1
|
Dhanasekaran S, Selvadoss PP, Manoharan SS, Jeyabalan S, Muthu Laxmi V, Choudhury AA, Rajeswari VD, Ramanathan G, Thamaraikani T, Subramaniyan V, Sekar M, Shing WL. Targeting Nudix Hydrolase 5 with Bioactive Flavonoids: Molecular Dynamics and Docking Studies for Breast Cancer Therapy. Cell Biochem Biophys 2024:10.1007/s12013-024-01609-x. [PMID: 39638981 DOI: 10.1007/s12013-024-01609-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Breast cancer (BC) is the most prevalent malignancy among women globally and the leading cause of cancer-related mortality. Consequently, there is an urgent need for new, effective treatment strategies for breast cancer. Research has shown that the enzyme nudix hydrolase 5 (NUDT5) plays a critical role in promoting breast cancer aggressiveness and serves as a key regulator of oncogenic pathways. The development of NUDT5 inhibitors presents a viable strategy for enhancing treatment results in managing BC. The ability of the flavonoids to modulate key biochemical pathways and improve therapeutic outcomes highlights their promise in developing novel breast cancer treatments. Hence, the main objective of the present investigation is to identify the potential interaction of structurally diverse bioactive flavonoids with the active site of the target NUDT5. Our docking analysis revealed that the flavonoids such as naringin and genistein have shown a significant binding association with residues Arg51, Asp60, Gln82, Arg84, Ala96, Leu98, Glu112, Glu116, Met132, Cys139, Ile141, and Glu166 of NUDT5, suggesting its potential as a potent inhibitor. The stabilizing effects of these leads (naringin and genistein) were further validated using molecular dynamics investigations, including RMSD, RMRF, Rg, SASA, PCA, and FEL. The results of the MD simulation studies evidenced a more significant interaction between genistein and NUDT5, indicating a steady and robust affinity, making genistein a more promising inhibitor. In conclusion, the flavonoid genistein has a strong potential as a therapeutic agent for targeting NUDT5 in breast cancer treatment making it viable candidates for further preclinical and clinical investigations.
Collapse
Affiliation(s)
- Sivaraman Dhanasekaran
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Gandhinagar, Gujarat, India.
| | - Pradeep Pushparaj Selvadoss
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Gandhinagar, Gujarat, India
| | - Solomon Sundar Manoharan
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Gandhinagar, Gujarat, India
| | - Srikanth Jeyabalan
- Department of Pharmacology, Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - V Muthu Laxmi
- Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | | | | | | | - Tamilanban Thamaraikani
- Department of Pharmacology, Faculty of Medicine, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan University, Petaling Jaya, Malaysia
| | | | - Wong Ling Shing
- INTI International University, Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
2
|
Guo Y, Yuan C, Huang T, Cheng Z. Integrating UHPLC-Q-TOF-MS/MS, network pharmacology, bioinformatics and experimental validation to uncover the anti-cancer mechanisms of TiaoPi AnChang decoction in colorectal cancer. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118576. [PMID: 39002822 DOI: 10.1016/j.jep.2024.118576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The TiaoPi AnChang Decoction (TPACD), a Traditional Chinese Medicine (TCM) prescription based on Xiangsha Liujunzi Decoction, has demonstrated clinical efficacy as an adjuvant therapy for colorectal cancer (CRC) patients. However, its specific ingredients and potential mechanisms of action remain unclear. AIM OF THE STUDY To identify the primary active ingredients of TPACD, their molecular targets, and potential mechanisms underlying the efficacy of TPACD in CRC treatment. MATERIALS AND METHODS This study investigated the clinically validated TCM formula TPACD. In vitro and in vivo experiments were used to demonstrate TPACD's regulatory effects on various malignant phenotypes of tumors, providing basic research support for its anti-cancer activity. To understand its pharmacodynamic basis, we utilized ultra-high performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry/mass spectrometry (UHPLC-Q-TOF-MS/MS) to analyze TPACD constituents present in the bloodstream. Network pharmacology and bioinformatics analyses were used to identify potential active components and their molecular targets for TPACD's therapeutic effects in CRC. Subsequent experiments further elucidated its pharmacological mechanism. RESULTS TPACD inhibits various malignant cellular processes, such as cell proliferation, apoptosis, migration, and invasion, and has shown potential anti-CRC activities both in vitro and in vivo. Following the identification