1
|
Sun H, Ong Y, Yang W, Sourvanos D, Dimofte A, Busch TM, Singhal S, Cengel KA, Zhu TC. Clinical PDT dose dosimetry for pleural Photofrin-mediated photodynamic therapy. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:018001. [PMID: 38223299 PMCID: PMC10787190 DOI: 10.1117/1.jbo.29.1.018001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
Significance Photodynamic therapy (PDT) is an established cancer treatment utilizing light-activated photosensitizers (PS). Effective treatment hinges on the PDT dose-dependent on PS concentration and light fluence-delivered over time. We introduce an innovative eight-channel PDT dose dosimetry system capable of concurrently measuring light fluence and PS concentration during treatment. Aim We aim to develop and evaluate an eight-channel PDT dose dosimetry system for simultaneous measurement of light fluence and PS concentration. By addressing uncertainties due to tissue variations, the system enhances accurate PDT dosimetry for improved treatment outcomes. Approach The study positions eight isotropic detectors strategically within the pleural cavity before PDT. These detectors are linked to bifurcated fibers, distributing signals to both a photodiode and a spectrometer. Calibration techniques are applied to counter tissue-related variations and improve measurement accuracy. The fluorescence signal is normalized using the measured light fluence, compensating for variations in tissue properties. Measurements were taken in 78 sites in the pleural cavities of 20 patients. Results Observations reveal minimal Photofrin concentration variation during PDT at each site, juxtaposed with significant intra- and inter-patient heterogeneities. Across 78 treated sites in 20 patients, the average Photofrin concentration for all 78 sites is 4.98 μ M , with a median concentration of 4.47 μ M . The average PDT dose for all 78 sites is 493.17 μ MJ / cm 2 , with a median dose of 442.79 μ MJ / cm 2 . A significant variation in PDT doses is observed, with a maximum difference of 3.1 times among all sites within one patient and a maximum difference of 9.8 times across all patients. Conclusions The introduced eight-channel PDT dose dosimetry system serves as a valuable real-time monitoring tool for light fluence and PS concentration during PDT. Its ability to mitigate uncertainties arising from tissue properties enhances dosimetry accuracy, thus optimizing treatment outcomes and bolstering the effectiveness of PDT in cancer therapy.
Collapse
Affiliation(s)
- Hongjing Sun
- University of Pennsylvania, Department of Radiation Oncology, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, Department of Bioengineering, Philadelphia, Pennsylvania, United States
| | - Yihong Ong
- University of Pennsylvania, Department of Radiation Oncology, Philadelphia, Pennsylvania, United States
| | - Weibing Yang
- University of Pennsylvania, Department of Radiation Oncology, Philadelphia, Pennsylvania, United States
| | - Dennis Sourvanos
- University of Pennsylvania, School of Dental Medicine, Department of Periodontics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, Schools of Engineering and Dental Medicine, Center for Innovation and Precision Dentistry, Philadelphia, Pennsylvania, United States
| | - Andreea Dimofte
- University of Pennsylvania, Department of Radiation Oncology, Philadelphia, Pennsylvania, United States
| | - Theresa M. Busch
- University of Pennsylvania, Department of Radiation Oncology, Philadelphia, Pennsylvania, United States
| | - Sunil Singhal
- University of Pennsylvania, Department of Surgery, Philadelphia, Pennsylvania, United States
| | - Keith A. Cengel
- University of Pennsylvania, Department of Radiation Oncology, Philadelphia, Pennsylvania, United States
| | - Timothy C. Zhu
- University of Pennsylvania, Department of Radiation Oncology, Philadelphia, Pennsylvania, United States
| |
Collapse
|
2
|
Sun H, Kim MM, Ong YH, Dimoft A, Singhal S, Busch TM, Cengel KA, Zhu TC. Evaluation of Detector Position and Light Fluence Distribution Using an Infrared Navigation System during Pleural Photodynamic Therapy †. Photochem Photobiol 2023; 99:814-825. [PMID: 35996976 PMCID: PMC9947188 DOI: 10.1111/php.13697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022]
Abstract
Photodynamic therapy (PDT) has been used to treat malignant pleural mesothelioma. Current practice involves delivering light to a prescribed light fluence with a point source, monitored by eight isotropic detectors inside the pleural cavity. An infrared (IR) navigation system was used to track the location of the point source throughout the treatment. The recorded data were used to reconstruct the pleural cavity and calculate the light fluence to the whole cavity. An automatic algorithm was developed recently to calculate the detector positions based on recorded data within an hour. This algorithm was applied to patient case studies and the calculated results were compared to the measured positions, with an average difference of 2.5 cm. Calculated light fluence at calculated positions were compared to measured values. The differences between the calculated and measured light fluence were within 14% for all cases, with a fixed scattering constant and a dual correction method. Fluence-surface histogram (FSH) was calculated for photofrin-mediated PDT to be able to cover 80% of pleural surface area to 50 J cm-2 (83.3% of 60 J cm-2 ). The study demonstrates that it will be possible to eliminate the manual measurement of the detector positions, reducing the patient's time under anesthesia.
