1
|
Valenza G, Matić Z, Catrambone V. The brain-heart axis: integrative cooperation of neural, mechanical and biochemical pathways. Nat Rev Cardiol 2025:10.1038/s41569-025-01140-3. [PMID: 40033035 DOI: 10.1038/s41569-025-01140-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
The neural and cardiovascular systems are pivotal in regulating human physiological, cognitive and emotional states, constantly interacting through anatomical and functional connections referred to as the brain-heart axis. When this axis is dysfunctional, neurological conditions can lead to cardiovascular disorders and, conversely, cardiovascular dysfunction can substantially affect brain health. However, the mechanisms and fundamental physiological components of the brain-heart axis remain largely unknown. In this Review, we elucidate these components and identify three primary pathways: neural, mechanical and biochemical. The neural pathway involves the interaction between the autonomic nervous system and the central autonomic network in the brain. The mechanical pathway involves mechanoreceptors, particularly those expressing mechanosensitive Piezo protein channels, which relay crucial information about blood pressure through peripheral and cerebrovascular connections. The biochemical pathway comprises many endogenous compounds that are important mediators of neural and cardiovascular function. This multisystem perspective calls for the development of integrative approaches, leading to new clinical specialties in neurocardiology.
Collapse
Affiliation(s)
- Gaetano Valenza
- Neurocardiovascular Intelligence Lab, Department of Information Engineering & Research Center "E. Piaggio", University of Pisa, Pisa, Italy.
| | - Zoran Matić
- Neurocardiovascular Intelligence Lab, Department of Information Engineering & Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| | - Vincenzo Catrambone
- Neurocardiovascular Intelligence Lab, Department of Information Engineering & Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Shah AS, Vaccarino V, Moazzami K, Almuwaqqat Z, Garcia M, Ward L, Elon L, Ko YA, Sun YV, Pearce BD, Raggi P, Bremner JD, Lampert R, Quyyumi AA, Shah AJ. Autonomic reactivity to mental stress is associated with cardiovascular mortality. EUROPEAN HEART JOURNAL OPEN 2024; 4:oeae086. [PMID: 39588213 PMCID: PMC11588410 DOI: 10.1093/ehjopen/oeae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/02/2024] [Accepted: 09/19/2024] [Indexed: 11/27/2024]
Abstract
Aims The mechanisms linking acute psychological stress to cardiovascular disease (CVD) mortality are incompletely understood. We studied the relationship of electrocardiographic measures of autonomic dysfunction during acute mental stress provocation and CVD death. Methods and results In a pooled cohort of 765 participants with stable CVD from two related studies, we collected Holter data during standardized laboratory-based mental stress testing with a speech task and followed them for events. We assessed autonomic function using low-frequency (LF) heart rate variability (HRV) in 5-min intervals before, during, and after stress induction, and specifically examined changes from rest to stress. We employed cause-specific survival models to examine its association with CVD and all-cause mortality, controlling for demographic and CVD risk factors. The mean (SD) age was 58 (10) years, 35% were women, and 44% self-identified as Black. After a median follow-up of 5.6 years, 37 (5%) died from CVD causes. A stress-induced LF HRV decrease (67% of sample), vs. increase, was associated with a hazard ratio (HR) of 3.48 (95% confidence interval-3.25, 3.73) for CVD mortality. Low rest LF HRV (bottom quartile) was also independently associated with CVD mortality, HR = 1.75 (1.58, 1.94), vs. normal rest LF HRV (upper three quartiles). The combination of stress-induced LF HRV decrease and low rest LF HRV was associated with HR = 5.73 (5.33, 6.15) vs. the normal stress/rest LF HRV reference. We found similar results with HF HRV. Conclusion Stress-induced LF HRV decrease and low rest LF HRV are both independently and additively associated with a higher CVD mortality risk. Additional research is needed to assess whether targeting autonomic dysfunction may improve CVD outcomes.
Collapse
Affiliation(s)
- Anish S Shah
- Department of Medicine, Division of Cardiology, University of Utah, 30 North Mario Capecchi Dr, 3rd Floor North, Salt Lake City, UT 84112, USA
- Department of Medicine, Division of Cardiology, University of Illinois Chicago, 840 South Wood Street, Suite 1020N, MC 787, Chicago, IL 60612, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA
- Emory Clinical Cardiovascular Research Institute, Emory University, 1750 Haygood Dr NE, 2nd Floor, Atlanta, GA 30322, USA
| | - Kasra Moazzami
- Emory Clinical Cardiovascular Research Institute, Emory University, 1750 Haygood Dr NE, 2nd Floor, Atlanta, GA 30322, USA
| | - Zakaria Almuwaqqat
- Emory Clinical Cardiovascular Research Institute, Emory University, 1750 Haygood Dr NE, 2nd Floor, Atlanta, GA 30322, USA
| | - Mariana Garcia
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Laura Ward
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Lisa Elon
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA
- Atlanta VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA
| | - Brad D Pearce
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Paolo Raggi
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA
- Division of Cardiology, Department of Medicine, University of Alberta, 83 Ave NW Edmonton T6G2B7, Canada
| | - J Douglas Bremner
- Atlanta VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, USA
| | - Rachel Lampert
- Section of Cardiology, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510, USA
| | - Arshed A Quyyumi
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA
- Emory Clinical Cardiovascular Research Institute, Emory University, 1750 Haygood Dr NE, 2nd Floor, Atlanta, GA 30322, USA
| | - Amit J Shah
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA
- Atlanta VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA
| |
Collapse
|
3
|
Cai Z, Gao H, Wu M, Li J, Liu C. Physiologic Network-Based Brain-Heart Interaction Quantification During Visual Emotional Elicitation. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2482-2491. [PMID: 38976471 DOI: 10.1109/tnsre.2024.3424543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
In recent years, there has been a surge in interest regarding the intricate physiological interplay between the brain and the heart, particularly during emotional processing. This has led to the development of various signal processing techniques aimed at investigating Brain-Heart Interactions (BHI), reflecting a growing appreciation for their bidirectional communication and influence on each other. Our study contributes to this burgeoning field by adopting a network physiology approach, employing time-delay stability as a quantifiable metric to discern and measure the coupling strength between the brain and the heart, specifically during visual emotional elicitation. We extract and transform features from EEG and ECG signals into a 1 Hz format, facilitating the calculation of BHI coupling strength through stability analysis on their maximal cross-correlation. Notably, our investigation sheds light on the critical role played by low-frequency components in EEG, particularly in the δ , θ , and α bands, as essential mediators of information transmission during the complex processing of emotion-related stimuli by the brain. Furthermore, our analysis highlights the pivotal involvement of frontal pole regions, emphasizing the significance of δ - θ coupling in mediating emotional responses. Additionally, we observe significant arousal-dependent changes in the θ frequency band across different emotional states, particularly evident in the prefrontal cortex. By offering novel insights into the synchronized dynamics of cortical and heartbeat activities during emotional elicitation, our research enriches the expanding knowledge base in the field of neurophysiology and emotion research.