of 109 constituents absorbed into the blood from TPACD, network pharmacology analysis predicted 42 potential anti-CRC targets. Clinical analyses highlighted three genes as prognostic key genes of TPACD's therapeutic action: C-X-C motif chemokine ligand 8 (CXCL8), fatty acid binding protein 4 (FABP4), and matrix metallopeptidase 3 (MMP3). Drug sensitivity analyses, molecular docking simulations and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) identified MMP3 as the most promising target for TPACD's anti-CRC action. Enzyme activity assays confirmed that TPACD inhibits MMP3 enzyme activity. Surface plasmon resonance (SPR) characterized the binding affinity between MMP3 and effective active components of TPACD, including luteolin, quercetin, kaempferol, and liensinine. CONCLUSIONS TPACD exhibits anti-CRC activity in vitro and in vivo, with MMP3 identified as a critical target. The active compounds, including luteolin, quercetin, kaempferol, and liensinine, absorbed into the bloodstream, contribute to TPACD's efficacy by targeting MMP3.
Collapse
Affiliation(s)
- Yantong Guo
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Chunsheng Yuan
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ting Huang
- Department of Traditional Chinese Medicine, The People's Hospital of Ningxia Hui Autonomous Region, Ningxia, 750000, China
| | - Zhiqiang Cheng
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
3
|
Mohammad Ali FJ, Zare F, Sakhteman A, Bahadori S, Seradj H, Emami L. Molecular docking studies, DFT, and ADMET calculations of some flavonoids and their characteristic structural features involved in inhibition of pro-inflammatory enzymes. Nat Prod Res 2024:1-11. [PMID: 39049514 DOI: 10.1080/14786419.2024.2368748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/26/2024] [Accepted: 06/09/2024] [Indexed: 07/27/2024]
Abstract
Inflammation is an immune system response triggered by pathogens, damaged cells, or stimuli. Some regulatory enzymes, such as phosphodiesterase, hyaluronidase, collagenase, and lipoxygenase, play an essential role in the inflammatory process. Polyphenolic compounds, such as flavonoids, are active suppressors of inflammatory cytokines, modulators of transcription factors, and inflammation-related pathways. A set of flavonoid structures was screened and docked against inflammation pathway enzymes. Amentoflavone has been shown to cause interactions with phosphodiesterase enzymes, while Bilobetin and Silibinin demonstrated an increase in binding energy with collagenase enzymes. The retrieved compounds from the docking study were subjected to DFT theory. The results showed that the LUMO orbital is located on the flavonoid part. The thermochemical parameters indicated that Silibinin is more stable than other compounds. The ADMET profile predicted that Silibinin can be used orally among the compounds. Silibinin can be introduced as a promising anti-inflammatory agent demonstrating phosphodiesterase and collagenase inhibitory properties.
Collapse
Affiliation(s)
| | - Fateme Zare
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Sakhteman
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Shahrzad Bahadori
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Seradj
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Emami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Hon KW, Naidu R. Synergistic Mechanisms of Selected Polyphenols in Overcoming Chemoresistance and Enhancing Chemosensitivity in Colorectal Cancer. Antioxidants (Basel) 2024; 13:815. [PMID: 39061884 PMCID: PMC11273411 DOI: 10.3390/antiox13070815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide. Despite significant advances in medical treatment, chemotherapy as monotherapy can lead to substantial side effects and chemoresistance. This underscores the need for therapeutic approaches that are not only pharmacologically safe but also modulate multiple potent signaling pathways and sensitize cancer cells to overcome resistance to standard drugs. In recent years, scientists have been searching for natural compounds that can be used as chemosensitizers in addition to conventional medications for the synergistic treatment of CRC. Polyphenols represent a diverse group of natural compounds that can target multiple signaling pathways in cancer cells to induce anti-cancer effects. Additionally, polyphenols have been shown to work synergistically with chemotherapeutics and other natural compounds in cancer cells. This review aims to provide a comprehensive insight into the synergistic mechanisms of selected polyphenols as chemosensitizers in CRC cells. Further research and clinical trials are warranted to fully harness the synergistic mechanisms of selected polyphenols combined with chemotherapy or natural compounds in improving cancer treatment outcomes.