Collapse
Affiliation(s)
- Hongjing Sun
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Yi Hong Ong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Andreea Dimoft
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Sunil Singhal
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Theresa M. Busch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Keith A Cengel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Timothy C Zhu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
3
|
Parilov E, Beeson K, Potasek M, Zhu T, Sun H, Sourvanos D. A Monte Carlo simulation for Moving Light Source in Intracavity PDT. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2023; 12359:1235903. [PMID: 37206985 PMCID: PMC10194003 DOI: 10.1117/12.2649538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We developed a simulation method for modeling the light fluence delivery in intracavity Photodynamic Therapy (icav-PDT) for pleural lung cancer using a moving light source. Due to the large surface area of the pleural lung cavity, the light source needs to be moved to deliver a uniform dose around the entire cavity. While multiple fixed detectors are used for dosimetry at a few locations, an accurate simulation of light fluence and fluence rate is still needed for the rest of the cavity. We extended an existing Monte Carlo (MC) based light propagation solver to support moving light sources by densely sampling the continuous light source trajectory and assigning the proper number of photon packages launched along the way. The performance of Simphotek GPU CUDA-based implementation of the method - PEDSy-MC - has been demonstrated on a life-size lung-shaped phantom, custom printed for testing icav-PDT navigation system at the Perlman School of Medicine (PSM) - calculations completed under a minute (for some cases) and within minutes have been achieved. We demonstrate results within a 5% error of the analytic solution for multiple detectors in the phantom. PEDSy-MC is accompanied by a dose-cavity visualization tool that allows real-time inspection of dose values of the treated cavity in 2D and 3D, which will be expanded to ongoing clinical trials at PSM. PSM has developed a technology to measure 8-detectors in a pleural cavity phantom using Photofrin-mediated PDT that has been used during validation.
Collapse
Affiliation(s)
| | - Karl Beeson
- Simphotek, Inc., 211 Warren St., Newark, NJ 07103
| | - Mary Potasek
- Simphotek, Inc., 211 Warren St., Newark, NJ 07103
| | - Timothy Zhu
- Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hongjing Sun
- Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dennis Sourvanos
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Sun H, Sourvanos D, Potasek M, Parilov G, Beesonk C, Zhu TC. A real-time IR navigation system for pleural photodynamic therapy with a 3D surface acquisition system. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2023; 12359:123590C. [PMID: 37206987 PMCID: PMC10193932 DOI: 10.1117/12.2650456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Photodynamic therapy (PDT) has been used intraoperatively to treat patients with malignant pleural mesothelioma. For the efficiency of PDT, it is crucial to deliver light doses uniformly. The current procedure utilizes eight light detectors placed inside the pleural cavity to monitor the light. An updated navigation system, combined with a novel scanning system, is developed to provide real-time guidance for physicians during pleural PDT to improve light delivery. The scanning system consists of two handheld three-dimensional (3D) scanners to capture the pleural cavity's surface topographies quickly and precisely before PDT so that the target surface can be identified for real-time light fluence distribution calculation during PDT. An algorithm is developed to further process the scanned volume to denoise for accurate light fluence calculation and rotate the local coordinate system into any desired direction for a clear visualization during the real-time guidance. The navigation coordinate system is registered to the patient coordinate system utilizing at least three markers to track the light source point position within the pleural cavity throughout the treatment. During PDT, the light source position, the scanned pleural cavity, and the light fluence distribution for the cavity's surface will be displayed in 3D and 2D, respectively. For validation, this novel system is tested using phantom studies with a large chest phantom and 3D-printed lung phantoms of different volumes based on a personal CT scan, immersed in a liquid tissue-simulating phantom with different optical properties, and treated with eight isotropic detectors and the navigation system.
