxiety, muscle spasm, gastroesophageal reflux disease, heart failure, and dysrhythmia. Most of these findings remained consistent with multinomial logistic regression. CONCLUSION: Four out of five older adults with AD had some level of anticholinergic burden, with over 60% having moderate-high anticholinergic burden. Several predisposing, enabling, and need factors were associated with the cumulative anticholinergic burden. The study findings suggest a critical need to minimize the cumulative anticholinergic burden to improve AD care.
Collapse
Affiliation(s)
- Ashna Talwar
- Department of Pharmaceutical Health Outcomes and Policy, College of Pharmacy, University of Houston, Houston, TX, USA
| | | | - Jeffrey Sherer
- Department of Pharmacy Practice and Translational Research, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Susan Abughosh
- Department of Pharmaceutical Health Outcomes and Policy, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Michael Johnson
- Department of Pharmaceutical Health Outcomes and Policy, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Rajender R Aparasu
- Department of Pharmaceutical Health Outcomes and Policy, College of Pharmacy, University of Houston, Houston, TX, USA.
- Department of Pharmaceutical Health Outcomes and Policy, Adjunct Professor of Geriatrics, UTHealth McGovern Medical School, Health and Biomedical Sciences Building 2 - Office 4052, College of Pharmacy, University of Houston, 4349 Martin Luther King Boulevard, Houston, TX, 77204-5047, USA.
| |
Collapse
|
11
|
Chib S, Devi S, Chalotra R, Mittal N, Singh TG, Kumar P, Singh R. Cross Talks between CNS and CVS Diseases: An Alliance to Annihilate. Curr Cardiol Rev 2024; 20:63-76. [PMID: 38441007 PMCID: PMC11284694 DOI: 10.2174/011573403x278550240221112636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 03/06/2024] Open
Abstract
Cardiovascular and neurological diseases cause substantial morbidity and mortality globally. Moreover, cardiovascular diseases are the leading cause of death globally. About 17.9 million people are affected by cardiovascular diseases and 6.8 million people die every year due to neurological diseases. The common neurologic manifestations of cardiovascular illness include stroke syndrome which is responsible for unconsciousness and several other morbidities significantly diminished the quality of life of patients. Therefore, it is prudent need to explore the mechanistic and molecular connection between cardiovascular disorders and neurological disorders. The present review emphasizes the association between cardiovascular and neurological diseases specifically Parkinson's disease, Alzheimer's disease, and Huntington's disease.
Collapse
Affiliation(s)
- Shivani Chib
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Sushma Devi
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rishabh Chalotra
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Neeraj Mittal
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Thakur Gurjeet Singh
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Puneet Kumar
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
12
|
Alkholifi FK, Devi S, Aldawsari MF, Foudah AI, Alqarni MH, Salkini MA, Sweilam SH. Effects of Tiliroside and Lisuride Co-Treatment on the PI3K/Akt Signal Pathway: Modulating Neuroinflammation and Apoptosis in Parkinson's Disease. Biomedicines 2023; 11:2735. [PMID: 37893109 PMCID: PMC10604177 DOI: 10.3390/biomedicines11102735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Researchers are actively exploring potential bioactive compounds to enhance the effectiveness of Lisuride (Lis) in treating Parkinson's disease (PD) over the long term, aiming to mitigate the serious side effects associated with its extended use. A recent study found that combining the dietary flavonoid Tiliroside (Til) with Lis has potential anti-Parkinson's benefits. The study showed significant improvements in PD symptoms induced by 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) when Til and Lis were given together, based on various behavioral tests. This combined treatment significantly improved motor function and protected dopaminergic neurons in rats with PD induced by MPTP. It also activated important molecular pathways related to cell survival and apoptosis control, as indicated by the increased pAkt/Akt ratio. Til and Lis together increased B-cell lymphoma 2 (Bcl-2), decreased caspase 3 activity, and prevented brain cell decay. Co-administration also reduced tumor necrosis factor alpha (TNF-α) and Interleukin-1 (IL-1). Antioxidant markers such as superoxide dismutase (SOD), catalase, and reduced glutathione significantly improved compared to the MPTP-induced control group. This study shows that using Til and Lis together effectively treats MPTP-induced PD in rats, yielding results comparable to an 8 mg/kg dose of levodopa, highlighting their potential as promising Parkinson's treatments.
Collapse
Affiliation(s)
- Faisal K. Alkholifi
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Ahmed I. Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia; (A.I.F.); (M.H.A.)
| | - Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia; (A.I.F.); (M.H.A.)
| | - Mohamad Ayman Salkini
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia; (A.I.F.); (M.H.A.)
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia; (A.I.F.); (M.H.A.)
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt
| |
Collapse
|
13
|
Gothandapani D, Makpol S. Effects of Vitamin E on the Gut Microbiome in Ageing and Its Relationship with Age-Related Diseases: A Review of the Current Literature. Int J Mol Sci 2023; 24:14667. [PMID: 37834115 PMCID: PMC10572321 DOI: 10.3390/ijms241914667] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Ageing is inevitable in all living organisms and is associated with physical deterioration, disease and eventually death. Dysbiosis, which is the alteration of the gut microbiome, occurs in individuals during ageing, and plenty of studies support that gut dysbiosis is responsible for the progression of different types of age-related diseases. The economic burden of age-linked health issues increases as ageing populations increase. Hence, an improvement in disease prevention or therapeutic approaches is urgently required. In recent years, vitamin E has garnered significant attention as a promising therapeutic approach for delaying the ageing process and potentially impeding the development of age-related disease. Nevertheless, more research is still required to understand how vitamin E affects the gut microbiome and how it relates to age-related diseases. Therefore, we gathered and summarized recent papers in this review that addressed the impact of the gut microbiome on age-related disease, the effect of vitamin E on age-related disease along with the role of vitamin E on the gut microbiome and the relationship with age-related diseases which are caused by ageing. Based on the studies reported, different bacteria brought on various age-related diseases with either increased or decreased relative abundances. Some studies have also reported the positive effects of vitamin E on the gut microbiome as beneficial bacteria and metabolites increase with vitamin E supplementation. This demonstrates how vitamin E is vital as it affects the gut microbiome positively to delay ageing and the progression of age-related diseases. The findings discussed in this review will provide a simplified yet deeper understanding for researchers studying ageing, the gut microbiome and age-related diseases, allowing them to develop new preclinical and clinical studies.
Collapse
Affiliation(s)
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|