1
|
Nie S, Zhang S, Wang Y, Zhu M, Chen X, Wang X, Huang P. Extraction, purification, structural characterization, and bioactivities of Ginkgo biloba leave polysaccharides: A review. Int J Biol Macromol 2024; 281:136280. [PMID: 39368588 DOI: 10.1016/j.ijbiomac.2024.136280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/09/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Ginkgo biloba, a deciduous tree from the Ginkgoaceae family, is widely cultivated globally. In China, it predominantly grows in the eastern and southern regions. The leaves can be harvested multiple times throughout the growing season, presenting a significant resource potential. Ginkgo biloba leaves are considered as a living fossil with both medicinal and edible properties in traditional Chinese medicine. Polysaccharides, the primary bioactive compounds in these leaves, exhibit numerous biological activities, including antioxidant, antitumor, anti-inflammatory, immunoregulatory activity, antidepressant effects, hepatoprotective, hypoglycemic activity and hair-growth promoting effect. This review highlights the advancements in the extraction separation purification, structural elucidation, and functional analysis of polysaccharides derived from Ginkgo biloba leaves over the past decade, aiming to provide valuable insights for future development and commercialization of Ginkgo biloba leave polysaccharides.
Collapse
Affiliation(s)
- Shanshan Nie
- Department of Cardiovascular Disease, The first Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Shan Zhang
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Yongxia Wang
- Department of Cardiovascular Disease, The first Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Mingjun Zhu
- Department of Cardiovascular Disease, The first Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Xinju Chen
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Xinlu Wang
- Department of Cardiovascular Disease, The first Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China.
| | - Peng Huang
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
2
|
Wu Z, Song B, Peng F, Zhang Q, Wu S. Zangsiwei prevents particulate matter-induced lung inflammation and fibrosis by inhibiting the TGF-β/SMAD pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118752. [PMID: 39232997 DOI: 10.1016/j.jep.2024.118752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zangsiwei(ZSW) is a traditional Tibetan medicine from China consisting of extracts of Rhododendron anthopogonoides Maxim, Gentiana Tourn, Corydalis hendersonii Hemsl and Berberis kansuensis C.K.Schneid. Traditionally, ZSW has been used by Tibetan physicians to treat chronic respiratory diseases. The role of ZSW in particulate matter-induced lung inflammation and fibrosis remains unclear. AIM OF THE STUDY Combining non-targeted metabolomics, network pharmacology, and molecular docking to explore the mechanism of ZSW in the treatment of particulate matter-induced lung inflammation and fibrosis, and validated by in vivo and in vitro experiments. MATERIALS AND METHODS The serum metabolite profile post-ZSW administration was first identified utilizing non-targeted metabolomics. Network pharmacology and molecular docking were employed to predict potential bioactive components and their corresponding targets. The in silico predictions were subsequently validated through in vivo studies in mice exposed to PM2.5 and silica dust, as well as in vitro studies utilizing human lung epithelial cells (A549) and lung fibroblasts (MRC5). RESULTS Metabolomic analysis identified specific serum metabolites that were associated with ZSW treatment. Network pharmacology and molecular docking identified key targets involved in the Transforming growth factor-β (TGF-β)/SMAD pathway, which were subsequently validated through in vivo experiments demonstrating a reduction in lung inflammation and fibrosis in ZSW-treated mice. In vitro studies demonstrated that ZSW exerts protective effects against PM2.5-induced cytotoxicity and modulates fibrotic markers in a dose-dependent manner. This is consistent with the inhibition of the TGF-β/SMAD pathway. CONCLUSION Our integrated approach, which combines non-targeted metabolomics, network pharmacology, and molecular docking, followed by rigorous in vivo and in vitro validation, establishes ZSW as a potential therapeutic agent for particulate matter-induced lung inflammation and fibrosis.