Collapse
Affiliation(s)
- Hongjing Sun
- Department of Radiation Oncology, Perelman Center for Advanced Medicine (PCAM), University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dennis Sourvanos
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Innovation and Precision Dentistry, Schools of Engineering and Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary Potasek
- Simphotek, Inc., 211 Warren St., Newark, NJ 07103
| | - Gene Parilov
- Simphotek, Inc., 211 Warren St., Newark, NJ 07103
| | - Carl Beesonk
- Simphotek, Inc., 211 Warren St., Newark, NJ 07103
| | - Timothy C. Zhu
- Department of Radiation Oncology, Perelman Center for Advanced Medicine (PCAM), University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
5
|
Kercher EM, Spring BQ. Photodynamic Treatments for Disseminated Cancer Metastases Using Fiber-Optic Technologies. Methods Mol Biol 2022; 2451:185-201. [PMID: 35505019 DOI: 10.1007/978-1-0716-2099-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumor-targeted and -activatable photosensitizer delivery platforms are creating new opportunities to develop photodynamic therapy (PDT) of metastatic disease. This is possible by confining the activity of the photosensitizing chemical (i.e., the PDT agent) to the tumor in combination with diffuse near-infrared light irradiation for wide-field treatment. This chapter outlines protocols and research tools for preclinical development of light-activated therapies of cancer metastases using advanced-stage ovarian cancer as a model system. We also describe an in vivo molecular imaging approach that uniquely enables tracking intraperitoneal micrometastatic burden and responses to treatment using fluorescence microendoscopy.
Collapse
Affiliation(s)
- Eric M Kercher
- Translational Biophotonics Cluster, Northeastern University, Boston, MA, USA
- Nanomedicine Science and Technology Center, Northeastern University, Boston, MA, USA
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Bryan Q Spring
- Translational Biophotonics Cluster, Northeastern University, Boston, MA, USA.
- Department of Physics, Northeastern University, Boston, MA, USA.
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
6
|
Zhu TC, Sun H, Ong YH, Morales RH, Dimofte A, Busch T, Singhal S, Cengel KA. Real-time PDT Dose Dosimetry for Pleural Photodynamic Therapy. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2022; 11940:1194002. [PMID: 35573026 PMCID: PMC9104001 DOI: 10.1117/12.2612188] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
PDT dose is the product of the photosensitizer concentration and the light fluence in the target tissue. For improved dosimetry during plural photodynamic therapy (PDT), an eight-channel PDT dose dosimeter was developed to measure both the light fluence and the photosensitizer concentration simultaneously from eight different sites in the pleural cavity during PDT. An isotropic detector with bifurcated fibers was used for each channel to ensure detected light was split equally to the photodiode and spectrometer. The light fluence rate distribution is monitored using an IR navigation system. The navigation system allows 2D light fluence mapping throughout the whole pleural cavity rather than just the selected points. The fluorescence signal is normalized by the light fluence measured at treatment wavelength. We have shown that the absolute photosensitizer concentration can be obtained by applying optical properties correction and linear spectral fitting to the measured fluorescence data. The detection limit and the optical property correction factor of each channel were determined and validated using tissue-simulating phantoms with known varying concentration of Photofrin. Tissue optical properties are determined using an absorption spectroscopy probe immediately before PDT at the same sites. The combination of 8-channel PDT dosimeter system and IR navigation system, which can calculate light fluence rate in the pleural cavity in real-time, providing a mean to determine the distribution of PDT dose on the entire pleural cavity to investigate the heterogeneity of PDT dose on the pleural cavity.