Collapse
|
4
|
Mouchtouri ET, Konstantinou T, Lekkas P, Lianopoulou A, Kotsaridou Z, Mourouzis I, Pantos C, Kolettis TM. Endothelin Modulates Rhythm Disturbances and Autonomic Responses to Acute Emotional Stress in Rats. BIOLOGY 2023; 12:1401. [PMID: 37998000 PMCID: PMC10669295 DOI: 10.3390/biology12111401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/11/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Abstract
The ubiquitous peptide endothelin is currently under investigation as a modulatory factor of autonomic responses to acute emotional stress. Baseline plasma levels of endothelin alter blood pressure responses, but it remains unclear whether autonomic activity and arrhythmogenesis (i.e., brady- or tachyarrhythmias) are affected. We recorded sympathetic and vagal indices (derived from heart rate variability analysis), rhythm disturbances, voluntary motion, and systolic blood pressure after acute emotional stress in conscious rats with implanted telemetry devices. Two strains were compared, namely wild-type and ETB-deficient rats, the latter displaying elevated plasma endothelin. No differences in heart rate or blood pressure were evident, but sympathetic responses were blunted in ETB-deficient rats, contrasting prompt activation in wild-type rats. Vagal withdrawal was observed in both strains at the onset of stress, but vagal activity was subsequently restored in ETB-deficient rats, accompanied by low voluntary motion during recovery. Reflecting such distinct autonomic patterns, frequent premature ventricular contractions were recorded in wild-type rats, as opposed to sinus pauses in ETB-deficient rats. Thus, chronically elevated plasma endothelin levels blunt autonomic responses to acute emotional stress, resulting in vagal dominance and bradyarrhythmias. Our study provides further insights into the pathophysiology of stress-induced tachyarrhythmias and syncope.
Collapse
Affiliation(s)
- Eleni-Taxiarchia Mouchtouri
- Department of Cardiology, Medical School, University of Ioannina, 45500 Ioannina, Greece; (E.-T.M.); (T.K.)
- Cardiovascular Research Institute, 45500 Ioannina, Greece;
| | - Thomas Konstantinou
- Department of Cardiology, Medical School, University of Ioannina, 45500 Ioannina, Greece; (E.-T.M.); (T.K.)
- Cardiovascular Research Institute, 45500 Ioannina, Greece;
| | | | - Alexandra Lianopoulou
- School of Applied Biology and Biotechnology, Agricultural University of Athens, 10447 Athens, Greece; (A.L.); (Z.K.)
| | - Zoi Kotsaridou
- School of Applied Biology and Biotechnology, Agricultural University of Athens, 10447 Athens, Greece; (A.L.); (Z.K.)
| | - Iordanis Mourouzis
- Department of Pharmacology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.M.); (C.P.)
| | - Constantinos Pantos
- Department of Pharmacology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.M.); (C.P.)
| | - Theofilos M. Kolettis
- Department of Cardiology, Medical School, University of Ioannina, 45500 Ioannina, Greece; (E.-T.M.); (T.K.)
- Cardiovascular Research Institute, 45500 Ioannina, Greece;
| |
Collapse
|
5
|
Valenza G. Depression as a cardiovascular disorder: central-autonomic network, brain-heart axis, and vagal perspectives of low mood. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1125495. [PMID: 37260560 PMCID: PMC10228690 DOI: 10.3389/fnetp.2023.1125495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/04/2023] [Indexed: 06/02/2023]
Abstract
If depressive symptoms are not caused by the physiological effects of a substance or other medical or neurological conditions, they are generally classified as mental disorders that target the central nervous system. However, recent evidence suggests that peripheral neural dynamics on cardiovascular control play a causal role in regulating and processing emotions. In this perspective, we explore the dynamics of the Central-Autonomic Network (CAN) and related brain-heart interplay (BHI), highlighting their psychophysiological correlates and clinical symptoms of depression. Thus, we suggest that depression may arise from dysregulated cardiac vagal and sympathovagal dynamics that lead to CAN and BHI dysfunctions. Therefore, treatments for depression should target the nervous system as a whole, with particular emphasis on regulating vagal and BHI dynamics.
