1
|
Ma L, Yang H, Wu S, Wang C, Mei J. DPP7 as a Potential Therapeutic Marker for Colorectal Cancer. J Cancer 2024; 15:5425-5439. [PMID: 39247602 PMCID: PMC11375546 DOI: 10.7150/jca.93112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/09/2024] [Indexed: 09/10/2024] Open
Abstract
Background: Dipeptidyl peptidase 7 (DPP7) is overexpressed in various tumors, but its role in colorectal cancer (CRC) remains unclear. Study the Impact of DPP7 on malignant progression and tumor immunity in CRC. Methods: We utilized Tumor Immune Estimation Resource 2.0 (TIMER2.0) and The Cancer Genome Atlas (TCGA) analyses to assess the expression of DPP7 in tumors and validated it through immunohistochemistry and immunoblotting. Additionally, we investigated the relationship between DPP7 and immune cell infiltration using single-sample Gene Set Enrichment Analysis (ssGSEA) analysis. Finally, the impact of DPP7 on cell proliferation, invasion, migration, and immune cell function in the tumor microenvironment was confirmed through cell experiments and animal studies. Results: DPP7 is highly expressed in CRC, and high expression of DPP7 is associated with poor prognosis. Cell experiments demonstrate that overexpression of DPP7 enhances the proliferation, migration, and invasion capabilities of colorectal cancer cells both in vitro and in vivo. Immune infiltration analysis and co-culture results indicate that overexpression of DPP7 suppresses the immune cell's cytotoxic function against tumors in the tumor microenvironment. Conclusions: DPP7 promotes the malignant potential of colorectal cancer cells and inhibits tumor immune function, thereby promoting the progression of colorectal cancer.
Collapse
Affiliation(s)
- Li Ma
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Molecular Pathology, Nanchang University, Nanchang, China
| | - Hailang Yang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shuwei Wu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chunliang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinhong Mei
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Molecular Pathology, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Boughanem H, Pilo J, García-Flores LA, Arranz I, Ramos-Fernandez M, Ortega-Castan M, Crujeiras AB, Sandoval J, Macias-Gonzalez M. Identification of epigenetic silencing of the SFRP2 gene in colorectal cancer as a clinical biomarker and molecular significance. J Transl Med 2024; 22:509. [PMID: 38802858 PMCID: PMC11129357 DOI: 10.1186/s12967-024-05329-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Several studies have suggested secreted frizzled-related protein 2 (SFRP2) gene as a potential clinical biomarker in colorectal cancer (CRC). However, its diagnostic role remains unclear. In this study, we aimed to investigate the significance of SFRP2 methylation levels in a large cohort of biological specimens (including blood, adipose and colonic tissues) from patients with CRC, thereby potentially identifying new biomarker utility. METHODS We examined the expression (by qPCR) and methylation status (by 450 K DNA array and DNA pyrosequencing) of the SFRP2 gene in healthy participants (N = 110, aged as 53.7 (14.2), 48/62 males/females) and patients with CRC (N = 85, aged 67.7 (10.5), 61/24 males/females), across different biological tissues, and assessing its potential as a biomarker for CRC. Additionally, we investigated the effect of recombinant human SFRP2 (rhSFRP2) as a therapeutic target, on cell proliferation, migration, and the expression of key genes related to carcinogenesis and the Wnt pathway. RESULTS Our findings revealed that SFRP2 promoter methylation in whole blood could predict cancer stage (I + II vs. III + IV) (AUC = 0.653), lymph node invasion (AUC = 0.692), and CRC recurrence (AUC = 0.699) in patients with CRC (all with p < 0.05). Furthermore, we observed a global hypomethylation of SFRP2 in tumors compared to the adjacent area (p < 0.001). This observation was validated in the TCGA-COAD and TCGA-READ cohorts, demonstrating overall hypermethylation (both with p < 0.001) and low expression (p < 0.001), as shown in publicly available scRNA-Seq data. Notably, neoadjuvant-treated CRC patients exhibited lower SFRP2 methylation levels compared to untreated patients (p < 0.05) and low promoter SFRP2 methylation in untreated patients was associated with poor overall survival (p < 0.05), when compared to high methylation. Finally, treatment with 5 µg of rhSFRP2 treatment in CRC cells (HCT116 cells) inhibited cell proliferation (p < 0.001) and migration (p < 0.05), and downregulated the expression of AXIN2 (p < 0.01), a gene involved in Wnt signaling pathway. CONCLUSIONS These findings establish promoter methylation of the SFRP2 gene as a prognostic candidate in CRC when assessed in blood, and as a therapeutic prognostic candidate in tumors, potentially valuable in clinical practice. SFRP2 also emerges as a therapeutic option, providing new clinical and therapeutical avenues.