Collapse
Affiliation(s)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia;
| |
Collapse
|
5
|
Abdullah KM, Sharma G, Qais FA, Khan I, Takkar S, Kaushal JB, Kanchan RK, Sarwar T, Chakravarti B, Siddiqui JA. Hydroxychloroquine interaction with phosphoinositide 3-kinase modulates prostate cancer growth in bone microenvironment: In vitro and molecular dynamics based approach. Int J Biol Macromol 2024; 266:130912. [PMID: 38513896 DOI: 10.1016/j.ijbiomac.2024.130912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Patients with advanced prostate cancer (PCa) are more likely to develop bone metastases. Tumor cells thrive in the bone microenvironment, interacting with osteoblasts and osteoclasts. Given the PI3K/AKT pathway's metastatic potential and signal integration's ability to modulate cell fates in PCa development, drugs targeting this system have great therapeutic promise. Hydroxychloroquine (HCQ) is an anti-malarial medication commonly used to treat clinical conditions such as rheumatology and infectious disorders. We explored the anti-neoplastic effect of HCQ on PC3 and C4-2B cell lines in the bone microenvironment. Interestingly, HCQ treatment substantially decreases the viability, proliferation, and migration potential of PCa cells in the bone microenvironment. HCQ induces apoptosis and cell cycle arrest, even in the presence of osteoblast-secreted factors. Mechanistically, HCQ inhibited the activity of the PI3K/AKT signaling pathway, which ultimately regulates the proliferation and migration of PCa cells in the bone. The binding energy for docking HCQ with PI3K was -6.7 kcal/mol, and the complex was stabilized by hydrogen bonds, hydrophobic forces, and van der Waals forces. Molecular simulations further validated the structural integrity of the HCQ-PI3K complex without altering PI3K's secondary structure. Our findings underscore the efficacy of HCQ as a potential therapeutic agent in treating PCa.
Collapse
Affiliation(s)
- K M Abdullah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Imran Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Simran Takkar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Jyoti B Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Ranjana K Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Tarique Sarwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Saudi Arabia
| | - Bandana Chakravarti
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha NE-68198, USA.
| |
Collapse
|
6
|
Toledo Martins Pereira M, Sardou Charret T, Freimann Wermelinger G, Soares Ribeiro Nogueira T, Kaufmann Robbs B, Carvalho Castiglione R, Loureiro Simões R, Dantas Machado RL, Curcino Vieira IJ, Abreu LS, D'Avila Bitencourt Pascoal V, Rheder Fagundes Pascoal AC. Evaluation of the Antiproliferative Potential of Yellow Jaboticaba (Myrciaria glazioviana) Extracts Against Human Cervical Cancer (HeLa cells line) and the Analysis of Their Chemical Composition by HPLC-HRESIMS. Chem Biodivers 2024; 21:e202301467. [PMID: 38471006 DOI: 10.1002/cbdv.202301467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Cervical cancer is a specific type of cancer that affects women around the world, with an incidence of 604 thousand new cases per year and 341 thousand deaths. There is a high demand for new effective antineoplastic drugs with few side effects. In this sense, recent research highlights the potential of compounds of natural origin in treating and preventing different types of cancer. Myrciaria glazioviana is a Brazilian native species belonging to the Myrtaceae family, which has previously described biological activities such as antimicrobial, anti-inflammatory, and antioxidant properties. This study aims to evaluate the anticancer activity of the dichloromethane extract (MGD) and ethyl acetate extract (MGA) of M. glazioviana leaves against human cervical cancer cell line (HeLa), as well as to identify their bioactive compounds. Using HPLC-HRESIMS technique, ten compounds were characterized in both samples: quinic acid, ellagic acid, Tri-O-methyl ellagic acid, two derivatives of Tetra-O-methyl flavellagic acid, quercetrin, Di-O-methyl ellagic acid, and three derivatives of pentamethyl coruleoellagic acid. Through MTT assays using HeLa cells and NIH/3T3 cells, it was observed that MGD and MGA were selective against tumor cells, with IC50 values of 24.31 and 12.62 μg/mL, respectively. The samples induced the tumor cell death by apoptosis, as evidenced by the activation of caspases 3/7, cell shrinkage, and pyknotic nuclei. Both samples were also able to inhibit the migration of HeLa cells after 24 hours of treatment, indicating a potential antimetastatic effect. Therefore, the present research highlights the antiproliferative and antimigratory potential of this species against HeLa cells.