Collapse
|
6
|
Sharif MS, Raj Theeng Tamang M, Fu CHY, Baker A, Alzahrani AI, Alalwan N. An Innovative Random-Forest-Based Model to Assess the Health Impacts of Regular Commuting Using Non-Invasive Wearable Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:3274. [PMID: 36991984 PMCID: PMC10055922 DOI: 10.3390/s23063274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Regular commutes to work can cause chronic stress, which in turn can cause a physical and emotional reaction. The recognition of mental stress in its earliest stages is very necessary for effective clinical treatment. This study investigated the impact of commuting on human health based on qualitative and quantitative measures. The quantitative measures included electroencephalography (EEG) and blood pressure (BP), as well as weather temperature, while qualitative measures were established from the PANAS questionnaire, and included age, height, medication, alcohol status, weight, and smoking status. This study recruited 45 (n) healthy adults, including 18 female and 27 male participants. The modes of commute were bus (n = 8), driving (n = 6), cycling (n = 7), train (n = 9), tube (n = 13), and both bus and train (n = 2). The participants wore non-invasive wearable biosensor technology to measure EEG and blood pressure during their morning commute for 5 days in a row. A correlation analysis was applied to find the significant features associated with stress, as measured by a reduction in positive ratings in the PANAS. This study created a prediction model using random forest, support vector machine, naive Bayes, and K-nearest neighbor. The research results show that blood pressure and EEG beta waves were significantly increased, and the positive PANAS rating decreased from 34.73 to 28.60. The experiments revealed that measured systolic blood pressure was higher post commute than before the commute. For EEG waves, the model shows that the EEG beta low power exceeded alpha low power after the commute. Having a fusion of several modified decision trees within the random forest helped increase the performance of the developed model remarkably. Significant promising results were achieved using random forest with an accuracy of 91%, while K-nearest neighbor, support vector machine, and naive Bayes performed with an accuracy of 80%, 80%, and 73%, respectively.
Collapse
Affiliation(s)
- Mhd Saeed Sharif
- Intelligent Technologies Research Group, ACE, UEL, University Way, London E16 2RD, UK
| | | | - Cynthia H Y Fu
- School of Psychology, UEL, Water Lane, London E15 4LZ, UK
| | - Aaron Baker
- School of Psychology, UEL, Water Lane, London E15 4LZ, UK
| | - Ahmed Ibrahim Alzahrani
- Computer Science Department, Community College, King Saud University, Riyadh 11437, Saudi Arabia
| | - Nasser Alalwan
- Computer Science Department, Community College, King Saud University, Riyadh 11437, Saudi Arabia
| |
Collapse
|
7
|
Rafaqat S, Rafaqat S, Rafaqat S. The Role of Major Biomarkers of Stress in Atrial Fibrillation: A Literature Review. J Innov Card Rhythm Manag 2023; 14:5355-5364. [PMID: 36874560 PMCID: PMC9983621 DOI: 10.19102/icrm.2023.14025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/19/2022] [Indexed: 03/07/2023] Open
Abstract
Numerous studies have reported that physical or emotional stress can provoke atrial fibrillation (AF) or vice versa, which suggests a potential link between exposure to external stressors and AF. This review article sought to describe in detail the relationship between major stress biomarkers and the pathogenesis of AF and presents up-to-date knowledge on the role of physiological and psychological stress in AF patients. For this purpose, this review article contends that plasma cortisol is linked to a greater risk of AF. A previous study has investigated the association between increased copeptin levels and paroxysmal AF (PAF) in rheumatic mitral stenosis and reported that copeptin concentration was not independently associated with AF duration. Reduced levels of chromogranin were measured in patients with AF. Furthermore, the dynamic activity of antioxidant enzymes, including catalase as well as superoxide dismutase, was examined in PAF patients during a period of <48 h. Malondialdehyde activity, serum high-sensitivity C-reactive protein, and high mobility group box 1 protein concentrations were significantly greater in patients with persistent AF or PAF compared to controls. Pooled data from 13 studies confirmed a significant reduction in the risk of AF related to the administration of vasopressin. Other studies have revealed the mechanism of action of heat shock proteins (HSPs) in preventing AF and also discussed the therapeutic potential of HSP-inducing compounds in clinical AF. More research is required to detect other biomarkers of stress, which have not been reported in the pathogenesis of AF. Further studies are required to identify their mechanism of action and drugs to manage these biomarkers of stress in AF patients, which might help to reduce the prevalence of AF globally.
Collapse
Affiliation(s)
- Saira Rafaqat
- Department of Zoology, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Sana Rafaqat
- Department of Biotechnology, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Simon Rafaqat
- Department of Business, Forman Christian College (A Chartered University), Lahore, Punjab, Pakistan
| |
Collapse
|
8
|
Yu Q, Liu M, Dai W, Xiong Y, Mu X, Xia M, Li Y, Ma S, Su Y, Wu J, Liu C, Xie Y, Zhao T, Lu A, Weng N, Zheng F, Sun P. The NLRP3 inflammasome is involved in resident intruder paradigm-induced aggressive behaviors in mice. Front Pharmacol 2023; 14:974905. [PMID: 36778007 PMCID: PMC9912938 DOI: 10.3389/fphar.2023.974905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Background: Aggressive behaviors are one of the most important negative behaviors that seriously endangers human health. Also, the central para-inflammation of microglia triggered by stress can affect neurological function, plasticity, and behavior. NLRP3 integrates stress-related signals and is a key driver of this neural para-inflammation. However, it is unclear whether the NLRP3 inflammasome is implicated in the development of aggressive behaviors. Methods: First, aggressive behavior model mice were established using the resident intruder paradigm. Then, aggressive behaviors were determined with open-field tests (OFT), elevated plus-maze (EPM), and aggressive behavior tests (AT). Moreover, the expression of P2X7R and NLRP3 inflammasome complexes were assessed by immunofluorescence and Western blot. The levels of NLRP3 and inflammatory cytokines were evaluated using enzyme-linked immunosorbent assay (ELISA) kits. Finally, nerve plasticity damage was observed by immunofluorescence, transmission electron microscope, and BrdU staining. Results: Overall, the resident intruder paradigm induced aggressive behaviors, activated the hippocampal P2X7R and NLRP3 inflammasome, and promoted the release of proinflammatory cytokines IL-1β in mice. Moreover, NLRP3 knockdown, administration of P2X7R antagonist (A804598), and IL-1β blocker (IL-1Ra) prevented NLRP3 inflammasome-driven inflammatory responses and ameliorated resident intruder paradigm-induced aggressive behaviors. Also, the resident intruder paradigm promoted the activation of mouse microglia, damaging synapses in the hippocampus, and suppressing hippocampal regeneration in mice. Besides, NLRP3 knockdown, administration of A804598, and IL-1Ra inhibited the activation of microglia, improved synaptic damage, and restored hippocampal regeneration. Conclusion: The NLRP3 inflammasome-driven inflammatory response contributed to resident intruder paradigm-induced aggressive behavior, which might be related to neuroplasticity. Therefore, the NLRP3 inflammasome can be a potential target to treat aggressive behavior-related mental illnesses.