Collapse
Affiliation(s)
- Timothy C. Zhu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongjing Sun
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi-Hong Ong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan Hall Morales
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andreea Dimofte
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Theresa Busch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sunil Singhal
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Keith A. Cengel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Kim MM, Zhu TC, Ong YH, Finlay JC, Dimofte A, Singhal S, Glatstein E, Cengel KA. Infrared navigation system for light dosimetry during pleural photodynamic therapy. Phys Med Biol 2020; 65:075006. [PMID: 32053799 DOI: 10.1088/1361-6560/ab7632] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pleural photodynamic therapy (PDT) is performed intraoperatively for the treatment of microscopic disease in patients with malignant pleural mesothelioma. Accurate delivery of light dose is critical to PDT efficiency. As a standard of care, light fluence is delivered to the prescribed fluence using eight isotropic detectors in pre-determined discrete locations inside the pleural cavity that is filled with a dilute Intralipid solution. An optical infrared (IR) navigation system was used to monitor reflective passive markers on a modified and improved treatment delivery wand to track the position of the light source within the treatment cavity during light delivery. This information was used to calculate the light dose, incorporating a constant scattered light dose and using a dual correction method. Calculation methods were extensively compared for eight detector locations and seven patient case studies. The light fluence uniformity was also quantified by representing the unraveled three-dimensional geometry on a two-dimensional plane. Calculated light fluence at the end of treatment delivery was compared to measured values from isotropic detectors. Using a constant scattered dose for all detector locations along with a dual correction method, the difference between calculated and measured values for each detector was within 15%. Primary light dose alone does not fully account for the light delivered inside the cavity. This is useful in determining the light dose delivered to areas of the pleural cavity between detector locations, and can serve to improve treatment delivery with implementation in real-time in the surgical setting. We concluded that the standard deviation of light fluence uniformity for this method of pleural PDT is 10%.
Collapse
Affiliation(s)
- Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhu TC, Ong Y, Kim MM, Liang X, Finlay JC, Dimofte A, Simone CB, Friedberg JS, Busch TM, Glatstein E, Cengel KA. Evaluation of Light Fluence Distribution Using an IR Navigation System for HPPH-mediated Pleural Photodynamic Therapy (pPDT). Photochem Photobiol 2019; 96:310-319. [PMID: 31556122 DOI: 10.1111/php.13166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/13/2019] [Indexed: 12/29/2022]
Abstract
Uniform light fluence distribution for patients undergoing photodynamic therapy (PDT) is critical to ensure predictable PDT outcomes. However, current practice when delivering intrapleural PDT uses a point source to deliver light that is monitored by seven isotropic detectors placed within the pleural cavity to assess its uniformity. We have developed a real-time infrared (IR) tracking camera to follow the movement of the light point source and the surface contour of the treatment area. The calculated light fluence rates were matched with isotropic detectors using a two-correction factor method and an empirical model that includes both direct and scattered light components. Our clinical trial demonstrated that we can successfully implement the IR navigation system in 75% (15/20) of the patients. Data were successfully analyzed in 80% (12/15) patients because detector locations were not available for three patients. We conclude that it is feasible to use an IR camera-based system to track the motion of the light source during PDT and demonstrate its use to quantify the uniformity of light distribution, which deviated by a standard deviation of 18% from the prescribed light dose. The navigation system will fail when insufficient percentage of light source positions is obtained (<30%) during PDT.