Collapse
Affiliation(s)
- Mariana Toledo Martins Pereira
- Graduate Program in Science and Biotechnology, Institute of Biology, UFF, Niterói, Rio de Janeiro, Brazil
- Research Laboratory of Natural Products and Bioactive Molecules, Nova Friburgo Health Institute, UFF, Nova Friburgo, Rio de Janeiro, Brazil
| | - Thiago Sardou Charret
- Graduate Program in Science and Biotechnology, Institute of Biology, UFF, Niterói, Rio de Janeiro, Brazil
- Research Laboratory of Natural Products and Bioactive Molecules, Nova Friburgo Health Institute, UFF, Nova Friburgo, Rio de Janeiro, Brazil
| | | | | | - Bruno Kaufmann Robbs
- Multiuser Biomedical Research Laboratory, Nova Friburgo Health Institute, UFF, Nova Friburgo, Rio de Janeiro, Brazil
| | - Raquel Carvalho Castiglione
- Laboratory for Clinical and Experimental Research on Vascular Biology (BioVasc), Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Loureiro Simões
- Laboratory for Cellular and Molecular Pharmacology, Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Luiz Dantas Machado
- Graduate Program in Science and Biotechnology, Institute of Biology, UFF, Niterói, Rio de Janeiro, Brazil
- Department of Microbiology and Parasitology, Institute of Biology, UFF, Niterói, Rio de Janeiro, Brazil
| | - Ivo José Curcino Vieira
- Laboratory of Chemical Sciences, Center for Exact Sciences and Technology, UENF, Campos dos Goytacazes, Brazil
| | - Lucas Silva Abreu
- Natural Products Chemistry Laboratory, Institute of Chemistry, UFF, Niterói, Rio de Janeiro, Brazil
| | - Vinicius D'Avila Bitencourt Pascoal
- Graduate Program in Science and Biotechnology, Institute of Biology, UFF, Niterói, Rio de Janeiro, Brazil
- Research Laboratory of Natural Products and Bioactive Molecules, Nova Friburgo Health Institute, UFF, Nova Friburgo, Rio de Janeiro, Brazil
- Multiuser Biomedical Research Laboratory, Nova Friburgo Health Institute, UFF, Nova Friburgo, Rio de Janeiro, Brazil
| | - Aislan Cristina Rheder Fagundes Pascoal
- Graduate Program in Science and Biotechnology, Institute of Biology, UFF, Niterói, Rio de Janeiro, Brazil
- Research Laboratory of Natural Products and Bioactive Molecules, Nova Friburgo Health Institute, UFF, Nova Friburgo, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Khafaga AF, Gaballa MMS, Karam R, Shoulah SA, Shamma RN, Khalifa NE, Farrag NE, Noreldin AE. Synergistic therapeutic strategies and engineered nanoparticles for anti-vascular endothelial growth factor therapy in cancer. Life Sci 2024; 341:122499. [PMID: 38342375 DOI: 10.1016/j.lfs.2024.122499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Angiogenesis is one of the defining characteristics of cancer. Vascular endothelial growth factor (VEGF) is crucial for the development of angiogenesis. A growing interest in cancer therapy is being caused by the widespread use of antiangiogenic drugs in treating several types of human cancer. However, this therapeutic approach can worsen resistance, invasion, and overall survival. As we proceed, refining combination strategies and addressing the constraint of targeted treatments are paramount. Therefore, major challenges in using novel combinations of antiangiogenic agents with cytotoxic treatments are currently focused on illustrating the potential of synergistic therapeutic strategies, alongside advancements in nanomedicine and gene therapy, present opportunities for more precise interference with angiogenesis pathways and tumor environments. Nanoparticles have the potential to regulate several crucial activities and improve several drug limitations such as lack of selectivity, non-targeted cytotoxicity, insufficient drug delivery at tumor sites, and multi-drug resistance based on their unique features. The goal of this updated review is to illustrate the enormous potential of novel synergistic therapeutic strategies and the targeted nanoparticles as an alternate strategy for t treating a variety of tumors employing antiangiogenic therapy.