Collapse
Affiliation(s)
- Qingying Yu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Molin Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Weibo Dai
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine, Zhong Shan, China
| | - Yu Xiong
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiangyu Mu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Mengyao Xia
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Yanling Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Shan Ma
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Yongtao Su
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Jibiao Wu
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Chuanguo Liu
- Experimental center, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Yicheng Xie
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Tingting Zhao
- College of Foreign Languages, Shandong University of Traditional Chinese Medicine, Ji’nan, China,*Correspondence: Tingting Zhao, ; Aimei Lu, ; Ning Weng, ; Feng Zheng, ; Peng Sun,
| | - Aimei Lu
- Shandong Public Health Clinical Center, Ji’nan, China,*Correspondence: Tingting Zhao, ; Aimei Lu, ; Ning Weng, ; Feng Zheng, ; Peng Sun,
| | - Ning Weng
- Department of Traditional Chinese Medicine, Shandong Mental Health Center, Shandong University, Ji’nan, China,*Correspondence: Tingting Zhao, ; Aimei Lu, ; Ning Weng, ; Feng Zheng, ; Peng Sun,
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China,*Correspondence: Tingting Zhao, ; Aimei Lu, ; Ning Weng, ; Feng Zheng, ; Peng Sun,
| | - Peng Sun
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji’nan, China,*Correspondence: Tingting Zhao, ; Aimei Lu, ; Ning Weng, ; Feng Zheng, ; Peng Sun,
| |
Collapse
|
9
|
Chronic Inhibition of Aggressive Behavior Induces Behavioral Change in Mice. Behav Neurol 2022; 2022:7630779. [PMID: 36619803 PMCID: PMC9815925 DOI: 10.1155/2022/7630779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
Suppression of anger is more common than its expression among Asian individuals. Emotional suppression is considered an unhealthy emotional regulation. Most studies on emotional suppression have concluded that suppression adversely affects social outcomes, with approximately 5% of the world's population suffering from emotional disorders. However, anger suppression has not received academic attention, and details of the effects of chronic anger suppression on the central nervous system remain unclear. In this study, we performed the resident-intruder test to investigate the effect of chronic suppression of aggressive behavior in mice using a behavioral test battery and to clarify whether suppression of this aggressive behavior is stressful for mice. Mice chronically inhibited aggressive behavior and lost weight. Mice with inhibited aggressive behavior showed a reduced percentage of immobility time during the tail suspension test as well as no changes in activity, anxiety-like behavior, muscle strength, or temperature sensitivity. This study provides scientific evidence for the effects of chronic aggressive behavior inhibition on the body and central nervous system.
Collapse
|
10
|
Understanding the Mechanisms of Sudden Cardiac Death in Bipolar Disorder: Functional Asymmetry in Brain-Heart Interactions as a Potential Culprit. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Merritt SH, Krouse M, Alogaily RS, Zak PJ. Continuous Neurophysiologic Data Accurately Predict Mood and Energy in the Elderly. Brain Sci 2022; 12:brainsci12091240. [PMID: 36138976 PMCID: PMC9497070 DOI: 10.3390/brainsci12091240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The elderly have an elevated risk of clinical depression because of isolation from family and friends and a reticence to report their emotional states. The present study explored whether data from a commercial neuroscience platform could predict low mood and low energy in members of a retirement community. Neurophysiologic data were collected continuously for three weeks at 1Hz and averaged into hourly and daily measures, while mood and energy were captured with self-reports. Two neurophysiologic measures averaged over a day predicted low mood and low energy with 68% and 75% accuracy. Principal components analysis showed that neurologic variables were statistically associated with mood and energy two days in advance. Applying machine learning to hourly data classified low mood and low energy with 99% and 98% accuracy. Two-day lagged hourly neurophysiologic data predicted low mood and low energy with 98% and 96% accuracy. This study demonstrates that continuous measurement of neurophysiologic variables may be an effective way to reduce the incidence of mood disorders in vulnerable people by identifying when interventions are needed.
Collapse
|
12
|
Segan L, Prabhu S, Kalman JM, Kistler PM. Atrial Fibrillation and Stress: A 2-Way Street? JACC Clin Electrophysiol 2022; 8:1051-1059. [PMID: 35981797 DOI: 10.1016/j.jacep.2021.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 02/05/2023]
Abstract
The accumulating literature linking stress with negative health outcomes, including cardiovascular disease (CVD), is extensively reported yet poorly defined. Stress is associated with a higher risk of hypertension, acute myocardial infarction, arrhythmogenesis, and heart failure. Stress mediates its effect through direct neuronal, endocrine, autonomic, and immune processes and indirectly by modifying lifestyle behaviors that promote CVD progression. Stress occurs when an individual perceives that internal or external demands exceed the capacity for an adaptive response. Psychologic stress is increasingly recognized in the atrial fibrillation (AF) population, although the pathophysiology remains unclear. There appears to be a bidirectional relationship between AF and stress with a complex interplay between the 2 entities. Stress modulates the immune and autonomic nervous systems, key drivers in AF initiation and potentiation. AF leads to increasing anxiety, psychologic distress, and suicidal ideation. Recently, lifestyle modification has emerged as the fourth pillar of AF management, with stress reduction a potential reversible risk factor and future target for intervention. This review examines proposed mechanisms linking AF and stress and explores stress reduction as an adjunct to the AF management armamentarium.