Collapse
Affiliation(s)
- Hatim Boughanem
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Malaga, Spain
- Institute of Biomedical Research in Malaga (IBIMA)-Bionand Platform, University of Malaga, 29010, Malaga, Spain
- Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, 14004, Córdoba, Spain
| | - Jesús Pilo
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Malaga, Spain
- Institute of Biomedical Research in Malaga (IBIMA)-Bionand Platform, University of Malaga, 29010, Malaga, Spain
| | - Libia Alejandra García-Flores
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Malaga, Spain
- Institute of Biomedical Research in Malaga (IBIMA)-Bionand Platform, University of Malaga, 29010, Malaga, Spain
| | - Isabel Arranz
- Division of Anatomical Pathology, Hospital Universitario Virgen de la Victoria, 29010, Malaga, Spain.
- Department of Human Physiology, Human Histology, Anatomical Pathology and Physical Education, University of Malaga, 29010, Malaga, Spain.
| | - María Ramos-Fernandez
- Unidad de Gestion Clinica Cirugía General y del Aparato Digestivo, Virgen de la Victoria University, 29010, Malaga, Spain
| | - María Ortega-Castan
- Unidad de Gestion Clinica Cirugía General y del Aparato Digestivo, Virgen de la Victoria University, 29010, Malaga, Spain
| | - Ana B Crujeiras
- Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), 15706, Santiago de Compostela, Spain
| | - Juan Sandoval
- Epigenomics Core Facility and Biomarkers and Precision Medicine Unit, Health Research Institute La Fe, 46026, Valencia, Spain
| | - Manuel Macias-Gonzalez
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Malaga, Spain.
- Institute of Biomedical Research in Malaga (IBIMA)-Bionand Platform, University of Malaga, 29010, Malaga, Spain.
- Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Kusumaningrum AE, Makaba S, Ali E, Singh M, Fenjan MN, Rasulova I, Misra N, Al-Musawi SG, Alsalamy A. A perspective on emerging therapies in metastatic colorectal cancer: Focusing on molecular medicine and drug resistance. Cell Biochem Funct 2024; 42:e3906. [PMID: 38269502 DOI: 10.1002/cbf.3906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024]
Abstract
The majority of cancer cases are colorectal cancer, which is also the second largest cause of cancer-related deaths worldwide. Metastasis is the leading cause of death for patients with colorectal cancer. Metastatic colorectal cancer incidence are on the rise due to a tiny percentage of tumors developing resistant to medicines despite advances in treatment tactics. Cutting-edge targeted medications are now the go-to option for customized and all-encompassing CRC care. Specifically, multitarget kinase inhibitors, antivascular endothelial growth factors, and epidermal growth factor receptors are widely used in clinical practice for CRC-targeted treatments. Rare targets in metastatic colorectal cancer are becoming more well-known due to developments in precision diagnostics and the extensive use of second-generation sequencing technology. These targets include the KRAS mutation, the BRAF V600E mutation, the HER2 overexpression/amplification, and the MSI-H/dMMR. Incorporating certain medications into clinical trials has significantly increased patient survival rates, opening new avenues and bringing fresh viewpoints for treating metastatic colorectal cancer. These focused therapies change how cancer is treated, giving patients new hope and better results. These markers can significantly transform and individualize therapy regimens. They could open the door to precisely customized and more effective medicines, improving patient outcomes and quality of life. The fast-growing body of knowledge regarding the molecular biology of colorectal cancer and the latest developments in gene sequencing and molecular diagnostics are directly responsible for this advancement.
Collapse
Affiliation(s)
| | - Sarce Makaba
- Researcher and lecturer, Universitas Cenderawasih Jayapura, Jayapura, Indonesia
| | - Eyhab Ali
- College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
| | - Mandeep Singh
- Directorate of Sports and Physical Education, University of Jammu, Jammu, India
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, Tashkent, Uzbekistan
- Department of Public Health, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Neeti Misra
- Department of Management, Uttaranchal Institute of Management, Uttaranchal University, Dehradun, India
| | - Sada G Al-Musawi
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|