Collapse
Affiliation(s)
- Timothy C Zhu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Yihong Ong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Xing Liang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Jarod C Finlay
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Andreea Dimofte
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | | | | | - Theresa M Busch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Eli Glatstein
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Keith A Cengel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
9
|
Verma V, Wegner RE, Ludmir EB, Hasan S, Colonias A, Grover S, Friedberg JS, Simone CB. Management of Malignant Pleural Mesothelioma in the Elderly Population. Ann Surg Oncol 2019; 26:2357-2366. [DOI: 10.1245/s10434-019-07351-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Indexed: 01/22/2023]
|
10
|
Spring BQ, Lang RT, Kercher EM, Rizvi I, Wenham RM, Conejo-Garcia JR, Hasan T, Gatenby RA, Enderling H. Illuminating the Numbers: Integrating Mathematical Models to Optimize Photomedicine Dosimetry and Combination Therapies. FRONTIERS IN PHYSICS 2019; 7:46. [PMID: 31123672 PMCID: PMC6529192 DOI: 10.3389/fphy.2019.00046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cancer photomedicine offers unique mechanisms for inducing local tumor damage with the potential to stimulate local and systemic anti-tumor immunity. Optically-active nanomedicine offers these features as well as spatiotemporal control of tumor-focused drug release to realize synergistic combination therapies. Achieving quantitative dosimetry is a major challenge, and dosimetry is fundamental to photomedicine for personalizing and tailoring therapeutic regimens to specific patients and anatomical locations. The challenge of dosimetry is perhaps greater for photomedicine than many standard therapies given the complexity of light delivery and light-tissue interactions as well as the resulting photochemistry responsible for tumor damage and drug-release, in addition to the usual intricacies of therapeutic agent delivery. An emerging multidisciplinary approach in oncology utilizes mathematical and computational models to iteratively and quantitively analyze complex dosimetry, and biological response parameters. These models are parameterized by preclinical and clinical observations and then tested against previously unseen data. Such calibrated and validated models can be deployed to simulate treatment doses, protocols, and combinations that have not yet been experimentally or clinically evaluated and can provide testable optimal treatment outcomes in a practical workflow. Here, we foresee the utility of these computational approaches to guide adaptive therapy, and how mathematical models might be further developed and integrated as a novel methodology to guide precision photomedicine.
Collapse
Affiliation(s)
- Bryan Q. Spring
- Translational Biophotonics Cluster, Northeastern University, Boston, MA, United States
- Department of Physics, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Ryan T. Lang
- Translational Biophotonics Cluster, Northeastern University, Boston, MA, United States
- Department of Physics, Northeastern University, Boston, MA, United States
| | - Eric M. Kercher
- Translational Biophotonics Cluster, Northeastern University, Boston, MA, United States
- Department of Physics, Northeastern University, Boston, MA, United States
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Robert M. Wenham
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - José R. Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Robert A. Gatenby
- Department of Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|
11
|
Treatment of malignant pleural mesothelioma with chemotherapy preceding versus after surgical resection. J Thorac Cardiovasc Surg 2019; 157:758-766.e1. [DOI: 10.1016/j.jtcvs.2018.10.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/19/2018] [Accepted: 10/08/2018] [Indexed: 11/18/2022]
|
12
|
Cramer G, Shin M, Hagan S, Katz SI, Simone CB, Busch TM, Cengel KA. Modeling Epidermal Growth Factor Inhibitor-mediated Enhancement of Photodynamic Therapy Efficacy Using 3D Mesothelioma Cell Culture. Photochem Photobiol 2019; 95:397-405. [PMID: 30499112 DOI: 10.1111/php.13067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022]
Abstract
We have demonstrated that lung-sparing surgery with intraoperative photodynamic therapy (PDT) achieves remarkably extended survival for patients with malignant pleural mesothelioma (MPM). Nevertheless, most patients treated using this approach experience local recurrence, so it is essential to identify ways to enhance tumor response. We previously reported that PDT transiently activates EGFR/STAT3 in lung and ovarian cancer cells and inhibiting EGFR via erlotinib can increase PDT sensitivity. Additionally, we have seen higher EGFR expression associating with worse outcomes after Photofrin-mediated PDT for MPM, and the extensive desmoplastic reaction associated with MPM influences tumor phenotype and therapeutic response. Since extracellular matrix (ECM) proteins accrued during stroma development can alter EGF signaling within tumors, we have characterized novel 3D models of MPM to determine their response to erlotinib combined with Photofrin-PDT. Our MPM cell lines formed a range of acinar phenotypes when grown on ECM gels, recapitulating the locally invasive phenotype of MPM in pleura and endothoracic fascia. Using these models, we confirmed that EGFR inhibition increases PDT cytotoxicity. Together with emerging evidence that EGFR inhibition may improve survival of lung cancer patients through immunologic and direct cell killing mechanisms, these results suggest erlotinib-enhanced PDT may significantly improve outcomes for MPM patients.
