1
|
Chen A, Tian M, Luo Z, Cao X, Gu Y. Analysis of the evolution of placental oxidative stress research from a bibliometric perspective. Front Pharmacol 2024; 15:1475244. [PMID: 39484166 PMCID: PMC11524950 DOI: 10.3389/fphar.2024.1475244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Background Research on placental oxidative stress is pivotal for comprehending pregnancy-related physiological changes and disease mechanisms. Despite recent advancements, a comprehensive review of current status, hotspots, and trends remains challenging. This bibliometric study systematically analyzes the evolution of placental oxidative stress research, offering a reference for future studies. Objective To conduct a comprehensive bibliometric analysis of the literature on placental oxidative stress to identify research hotspots, trends, and key contributors, thereby providing guidance for future research. Methods Relevant data were retrieved from the Web of Science Core Collection database and analyzed using VOSviewer, CiteSpace, and the bibliometrix package. An in-depth analysis of 4,796 publications was conducted, focusing on publication year, country/region, institution, author, journal, references, and keywords. Data collection concluded on 29 April 2024. Results A total of 4,796 papers were retrieved from 1,173 journals, authored by 18,835 researchers from 4,257 institutions across 103 countries/regions. From 1991 to 2023, annual publications on placental oxidative stress increased from 7 to 359. The United States (1,222 publications, 64,158 citations), the University of Cambridge (125 publications, 13,562 citations), and Graham J. Burton (73 publications, 11,182 citations) were the most productive country, institution, and author, respectively. The journal Placenta had the highest number of publications (329) and citations (17,152), followed by the International Journal of Molecular Sciences (122 publications). The most frequent keywords were "oxidative stress," "expression," "pregnancy," "preeclampsia," and "lipid peroxidation." Emerging high-frequency keywords included "gestational diabetes mellitus," "health," "autophagy," "pathophysiology," "infection," "preterm birth," "stem cell," and "inflammation." Conclusion Over the past 3 decades, research has concentrated on oxidative stress processes, antioxidant mechanisms, pregnancy-related diseases, and gene expression regulation. Current research frontiers involve exploring pathophysiology and mechanisms, assessing emerging risk factors and environmental impacts, advancing cell biology and stem cell research, and understanding the complex interactions of inflammation and immune regulation. These studies elucidate the mechanisms of placental oxidative stress, offering essential scientific evidence for future intervention strategies, therapeutic approaches, and public health policies.
Collapse
Affiliation(s)
| | | | | | - Xiaohui Cao
- Department of Obstetrics and Gynecology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Yanfang Gu
- Department of Obstetrics and Gynecology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
2
|
Cherukuri R, Kammala AK, Thomas TJ, Saylor L, Richardson L, Kim S, Ferrer M, Acedo C, Song MJ, Gaharwar AK, Menon R, Han A. High-Throughput 3D-Printed Model of the Feto-Maternal Interface for the Discovery and Development of Preterm Birth Therapies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41892-41906. [PMID: 39078878 PMCID: PMC11604266 DOI: 10.1021/acsami.4c08731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Spontaneous preterm birth (PTB) affects around 11% of births, posing significant risks to neonatal health due to the inflammation at the fetal-maternal interface (FMi). This inflammation disrupts immune tolerance during pregnancy, often leading to PTB. While organ-on-a-chip (OOC) devices effectively mimic the physiology, pathophysiology, and responses of FMi, their relatively low throughput limits their utility in high-throughput testing applications. To overcome this, we developed a three-dimensional (3D)-printed model that fits in a well of a 96-well plate and can be mass-produced while also accurately replicating FMi, enabling efficient screening of drugs targeting FMi inflammation. Our model features two cell culture chambers (maternal and fetal cells) interlinked via an array of microfluidic channels. It was thoroughly validated, ensuring cell viability, metabolic activity, and cell-specific markers. The maternal chamber was exposed to lipopolysaccharides (LPS) to induce an inflammatory state, and proinflammatory cytokines in the culture supernatant were quantified. Furthermore, the efficacy of anti-inflammatory inhibitors in mitigating LPS-induced inflammation was investigated. Results demonstrated that our model supports robust cell growth, maintains viability, and accurately mimics PTB-associated inflammation. This high-throughput 3D-printed model offers a versatile platform for drug screening, promising advancements in drug discovery and PTB prevention.
Collapse
Affiliation(s)
- Rahul Cherukuri
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, 77555, USA
| | - Tilu Jain Thomas
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, 77555, USA
| | - Leah Saylor
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, 77555, USA
| | - Lauren Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, 77555, USA
| | - Sungjin Kim
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - Marc Ferrer
- 3D Tissue Bioprinting Laboratory, National Centre for Advancing Translational Sciences, National Institute of Sciences, Bethesda, MD, 20892, USA
| | - Cristina Acedo
- 3D Tissue Bioprinting Laboratory, National Centre for Advancing Translational Sciences, National Institute of Sciences, Bethesda, MD, 20892, USA
| | - Min Jae Song
- 3D Tissue Bioprinting Laboratory, National Centre for Advancing Translational Sciences, National Institute of Sciences, Bethesda, MD, 20892, USA
| | - Akhilesh K. Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, 77555, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77840, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77840, USA
- Department of Chemical Engineering, Texas A&M University, College Station, TX, 77840, USA
| |
Collapse
|
3
|
Park S, Hunter ES. Modeling the human placenta: in vitro applications in developmental and reproductive toxicology. Crit Rev Toxicol 2024; 54:431-464. [PMID: 39016688 DOI: 10.1080/10408444.2023.2295349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 07/18/2024]
Abstract
During its temporary tenure, the placenta has extensive and specialized functions that are critical for pre- and post-natal development. The consequences of chemical exposure in utero can have profound effects on the structure and function of pregnancy-associated tissues and the life-long health of the birthing person and their offspring. However, the toxicological importance and critical functions of the placenta to embryonic and fetal development and maturation have been understudied. This narrative will review early placental development in humans and highlight some in vitro models currently in use that are or can be applied to better understand placental processes underlying developmental toxicity due to in utero environmental exposures.