Collapse
Affiliation(s)
- Louise Segan
- The Alfred Hospital, Melbourne, Australia; Baker Heart and Diabetes Research Institute, Melbourne, Australia; University of Melbourne, Melbourne, Australia
| | - Sandeep Prabhu
- The Alfred Hospital, Melbourne, Australia; Baker Heart and Diabetes Research Institute, Melbourne, Australia; University of Melbourne, Melbourne, Australia
| | - Jonathan M Kalman
- University of Melbourne, Melbourne, Australia; Royal Melbourne Hospital, Melbourne, Australia
| | - Peter M Kistler
- The Alfred Hospital, Melbourne, Australia; Baker Heart and Diabetes Research Institute, Melbourne, Australia; University of Melbourne, Melbourne, Australia; Monash University, Melbourne, Australia.
| |
Collapse
|
13
|
Ducceschi V, de Divitiis M, Bianchi V, Calvanese R, Covino G, Rapacciuolo A, Russo V, Canciello M, Volpicelli M, Ammirati G, Sangiuolo R, Papaccioli G, Ciardiello C, Innocenti S, D'Onofrio A. Effects of COVID-19 lockdown on arrhythmias in patients with implantable cardioverter-defibrillators in southern Italy. J Arrhythm 2022; 38:439-445. [PMID: 35785398 PMCID: PMC9237340 DOI: 10.1002/joa3.12713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background The effects of lockdown on non-COVID patients are varied and unexpected. The aim is to evaluate the burden of cardiac arrhythmias during a lockdown period because of COVID-19 pandemics in a population implanted with cardiac defibrillators and followed by remote monitoring. Methods In this retrospective, multicentre cohort study, we included 574 remotely monitored implantable cardioverter defibrillator (ICD) and cardiac resynchronization therapy-defibrillator (CRT-D) recipients implanted before January 1, 2019, at seven hospitals in the Campania region, comparing the burden of arrhythmias occurred during the lockdown period because of COVID-19 epidemics (from March 9 to May 1, 2020) with the arrhythmias burden of the corresponding period in 2019 (reference period). Data collection was performed through remote monitoring. Results During the lockdown period, we observed ventricular tachyarrhythmias (ventricular tachycardia or fibrillation) in 25 (4.8%) patients while in seasonal reference period we documented ventricular tachyarrhythmias in 12 (2.3%) patients; the comparison between the periods is statistically significant (P < .04). Atrial arrhythmias were detected in 38 (8.2%) subjects during the lockdown period and in 24 (5.2%) during the reference period (P < .004). Conclusion In seven hospitals in the Campania region, during the pandemic lockdown period, we observed a higher burden of arrhythmic events in ICD/CRT-D patients through device remote monitoring.
Collapse
Affiliation(s)
| | | | - Valter Bianchi
- Electrophysiology and Cardiac Pacing UnitMonaldi HospitalNaplesItaly
| | | | | | - Antonio Rapacciuolo
- Department of Advanced Biomedical SciencesFederico II University of NaplesNaplesItaly
| | - Vincenzo Russo
- Deparatment of CardiologyUniversity of Campania "Luigi Vanvitelli," Monaldi HospitalNaplesItaly
| | | | | | - Giuseppe Ammirati
- Department of Advanced Biomedical SciencesFederico II University of NaplesNaplesItaly
| | | | - Giovanni Papaccioli
- Deparatment of CardiologyUniversity of Campania "Luigi Vanvitelli," Monaldi HospitalNaplesItaly
| | | | | | - Antonio D'Onofrio
- Electrophysiology and Cardiac Pacing UnitMonaldi HospitalNaplesItaly
| |
Collapse
|
14
|
Baek JY, Lee E, Gil B, Jung HW, Il-Young J. Clinical Effects of Using A Massage Chair on Stress Measures In Adults: A Pilot Randomized Controlled Trial. Complement Ther Med 2022; 66:102825. [PMID: 35339652 DOI: 10.1016/j.ctim.2022.102825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Since the clinical benefits of a massage chair have not been fully elucidated, we aimed to assess the effects of the long-term use of a massage chair on stress measures in older adults. DESIGN Randomized controlled trial SETTING: Community. Interventions In total, 80 adults aged 50-75 years were randomly assigned to the intervention group (n=41) and control group (n=39). The intervention group used the massage chair twice a day for 6 months. The control group was educated about lifestyle modification. MAIN OUTCOME MEASURES The primary outcome was the change in serum cortisol levels in the morning (8 a.m.) and afternoon (1 p.m.), and the secondary outcomes included changes in levels of dehydroepiandrosterone-sulfate (DHEA-S), serotonin, insulin-like growth factor, erythrocyte sedimentation rate, high sensitivity C-reactive protein, and natural killer cell activity, and results from a questionnaire on mood, cognition, and quality of life. RESULTS The use of the massage chair was associated with a decreasing trend in serum cortisol levels at 1 p.m. (-2.68 ug/dL, p = 0.059). Serum DHEA-S levels significantly decreased with the intervention (-9.66 ug/dL, p = 0.003). In addition, the perceived rate of depression and health status considerably improved following the intervention. CONCLUSIONS Chronic stress in adults could be effectively managed using a massage chair.