Collapse
Affiliation(s)
- Gwendolyn Cramer
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael Shin
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sarah Hagan
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sharyn I Katz
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Charles B Simone
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Keith A Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
13
|
Rice SR, Li YR, Busch TM, Kim MM, McNulty S, Dimofte A, Zhu TC, Cengel KA, Simone CB. A Novel Prospective Study Assessing the Combination of Photodynamic Therapy and Proton Radiation Therapy: Safety and Outcomes When Treating Malignant Pleural Mesothelioma. Photochem Photobiol 2019; 95:411-418. [PMID: 30485442 PMCID: PMC6778401 DOI: 10.1111/php.13065] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
Abstract
Malignant pleural mesothelioma remains difficult to treat, with high failure rates despite optimal therapy. We present a novel prospective trial combining proton therapy (PT) and photodynamic therapy (PDT) and the largest-ever mesothelioma PT experience (n = 10). PDT photosensitizers included porfimer sodium (2 mg·kg-1 ; 24 h drug-light interval) or 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH) (4 mg·m-2 ;48 h) with wavelengths of 630 nm to 60J·cm-2 and 665 nm to 15-45J·cm-2 , respectively. With a median age of 69 years, patients were predominantly male (90%) with epithelioid histology (100%) and stage III-IV disease (100%). PT was delivered to a median of 55.0 CGE/1.8-2.0 CGE (range 50-75 CGE) adjuvantly (n = 8) or as salvage therapy (n = 2) following extended pleurectomy/decortication (ePD)/PDT. Two-year local control was 90%, with distant and regional failure rates of 50% and 30%, respectively. All patients received chemotherapy, and four received immunotherapy. Surgical complications included atrial fibrillation (n = 3), pneumonia (n = 2), and deep vein thrombosis (n = 2). Median survival from PT completion was 19.5 months (30.3 months from diagnosis), and 1- and 2-year survival rates were 58% and 29%. No patient experienced CTCAEv4 grade ≥2 acute or late toxicity. Our prolonged survival in very advanced-stage patients compares favorably to survival for PT without PDT and photon therapy with PDT, suggesting possible spatial or systemic cooperativity and immune effect.
Collapse
Affiliation(s)
- Stephanie R. Rice
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| | - Yun R. Li
- Helen Diller Family Comprehensive Cancer Center, Department of Radiation Oncology, University of California San Francisco, San Francisco, CA
| | - Theresa M. Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michele M. Kim
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sally McNulty
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Andrea Dimofte
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Timothy C. Zhu
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Keith A. Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Charles B. Simone
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
14
|
Verma V, Ahern CA, Berlind CG, Lindsay WD, Shabason J, Sharma S, Culligan MJ, Grover S, Friedberg JS, Simone CB. Survival by Histologic Subtype of Malignant Pleural Mesothelioma and the Impact of Surgical Resection on Overall Survival. Clin Lung Cancer 2018; 19:e901-e912. [PMID: 30224273 DOI: 10.1016/j.cllc.2018.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/23/2018] [Accepted: 08/11/2018] [Indexed: 12/25/2022]
Abstract
INTRODUCTION For the 3 histologic subtypes of malignant pleural mesothelioma (MPM)-epithelioid, sarcomatoid, and biphasic-the magnitude of benefit with surgical management remains underdefined. MATERIALS AND METHODS The National Cancer Data Base was queried for newly diagnosed nonmetastatic MPM with known histology. Patients in each histologic group were dichotomized into those receiving gross macroscopic resection versus lack thereof/no surgery. Kaplan-Meier analysis evaluated overall survival (OS) between cohorts; multivariable Cox proportional hazards modeling assessed factors associated with OS. After propensity matching, survival was evaluated for each histologic subtype with and without surgery. RESULTS Overall, 4207 patients (68% epithelioid, 18% sarcomatoid, 13% biphasic) met the study criteria. Before propensity matching, patients with epithelioid disease experienced the highest median OS (14.4 months), followed by biphasic (9.5 months) and sarcomatoid (5.3 months) disease; this also persisted after propensity matching (P < .001). After propensity matching, surgery was associated with significantly improved OS for epithelioid (20.9 vs. 14.7 months, P < .001) and biphasic (14.5 vs. 8.8 months, P = .013) but not sarcomatoid (11.2 vs. 6.5 months, P = .140) disease. On multivariable analysis, factors predictive of poorer OS included advanced age, male gender, uninsured status, urban residence, treatment at community centers, and T4/N2 disease (all P < .05). Chemotherapy and surgery were independently associated with improved OS, as was histology (all P < .001). CONCLUSION This large investigation evaluated surgical practice patterns and survival by histology for MPM and found that histology independently affects survival. Gross macroscopic resection is associated with significantly increased survival in epithelioid and biphasic, but not sarcomatoid, disease. However, the decision to perform surgery should continue to be individualized in light of available randomized data.