Collapse
Affiliation(s)
- Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt.
| | - Mohamed M S Gaballa
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Reham Karam
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, 35511, Egypt.
| | - Salma A Shoulah
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Rehab N Shamma
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt.
| | - Nehal E Farrag
- Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt.
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| |
Collapse
|
8
|
Rehan M, Ahmed F, Khan MI, Ansari HR, Shakil S, El-Araby ME, Hosawi S, Saleem M. Computational insights into the stereo-selectivity of catechins for the inhibition of the cancer therapeutic target EGFR kinase. Front Pharmacol 2024; 14:1231671. [PMID: 38273823 PMCID: PMC10808699 DOI: 10.3389/fphar.2023.1231671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a crucial role in regulating cellular growth and survival, and its dysregulation is implicated in various cancers, making it a prime target for cancer therapy. Natural compounds known as catechins have garnered attention as promising anticancer agents. These compounds exert their anticancer effects through diverse mechanisms, primarily by inhibiting receptor tyrosine kinases (RTKs), a protein family that includes the notable member EGFR. Catechins, characterized by two chiral centers and stereoisomerism, demonstrate variations in chemical and physical properties due to differences in the spatial orientation of atoms. Although previous studies have explored the membrane fluidity effects and transport across cellular membranes, the stereo-selectivity of catechins concerning EGFR kinase inhibition remains unexplored. In this study, we investigated the stereo-selectivity of catechins in inhibiting EGFR kinase, both in its wild-type and in the prevalent L858R mutant. Computational analyses indicated that all stereoisomers, including the extensively studied catechin (-)-EGCG, effectively bound within the ATP-binding site, potentially inhibiting EGFR kinase activity. Notably, gallated catechins emerged as superior EGFR inhibitors to their non-gallated counterparts, revealing intriguing binding trends. The top four stereoisomers exhibiting high dock scores and binding energies with wild-type EGFR comprise (-)-CG (-)-GCG (+)-CG, and (-)-EGCG. To assess dynamic behavior and stability, molecular dynamics simulations over 100 ns were conducted for the top-ranked catechin (-)-CG and the widely investigated catechin (-)-EGCG with EGFR kinase. This study enhances our understanding of how the stereoisomeric nature of a drug influences inhibitory potential, providing insights that could guide the selection of specific stereoisomers for improved efficacy inexisting drugs.
Collapse
Affiliation(s)
- Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Firoz Ahmed
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
- University of Jeddah Center for Research and Product Development, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammad Imran Khan
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Hifzur Rahman Ansari
- King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Shazi Shakil
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Moustafa E. El-Araby
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Saleem
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Division of Drug Metabolism and Pharmacokinetics, LabCorp Drug Development Inc., Madison, WI, United States
| |
Collapse
|