Collapse
Affiliation(s)
- Zhijian Wu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Centre for Evidence-based Medicine, Changsha, 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China; Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, 410011, China; Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, 410011, China
| | - Boyang Song
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Centre for Evidence-based Medicine, Changsha, 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China; Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, 410011, China; Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, 410011, China
| | - Fei Peng
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Centre for Evidence-based Medicine, Changsha, 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China; Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, 410011, China; Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, 410011, China
| | - Quan Zhang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Centre for Evidence-based Medicine, Changsha, 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China; Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, 410011, China; Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, 410011, China
| | - Shangjie Wu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Centre for Evidence-based Medicine, Changsha, 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China; Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, 410011, China; Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, 410011, China.
| |
Collapse
|
3
|
Zhou T, Zhou H, Tian L, Tang M, Wang L, Kang Y, Chen T, Li X, Wu S, Xia R, Huang X, Peng L, Yin W. Pomegranate juice-containing serum inhibits migration of hepatocellular carcinoma cells and promotes apoptosis by induction of mitochondrial dysfunction. J Nutr Biochem 2024; 125:109557. [PMID: 38151194 DOI: 10.1016/j.jnutbio.2023.109557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, with an insidious onset and poor prognosis. Pomegranate is a fruit rich in many natural products with anti-cancer potential; however, its direct biological effects are difficult to evaluate in vitro because of changes in its active components after absorption and metabolism. This study was conducted to prepare pomegranate juice-containing serum (PJ serum) by gavage of pomegranate juice (PJ) in rats and to collect serum. The aim was to investigate the components and the effects of PJ serum on HCC cells by serum pharmacology. 56 compounds were identified in the PJ serum, including 6 prototype components. PJ serum selectively inhibited HCC cells proliferation and migration, and it promoted apoptosis of HCC cells without affecting LO2 cells activity. Furthermore, PJ serum reduced the mitochondrial membrane potential and increased the calcium ion concentration in HCC cells. Mechanistically, PJ serum up-regulated the expression of the Bax family, Caspases and TIMP2/MMP2, and down-regulated the expression of MMP9. This study revealed that PJ serum inhibited HCC cell migration by regulating the TIMP2/MMP2 balance and MMP9 expression and promoted HCC cell apoptosis by inducing mitochondrial dysfunction and causing a Caspase cascade. The polyphenols and flavonoids in PJ may be important components responsible for its anti-HCC activity after metabolism.
Collapse
Affiliation(s)
- Ting Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, West China Occupational Pneumoconiosis Cohort Study (WCOPCS) Workgroup, West China-PUMCC.C. Chen Institute of Health, Chengdu, Sichuan, China
| | - Heting Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, West China Occupational Pneumoconiosis Cohort Study (WCOPCS) Workgroup, West China-PUMCC.C. Chen Institute of Health, Chengdu, Sichuan, China
| | - Li Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, West China Occupational Pneumoconiosis Cohort Study (WCOPCS) Workgroup, West China-PUMCC.C. Chen Institute of Health, Chengdu, Sichuan, China
| | - Minghai Tang
- Collaborative Innovation Center for Biotherapy and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liqun Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, West China Occupational Pneumoconiosis Cohort Study (WCOPCS) Workgroup, West China-PUMCC.C. Chen Institute of Health, Chengdu, Sichuan, China
| | - Yuhong Kang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, West China Occupational Pneumoconiosis Cohort Study (WCOPCS) Workgroup, West China-PUMCC.C. Chen Institute of Health, Chengdu, Sichuan, China
| | - Tao Chen
- Chengdu Institute of Product Quality Inspection Co., Ltd, Chengdu, Sichuan, China
| | - Xingjie Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, West China Occupational Pneumoconiosis Cohort Study (WCOPCS) Workgroup, West China-PUMCC.C. Chen Institute of Health, Chengdu, Sichuan, China
| | - Shouxun Wu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, West China Occupational Pneumoconiosis Cohort Study (WCOPCS) Workgroup, West China-PUMCC.C. Chen Institute of Health, Chengdu, Sichuan, China
| | - Rui Xia
- West China School of Public Health and West China Fourth Hospital, Sichuan University, West China Occupational Pneumoconiosis Cohort Study (WCOPCS) Workgroup, West China-PUMCC.C. Chen Institute of Health, Chengdu, Sichuan, China
| | - Xiaoyi Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, West China Occupational Pneumoconiosis Cohort Study (WCOPCS) Workgroup, West China-PUMCC.C. Chen Institute of Health, Chengdu, Sichuan, China
| | - Lijun Peng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, West China Occupational Pneumoconiosis Cohort Study (WCOPCS) Workgroup, West China-PUMCC.C. Chen Institute of Health, Chengdu, Sichuan, China.