Collapse
Affiliation(s)
- Vivek Verma
- Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA
| | | | | | | | - Jacob Shabason
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Sonam Sharma
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Melissa J Culligan
- Department of Surgery, Division of Thoracic Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Surbhi Grover
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Joseph S Friedberg
- Department of Surgery, Division of Thoracic Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Charles B Simone
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
15
|
Verma V, Ahern CA, Berlind CG, Lindsay WD, Sharma S, Shabason J, Culligan MJ, Grover S, Friedberg JS, Simone CB. National Cancer Database Report on Pneumonectomy Versus Lung-Sparing Surgery for Malignant Pleural Mesothelioma. J Thorac Oncol 2017; 12:1704-1714. [DOI: 10.1016/j.jtho.2017.08.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/25/2022]
|
16
|
Penjweini R, Kim MM, Zhu TC. Three-dimensional finite-element based deformable image registration for evaluation of pleural cavity irradiation during photodynamic therapy. Med Phys 2017; 44:3767-3775. [PMID: 28426148 DOI: 10.1002/mp.12284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/03/2017] [Accepted: 04/11/2017] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Photodynamic therapy (PDT) is used after surgical resection to treat the microscopic disease for malignant pleural mesothelioma and to increase survival rates. As accurate light delivery is imperative to PDT efficacy, the deformation of the pleural volume during the surgery is studied on its impact on the delivered light fluence. In this study, a three-dimensional finite element-based (3D FEM) deformable image registration is proposed to directly match the volume of lung to the volume of pleural cavity obtained during PDT to have accurate representation of the light fluence accumulated in the lung, heart and liver (organs-at-risk) during treatment. METHODS A wand, comprised of a modified endotrachial tube filled with Intralipid and an optical fiber inside the tube, is used to deliver the treatment light. The position of the treatment is tracked using an optical tracking system with an attachment comprised of nine reflective passive markers that are seen by an infrared camera-based navigation system. This information is used to obtain the surface contours of the plural cavity and the cumulative light fluence on every point of the cavity surface that is being treated. The lung, heart, and liver geometry are also reconstructed from a series of computed tomography (CT) scans of the organs acquired in the same patient before and after the surgery. The contours obtained with the optical tracking system and CTs are imported into COMSOL Multiphysics, where the 3D FEM-based deformable image registration is obtained. The delivered fluence values are assigned to the respective positions (x, y, and z) on the optical tracking contour. The optical tracking contour is considered as the reference, and the CT contours are used as the target, which will be deformed. The data from three patients formed the basis for this study. RESULTS The physical correspondence between the CT and optical tracking geometries, taken at different times, from different imaging devices was established using the 3D FEM-based image deformable registration. The volume of lung was matched to the volume of pleural cavity and the distribution of light fluence on the surface of the heart, liver and deformed lung volumes was obtained. CONCLUSION The method used is appropriate for analyzing problems over complicated domains, such as when the domain changes (as in a solid-state reaction with a moving boundary), when the desired precision varies over the entire domain, or when the solution lacks smoothness. Implementing this method in real-time for clinical applications and in situ monitoring of the under- or over- exposed regions to light during PDT can significantly improve the treatment for mesothelioma.
