1
|
Shimizu T, Fushimi T, Ohno R, Yasuyuki F, Aso K, Jacobs UM, Nureki O, Suhara Y, Calabrese V, Osakabe N. Verification of the interaction between human bitter taste receptor T2R46 and polyphenols; Computational chemistry approach. Curr Res Food Sci 2024; 9:100914. [PMID: 39687422 PMCID: PMC11647170 DOI: 10.1016/j.crfs.2024.100914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/23/2024] [Accepted: 11/02/2024] [Indexed: 12/18/2024] Open
Abstract
Recent studies have indicated that the activation of bitter taste receptors (T2R) expressed in gastrointestinal secretory cells has a regulatory effect on the secretion of gastrointestinal hormones. Polyphenols are known to be ingested at a daily intake of 5 g or more and commonly have a bitter taste. Consequently, the interaction between the bitter taste receptor T2R46 and 490 polyphenols was investigated using in silico simulation techniques. It was demonstrated that W883.32 and E2657.39 play a pivotal role in the recognition of polyphenols and known ligands by T2R46, with frequent interactions observed, particularly with flavonoids. The results of the quantitative structure-activity relationship (QSAR) analysis demonstrated a high degree of correlation (R2 = 0.9359) between polyphenols and T2R46 in a model that incorporated molecular interaction field regions and branching scales. Furthermore, known ligands were also found to fit this model (R2 = 0.9155). These findings suggest that polyphenols may act as T2R46 ligands.
Collapse
Affiliation(s)
- Takafumi Shimizu
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Japan
| | - Taiki Fushimi
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Japan
| | - Rio Ohno
- Department of Bioscience and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Japan
| | - Fujii Yasuyuki
- SIT Research Laboratories, Shibaura Institute of Technology, Japan
| | - Kenta Aso
- Central Research Institute, ITO EN, Ltd., Japan
| | | | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
| | - Yoshitomo Suhara
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Japan
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Japan
- Department of Bioscience and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Japan
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Naomi Osakabe
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Japan
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Japan
- Department of Bioscience and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Japan
| |
Collapse
|
2
|
Lecchi G, Mocchetti C, Tunesi D, Berto A, Balasubramanian HB, Biswas S, Bagchi A, Pollastro F, Fresu LG, Talmon M. Single-Nucleotide Polymorphisms of TAS2R46 Affect the Receptor Downstream Calcium Regulation in Histamine-Challenged Cells. Cells 2024; 13:1204. [PMID: 39056786 PMCID: PMC11275237 DOI: 10.3390/cells13141204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Bitter taste receptors (TAS2Rs) expressed in extraoral tissues represent a whole-body sensory system, whose role and mechanisms could be of interest for the identification of new therapeutic targets. It is known that TAS2R46s in pre-contracted airway smooth muscle cells increase mitochondrial calcium uptake, leading to bronchodilation, and that several SNPs have been identified in its gene sequence. There are very few reports on the structure-function analysis of TAS2Rs. Thus, we delved into the subject by using mutagenesis and in silico studies. We generated a cellular model that expresses native TAS2R46 to evaluate the influence of the four most common SNPs on calcium fluxes following the activation of the receptor by its specific ligand absinthin. Then, docking studies were conducted to correlate the calcium flux results to the structural mutation. The analysed SNPs differently modulate the TAS2R46 signal cascade according to the altered protein domain. In particular, the SNP in the sixth transmembrane domain of the receptors did not modulate calcium homeostasis, while the SNPs in the sequence coding for the fourth transmembrane domain completely abolished the mitochondrial calcium uptake. In conclusion, these results indicate the fourth transmembrane domain of TAS2R46 is critical for the intrinsic receptor activity.
Collapse
Affiliation(s)
- Giulia Lecchi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Via Solaroli, 17, 28100 Novara, Italy
| | - Chiara Mocchetti
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Via Solaroli, 17, 28100 Novara, Italy
| | - Davide Tunesi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Via Solaroli, 17, 28100 Novara, Italy
| | - Arianna Berto
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Via Solaroli, 17, 28100 Novara, Italy
| | - Hari Baskar Balasubramanian
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Via Solaroli, 17, 28100 Novara, Italy
| | - Sima Biswas
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Luigia Grazia Fresu
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Via Solaroli, 17, 28100 Novara, Italy
| | - Maria Talmon
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
3
|
Grădinaru TC, Vlad A, Gilca M. Bitter Phytochemicals as Novel Candidates for Skin Disease Treatment. Curr Issues Mol Biol 2023; 46:299-326. [PMID: 38248322 PMCID: PMC10814078 DOI: 10.3390/cimb46010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Skin diseases represent a global healthcare challenge due to their rising incidence and substantial socio-economic burden. While biological, immunological, and targeted therapies have brought a revolution in improving quality of life and survival rates for certain dermatological conditions, there remains a stringent demand for new remedies. Nature has long served as an inspiration for drug development. Recent studies have identified bitter taste receptors (TAS2Rs) in both skin cell lines and human skin. Additionally, bitter natural compounds have shown promising benefits in addressing skin aging, wound healing, inflammatory skin conditions, and even skin cancer. Thus, TAS2Rs may represent a promising target in all these processes. In this review, we summarize evidence supporting the presence of TAS2Rs in the skin and emphasize their potential as drug targets for addressing skin aging, wound healing, inflammatory skin conditions, and skin carcinogenesis. To our knowledge, this is a pioneering work in connecting information on TAS2Rs expression in skin and skin cells with the impact of bitter phytochemicals on various beneficial effects related to skin disorders.
Collapse
Affiliation(s)
- Teodora-Cristiana Grădinaru
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (T.-C.G.); (M.G.)
| | - Adelina Vlad
- Department of Functional Sciences I/Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Marilena Gilca
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (T.-C.G.); (M.G.)
| |
Collapse
|