Collapse
Affiliation(s)
- Ji Yeon Baek
- Department of Geriatrics, Division of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eunju Lee
- Department of Geriatrics, Division of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Bora Gil
- Department of Geriatrics, Division of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hee-Won Jung
- Department of Geriatrics, Division of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Jang Il-Young
- Department of Geriatrics, Division of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
15
|
La Rovere MT, Gorini A, Schwartz PJ. Stress, the autonomic nervous system, and sudden death. Auton Neurosci 2021; 237:102921. [PMID: 34823148 DOI: 10.1016/j.autneu.2021.102921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/07/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
Abstract
The existence of an important relationship between stress, the autonomic nervous system, and sudden cardiac death (SCD) has been long recognized. In the present essay we review the large number of conditions, acting at individual or at population level, that have been causally associated to SCD and discuss the mechanistic and translational value of the studies exploring such associations. These conditions include external stressors (earthquakes, wars) and internal stressors (anger, fear, loss of a loved one) and emotions of even opposite sign. Most situations confirm the time-honored view that increases in sympathetic activity are proarrhythmic whereas increases in vagal activity are protective; however, we will also show and discuss a condition in which the culprit appears to be the excess of vagal activity. The physiologic rationale underlying the most typical situations is on one hand the profibrillatory effect of the increase in the heterogeneity of repolarization secondary to the release of norepinephrine, and on the other the combined effect of acetylcholine to lower heart rate and to antagonize the cardiac effects of norepinephrine at ventricular level. An interesting facet of this potentially lethal relationship is that the elements involved are by no means always exceptional, and they can actually represent part of our everyday life.
Collapse
Affiliation(s)
- Maria Teresa La Rovere
- Department of Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Montescano, Pavia, Italy.
| | - Alessandra Gorini
- Department of Oncology and Hemato-Oncology, University of Milan, Italy.
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy.
| |
Collapse
|
16
|
Catrambone V, Messerotti Benvenuti S, Gentili C, Valenza G. Intensification of functional neural control on heartbeat dynamics in subclinical depression. Transl Psychiatry 2021; 11:221. [PMID: 33854037 PMCID: PMC8046790 DOI: 10.1038/s41398-021-01336-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/30/2021] [Indexed: 01/06/2023] Open
Abstract
Subclinical depression (dysphoria) is a common condition that may increase the risk of major depression and leads to impaired quality of life and severe comorbid somatic diseases. Despite its prevalence, specific biological markers are unknown; consequently, the identification of dysphoria currently relies exclusively on subjective clinical scores and structured interviews. Based on recent neurocardiology studies that link brain and cardiovascular disorders, it was hypothesized that multi-system biomarkers of brain-body interplay may effectively characterize dysphoria. Thus, an ad hoc computational technique was developed to quantify the functional bidirectional brain-heart interplay. Accordingly, 32-channel electroencephalographic and heart rate variability series were obtained from 24 young dysphoric adults and 36 healthy controls. All participants were females of a similar age, and results were obtained during a 5-min resting state. The experimental results suggest that a specific feature of dysphoria is linked to an augmented functional central-autonomic control to the heart, which originates from central, frontopolar, and occipital oscillations and acts through cardiovascular sympathovagal activity. These results enable further development of a large set of novel biomarkers for mood disorders based on comprehensive brain-body measurements.
Collapse
Affiliation(s)
- Vincenzo Catrambone
- Research Center E. Piaggio & Department of Information Engineering, School of Engineering, University of Pisa, 56126, Pisa, Italy.
| | | | - Claudio Gentili
- grid.5608.b0000 0004 1757 3470Department of General Psychology, University of Padua, 35131 Padua, Italy
| | - Gaetano Valenza
- grid.5395.a0000 0004 1757 3729Research Center E. Piaggio & Department of Information Engineering, School of Engineering, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
17
|
Shah AS, Alonso A, Whitsel EA, Soliman EZ, Vaccarino V, Shah AJ. Association of Psychosocial Factors With Short-Term Resting Heart Rate Variability: The Atherosclerosis Risk in Communities Study. J Am Heart Assoc 2021; 10:e017172. [PMID: 33631952 PMCID: PMC8174247 DOI: 10.1161/jaha.120.017172] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Background Psychosocial factors predict heart disease risk, but our understanding of underlying mechanisms is limited. We sought to evaluate the physiologic correlates of psychosocial factors by measuring their relationships with heart rate variability (HRV), a measure of autonomic health, in the ARIC (Atherosclerosis Risk in Communities) study. We hypothesize that increased psychosocial stress associates with lower HRV. Methods and Results We studied 9331 participants in ARIC with short-term HRV data at visits 2 and 4. The mean (SD) age was 54.4 (5.7) years, 55% were women, and 25% were Black. Psychosocial factors included: (1) vital exhaustion (VE), (2) anger proneness, a personality trait, and (3) perceived social support. Linear models adjusted for sociodemographic and cardiovascular risk factors. Low frequency HRV (ln ms2) was significantly lower in the highest versus lowest quartiles of VE (B=-0.14, 95% CI, -0.24 to -0.05). When comparing this effect to age (B=-0.04, 95% CI, -0.05 to -0.04), the difference was equivalent to 3.8 years of accelerated aging. Perceived social support associated with lower time-domain HRV. High VE (versus low VE) also associated with greater decreases in low frequency over time, and both anger and VE associated with greater increases in resting heart rate over time. Survival analyses were performed with Cox models, and no evidence was found that HRV explains the excess risk found with high VE and low perceived social support. Conclusions Vital exhaustion, and to a lesser extent anger and social support, were associated with worse autonomic function and greater adverse changes over time.