Collapse
Affiliation(s)
- Sarah Park
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
- Center for Computational Toxicology and Exposure, ORD, US EPA, Research Triangle Park, NC, USA
| | - Edward Sidney Hunter
- Center for Computational Toxicology and Exposure, ORD, US EPA, Research Triangle Park, NC, USA
| |
Collapse
|
4
|
Wu T, Yan J, Nie K, Chen Y, Wu Y, Wang S, Zhang J. Microfluidic chips in female reproduction: a systematic review of status, advances, and challenges. Theranostics 2024; 14:4352-4374. [PMID: 39113805 PMCID: PMC11303079 DOI: 10.7150/thno.97301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/06/2024] [Indexed: 08/10/2024] Open
Abstract
The female reproductive system is essential to women's health, human reproduction and societal well-being. However, the clinical translation of traditional research models is restricted due to the uncertain effects and low efficiency. Emerging evidence shows that microfluidic chips provide valuable platforms for studying the female reproductive system, while no paper has ever comprehensively discussed the topic. Here, a total of 161 studies out of 14,669 records are identified in PubMed, Scopus, Web of Science, ScienceDirect and IEEE Xplore databases. Among these, 61 studies focus on oocytes, which further involves culture, cell surgeries (oocyte separation, rotation, enucleation, and denudation), evaluation and cryopreservation. Forty studies investigate embryo manipulation via microfluidic chips, covering in vitro fertilization, cryopreservation and functional evaluation. Forty-six studies reconstitute both the physiological and pathological statuses of in vivo organs, mostly involved in placenta and fetal membrane research. Fourteen studies perform drug screening and toxicity testing. In this review, we summarize the current application of microfluidic chips in studying the female reproductive system, the advancements in materials and methods, and discuss the future challenges. The present evidence suggests that microfluidic chips-assisted reproductive system reconstruction is promising and more studies are urgently needed.
Collapse
Affiliation(s)
- Tong Wu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinfeng Yan
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Kebing Nie
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Wu
- College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Menon R, Richardson L, Kammala AK. New approach methods on the bench side to accelerate clinical trials during pregnancy. Expert Opin Drug Metab Toxicol 2024; 20:555-560. [PMID: 38739076 DOI: 10.1080/17425255.2024.2353944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
INTRODUCTION Pregnant women are therapeutic orphans as they are excluded from clinical drug development and therapeutic trials. We identify limitations in conducting clinical trials and propose two 'New Approach Methods'(NAMs) to overcome them. AREAS COVERED NAMs have proven invaluable tools in basic and clinical research to understand human health and disease better, elucidate mechanisms, and study the efficacy and toxicity of therapeutics that have not been possible through animal-based methodologies. The lack of humanized experimental models of FMi and drugs that can safely and effectively cross FMi to reduce the risk of adverse pregnancy has hindered progress in the field of reproductive pharmacology. This report discusses two technological advancements in perinatal research and medicine to accelerate clinical trials during pregnancy. (1) We have developed a humanized microphysiologic system, an Organ-on-a-chip (OOC) platform, to study FMi and their utility in pharmacological studies, and (2) use of extracellular vesicles (EVs) as drug delivery vehicles that are immunologically inert and can cross the fetomaternal barriers. EXPERT OPINION We provide an overview of NAMs that can accelerate preclinical trials and develop drugs to cross the feto-maternal barriers to reduce the risk of adverse pregnancy outcomes like preterm birth.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Lauren Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
6
|
Vashishat A, Patel P, Das Gupta G, Das Kurmi B. Alternatives of Animal Models for Biomedical Research: a Comprehensive Review of Modern Approaches. Stem Cell Rev Rep 2024; 20:881-899. [PMID: 38429620 DOI: 10.1007/s12015-024-10701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
Biomedical research has long relied on animal models to unravel the intricacies of human physiology and pathology. However, concerns surrounding ethics, expenses, and inherent species differences have catalyzed the exploration of alternative avenues. The contemporary alternatives to traditional animal models in biomedical research delve into three main categories of alternative approaches: in vitro models, in vertebrate models, and in silico models. This unique approach to artificial intelligence and machine learning has been a keen interest to be used in different biomedical research. The main goal of this review is to serve as a guide to researchers seeking novel avenues for their investigations and underscores the importance of considering alternative models in the pursuit of scientific knowledge and medical breakthroughs, including showcasing the broad spectrum of modern approaches that are revolutionizing biomedical research and leading the way toward a more ethical, efficient, and innovative future. Models can insight into cellular processes, developmental biology, drug interaction, assessing toxicology, and understanding molecular mechanisms.
Collapse
Affiliation(s)
- Abhinav Vashishat
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India.
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
| |
Collapse
|