| | - Wenya Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, West China Occupational Pneumoconiosis Cohort Study (WCOPCS) Workgroup, West China-PUMCC.C. Chen Institute of Health, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Hsia C, Shu L, Lee A, Tran O, Yang C, Yen T, Huang W, Hsia C, Jayakumar T, Chiou K, Sheu J. Ginkgetin effectively mitigates collagen and AA-induced platelet activation via PLCγ2 but not cyclic nucleotide-dependent pathway in human. J Cell Mol Med 2024; 28:e18139. [PMID: 38334198 PMCID: PMC10853947 DOI: 10.1111/jcmm.18139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/22/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Platelets assume a pivotal role in the cardiovascular diseases (CVDs). Thus, targeting platelet activation is imperative for mitigating CVDs. Ginkgetin (GK), from Ginkgo biloba L, renowned for its anticancer and neuroprotective properties, remains unexplored concerning its impact on platelet activation, particularly in humans. In this investigation, we delved into the intricate mechanisms through which GK influences human platelets. At low concentrations (0.5-1 μM), GK exhibited robust inhibition of collagen and arachidonic acid (AA)-induced platelet aggregation. Intriguingly, thrombin and U46619 remained impervious to GK's influence. GK's modulatory effect extended to ATP release, P-selectin expression, intracellular calcium ([Ca2+ ]i) levels and thromboxane A2 formation. It significantly curtailed the activation of various signaling cascades, encompassing phospholipase Cγ2 (PLCγ2)/protein kinase C (PKC), phosphoinositide 3-kinase/Akt/glycogen synthase kinase-3β and mitogen-activated protein kinases. GK's antiplatelet effect was not reversed by SQ22536 (an adenylate cyclase inhibitor) or ODQ (a guanylate cyclase inhibitor), and GK had no effect on the phosphorylation of vasodilator-stimulated phosphoproteinSer157 or Ser239 . Moreover, neither cyclic AMP nor cyclic GMP levels were significantly increased after GK treatment. In mouse studies, GK notably extended occlusion time in mesenteric vessels, while sparing bleeding time. In conclusion, GK's profound impact on platelet activation, achieved through inhibiting PLCγ2-PKC cascade, culminates in the suppression of downstream signaling and, ultimately, the inhibition of platelet aggregation. These findings underscore the promising therapeutic potential of GK in the CVDs.
Collapse
Affiliation(s)
- Chih‐Wei Hsia
- Graduate Institute of Medical Sciences, College of MedicineTaipei Medical UniversityTaipeiTaiwan
- Department of Medical ResearchTaipei Medical University HospitalTaipeiTaiwan
| | - Lan‐Hsin Shu
- Graduate Institute of Medical Sciences, College of MedicineTaipei Medical UniversityTaipeiTaiwan
- Graduate Institute of Pharmacology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Ai‐Wei Lee
- Department of Anatomy and Cell Biology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Oanh‐Thi Tran
- International Master/Ph.D. Program in Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Chih‐Hao Yang
- Graduate Institute of Medical Sciences, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Ting‐Lin Yen
- Department of Medical ResearchCathay General HospitalTaipeiTaiwan
| | - Wei‐Chieh Huang
- Graduate Institute of Medical Sciences, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Chih‐Hsuan Hsia
- Translational Medicine CenterShin Kong Wu Ho‐Su Memorial HospitalTaipeiTaiwan
| | | | - Kuan‐Rau Chiou
- Division of Cardiology, Department of Internal Medicine, Shuang Ho HospitalTaipei Medical UniversityNew Taipei CityTaiwan
| | - Joen‐Rong Sheu
- Graduate Institute of Medical Sciences, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| |
Collapse
|