Collapse
Affiliation(s)
- Rozhin Penjweini
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michele M Kim
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Timothy C Zhu
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
17
|
Zhu TC, Kim MM, Ong YH, Penjweini R, Dimofte A, Finlay JC, Rodriguez C, Cengel KA. A summary of light dose distribution using an IR navigation system for Photofrin-mediated Pleural PDT. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2017; 10047. [PMID: 28690354 DOI: 10.1117/12.2253027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Uniform delivery of light fluence is an important goal for photodynamic therapy. We present summary results for an infrared (IR) navigation system to deliver light dose uniformly during intracavitory PDT by tracking the movement of the light source and providing real-time feedback on the light fluence rate on the entire cavity surface area. In the current intrapleural PDT protocol, 8 detectors placed in selected locations in the pleural cavity monitor the light doses. To improve the delivery of light dose uniformity, an IR camera system is used to track the motion of the light source as well as the surface contour of the pleural cavity. A MATLAB-based GUI program is developed to display the light dose in real-time during PDT to guide the PDT treatment delivery to improve the uniformity of the light dose. A dualcorrection algorithm is used to improve the agreement between calculations and in-situ measurements. A comprehensive analysis of the distribution of light fluence during PDT is presented in both phantom conditions and in clinical cases.
Collapse
Affiliation(s)
- Timothy C Zhu
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michele M Kim
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA
| | - Yi-Hong Ong
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA
| | - Rozhin Penjweini
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Andreea Dimofte
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jarod C Finlay
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Carmen Rodriguez
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Keith A Cengel
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
18
|
Pogue BW, Elliott JT, Kanick SC, Davis SC, Samkoe KS, Maytin EV, Pereira SP, Hasan T. Revisiting photodynamic therapy dosimetry: reductionist & surrogate approaches to facilitate clinical success. Phys Med Biol 2016; 61:R57-89. [PMID: 26961864 DOI: 10.1088/0031-9155/61/7/r57] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Photodynamic therapy (PDT) can be a highly complex treatment, with many parameters influencing treatment efficacy. The extent to which dosimetry is used to monitor and standardize treatment delivery varies widely, ranging from measurement of a single surrogate marker to comprehensive approaches that aim to measure or estimate as many relevant parameters as possible. Today, most clinical PDT treatments are still administered with little more than application of a prescribed drug dose and timed light delivery, and thus the role of patient-specific dosimetry has not reached widespread clinical adoption. This disconnect is at least partly due to the inherent conflict between the need to measure and understand multiple parameters in vivo in order to optimize treatment, and the need for expedience in the clinic and in the regulatory and commercialization process. Thus, a methodical approach to selecting primary dosimetry metrics is required at each stage of translation of a treatment procedure, moving from complex measurements to understand PDT mechanisms in pre-clinical and early phase I trials, towards the identification and application of essential dose-limiting and/or surrogate measurements in phase II/III trials. If successful, identifying the essential and/or reliable surrogate dosimetry measurements should help facilitate increased adoption of clinical PDT. In this paper, examples of essential dosimetry points and surrogate dosimetry tools that may be implemented in phase II/III trials are discussed. For example, the treatment efficacy as limited by light penetration in interstitial PDT may be predicted by the amount of contrast uptake in CT, and so this could be utilized as a surrogate dosimetry measurement to prescribe light doses based upon pre-treatment contrast. Success of clinical ALA-based skin lesion treatment is predicted almost uniquely by the explicit or implicit measurements of photosensitizer and photobleaching, yet the individualization of treatment based upon each patients measured bleaching needs to be attempted. In the case of ALA, lack of PpIX is more likely an indicator that alternative PpIX production methods must be implemented. Parsimonious dosimetry, using surrogate measurements that are clinically acceptable, might strategically help to advance PDT in a medical world that is increasingly cost and time sensitive. Careful attention to methodologies that can identify and advance the most critical dosimetric measurements, either direct or surrogate, are needed to ensure successful incorporation of PDT into niche clinical procedures.
Collapse
Affiliation(s)
- Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA. Department of Surgery, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | |
Collapse
|