Collapse
Affiliation(s)
- Anish S. Shah
- Department of MedicineSchool of MedicineEmory UniversityAtlantaGA
- Department of EpidemiologyRollins School of Public HealthEmory UniversityAtlantaGA
| | - Alvaro Alonso
- Department of EpidemiologyRollins School of Public HealthEmory UniversityAtlantaGA
| | - Eric A. Whitsel
- Department of EpidemiologyGillings School of Global Public Health and Department of MedicineSchool of MedicineUniversity of North CarolinaChapel HillNC
| | - Elsayed Z. Soliman
- Department of Epidemiology & PreventionWake Forest School of MedicineWinston‐SalemNC
| | - Viola Vaccarino
- Department of EpidemiologyRollins School of Public HealthEmory UniversityAtlantaGA
| | - Amit J. Shah
- Department of MedicineSchool of MedicineEmory UniversityAtlantaGA
- Department of EpidemiologyRollins School of Public HealthEmory UniversityAtlantaGA
- Division of CardiologyDepartment of MedicineSchool of MedicineEmory UniversityAtlantaGA
| |
Collapse
|
18
|
Hemodynamics in acute stroke: Cerebral and cardiac complications. HANDBOOK OF CLINICAL NEUROLOGY 2021; 177:295-317. [PMID: 33632449 DOI: 10.1016/b978-0-12-819814-8.00015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hemodynamics is the study of blood flow, where parameters have been defined to quantify blood flow and the relationship with systemic circulatory changes. Understanding these perfusion parameters, the relationship between different blood flow variables and the implications for ischemic injury are outlined in the ensuing discussion. This chapter focuses on the hemodynamic changes that occur in ischemic stroke, and their contribution to ischemic stroke pathophysiology. We discuss the interaction between cardiovascular response and hemodynamic changes in stroke. Studying hemodynamic changes has a key role in stroke prevention, therapeutic implications and prognostic importance in acute ischemic stroke: preexisting hemodynamic and autoregulatory impairments predict the occurrence of stroke. Hemodynamic failure predisposes to the formation of thromboemboli and accelerates infarction due to impairing compensatory mechanisms. In ischemic stroke involving occlusion of a large vessel, persistent collateral circulation leads to preservation of ischemic penumbra and therefore justifying endovascular thrombectomy. Following thrombectomy, impaired autoregulation may lead to reperfusion injury and hemorrhage.
Collapse
|
19
|
Catrambone V, Talebi A, Barbieri R, Valenza G. Time-resolved Brain-to-Heart Probabilistic Information Transfer Estimation Using Inhomogeneous Point-Process Models. IEEE Trans Biomed Eng 2021; 68:3366-3374. [DOI: 10.1109/tbme.2021.3071348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Vincenzo Catrambone
- Research Center E. Piaggio, Information Engineering, University of Pisa, 9310 Pisa, Toscana, Italy, (e-mail: )
| | - Alireza Talebi
- Research Center E. Piaggio, Information Engineering, University of Pisa, 9310 Pisa, Toscana, Italy, (e-mail: )
| | | | - Gaetano Valenza
- Research Center E. Piaggio, Information Engineering, University of Pisa, 9310 Pisa, Toscana, Italy, (e-mail: )
| |
Collapse
|
20
|
Fogazzi DV, Neary JP, Sonza A, Reppold CT, Kaiser V, Scassola CM, Casali KR, Rasia-Filho AA. The prefrontal cortex conscious and unconscious response to social/emotional facial expressions involve sex, hemispheric laterality, and selective activation of the central cardiac modulation. Behav Brain Res 2020; 393:112773. [PMID: 32544509 DOI: 10.1016/j.bbr.2020.112773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022]
Abstract
The human prefrontal cortex (PFC) processes complex sensory information for the elaboration of social behaviors. The non-invasive neuroimaging technique near-infrared spectroscopy (NIRS) identifies hemodynamic changes and concentration of oxygenated (HbO2) and deoxygenated (HHb) hemoglobin in the cerebral cortex. We studied the responses detected by NIRS in the right and left PFC activation of 28 participants (n = 14 adult young females and males) while processing social/emotional facial expressions, i.e., in conscious perception of different expressions (neutral, happy, sad, angry, disgust, and fearful) and in unconscious/masked perception of negative expressions (fearful and disgust overlapped by neutral). The power spectral analysis from concomitant ECG signals revealed the sympathetic and parasympathetic modulation of cardiac responses. We found higher HbO2 values in the right PFC of females than in males during, and in the left PFC after, following the conscious perception of the happy face. In males, the left PFC increased and the right PFC decreased HbO2 while viewing the happy expression. In both sexes, HHb values were higher during the masked presentation of disgust than fearful expression, and after the masked presentation of fearful expression than during it. Higher sympathetic and lower parasympathetic activity (LF/ HF components) occurred in females when consciously and unconsciously processing negative emotions (p < 0.05 in all cases). These results demonstrate that the human PFC displays a selective activation depending on sex, hemispheric laterality, attention, time for responding to conscious and unconscious emotionally loaded stimuli with simulataneous centrally modulated cardiovascular responses.
Collapse
Affiliation(s)
- Débora V Fogazzi
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Graduation Program in Biosciences, Porto Alegre, RS, Brazil
| | - J Patrick Neary
- University of Regina, Centre for Kinesiology, Faculty of Kinesiology and Health Studies, Regina, Canada
| | - Anelise Sonza
- Universidade do Estado de Santa Catarina (UDESC), Graduation Program in Physiotherapy, Florianópolis,SC, Brazil
| | - Caroline T Reppold
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Department of Psychology, Porto Alegre,RS, Brazil
| | - Vanessa Kaiser
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Department of Psychology, Porto Alegre,RS, Brazil
| | - Catharina M Scassola
- Federal University of São Paulo (UNIFESP), Institute of Science and Technology, Department of Science and Technology, São José dos Campos, SP, Brazil
| | - Karina R Casali
- Federal University of São Paulo (UNIFESP), Institute of Science and Technology, Department of Science and Technology, São José dos Campos, SP, Brazil
| | - Alberto A Rasia-Filho
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Graduation Program in Biosciences, Porto Alegre, RS, Brazil; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Department of Basic Sciences/Physiology, Porto Alegre, RS, Brazil.
| |
Collapse
|
21
|
Kornej J, Börschel CS, Benjamin EJ, Schnabel RB. Epidemiology of Atrial Fibrillation in the 21st Century: Novel Methods and New Insights. Circ Res 2020; 127:4-20. [PMID: 32716709 DOI: 10.1161/circresaha.120.316340] [Citation(s) in RCA: 797] [Impact Index Per Article: 159.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Accompanying the aging of populations worldwide, and increased survival with chronic diseases, the incidence and prevalence of atrial fibrillation (AF) are rising, justifying the term global epidemic. This multifactorial arrhythmia is intertwined with common concomitant cardiovascular diseases, which share classical cardiovascular risk factors. Targeted prevention programs are largely missing. Prevention needs to start at an early age with primordial interventions at the population level. The public health dimension of AF motivates research in modifiable AF risk factors and improved precision in AF prediction and management. In this review, we summarize current knowledge in an attempt to untangle these multifaceted associations from an epidemiological perspective. We discuss disease trends, preventive opportunities offered by underlying risk factors and concomitant disorders, current developments in diagnosis and risk prediction, and prognostic implications of AF and its complications. Finally, we review current technological (eg, eHealth) and methodological (artificial intelligence) advances and their relevance for future prevention and disease management.
Collapse
Affiliation(s)
- Jelena Kornej
- From the National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts & Sections of Cardiovascular Medicine and Preventive Medicine, Boston Medical Center (J.K., E.J.B.), Boston University School of Medicine, MA
| | - Christin S Börschel
- Department of General and Interventional Cardiology, University Heart & Vascular Center Hamburg Eppendorf, Hamburg, Germany (C.B., R.B.S.)
- German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lübeck (C.B., R.B.S.)
| | - Emelia J Benjamin
- From the National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts & Sections of Cardiovascular Medicine and Preventive Medicine, Boston Medical Center (J.K., E.J.B.), Boston University School of Medicine, MA
- Department of Epidemiology (E.J.B.), Boston University School of Medicine, MA
| | - Renate B Schnabel
- Department of General and Interventional Cardiology, University Heart & Vascular Center Hamburg Eppendorf, Hamburg, Germany (C.B., R.B.S.)
- German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lübeck (C.B., R.B.S.)
| |
Collapse
|
22
|
Neary JP, Singh J, Christiansen JP, Teckchandani TA, Potter KL. Causal Link between Ventricular Ectopy and Concussion. Case Rep Med 2020; 2020:7154120. [PMID: 32565823 PMCID: PMC7292985 DOI: 10.1155/2020/7154120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 11/23/2022] Open
Abstract
We present a unique case study report of a male individual with a history of mild nonischaemic cardiomyopathy, with no ventricular ectopy, that at the age of 76 years sustained multiple concussions (i.e., mild traumatic brain injury) within a week of each other. Concussion symptoms included cognitive difficulties, "not feeling well," lethargy, fatigue, and signs of depression. He was later medically diagnosed with postconcussion syndrome. The patient, WJT, was referred for cardiac and neurological assessment. Structural neuroimaging of the brain (MRI) was unremarkable, but electrocardiography (ECG) assessments using a 24-hour Holter monitor revealed significant incidence of ventricular ectopy (9.4%; 9,350/99,836 beats) over a period of 5-6 months after injury and then a further increase in ventricular ectopy to 18% (15,968/88,189 beats) during the subsequent 3 months. The patient was then prescribed Amiodarone 200 mg, and his ventricular ectopy and concussion symptoms completely resolved simultaneously within days. To the authors' knowledge, our study is the first to show a direct link between observable and documented cardiac dysregulation and concussion symptomology. Our study has important implications for both cardiac patients and the patients that sustain a concussion, and if medically managed with appropriate pharmacological intervention, it can reverse ventricular ectopy and concussion symptomology. More research is warranted to investigate the mechanisms for this dramatic and remarkable change in cardiac and cerebral functions and to further explore the brain-heart interaction and the intricate autonomic interaction that exists between the extrinsic and intracardiac nervous systems.
Collapse
Affiliation(s)
- J. Patrick Neary
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Jyotpal Singh
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Jonathan P. Christiansen
- University of Auckland, Faculty of Medical and Health Sciences, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Taylor A. Teckchandani
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Kirsty L. Potter
- Waitemata Cardiology, 181 Shakespeare Road, Milford, Auckland 0620, New Zealand
| |
Collapse
|
23
|
Arrhythmogenic Cardiomyopathy: Molecular Insights for Improved Therapeutic Design. J Cardiovasc Dev Dis 2020; 7:jcdd7020021. [PMID: 32466575 PMCID: PMC7345706 DOI: 10.3390/jcdd7020021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited disorder characterized by structural and electrical cardiac abnormalities, including myocardial fibro-fatty replacement. Its pathological ventricular substrate predisposes subjects to an increased risk of sudden cardiac death (SCD). ACM is a notorious cause of SCD in young athletes, and exercise has been documented to accelerate its progression. Although the genetic culprits are not exclusively limited to the intercalated disc, the majority of ACM-linked variants reside within desmosomal genes and are transmitted via Mendelian inheritance patterns; however, penetrance is highly variable. Its natural history features an initial “concealed phase” that results in patients being vulnerable to malignant arrhythmias prior to the onset of structural changes. Lack of effective therapies that target its pathophysiology renders management of patients challenging due to its progressive nature, and has highlighted a critical need to improve our understanding of its underlying mechanistic basis. In vitro and in vivo studies have begun to unravel the molecular consequences associated with disease causing variants, including altered Wnt/β-catenin signaling. Characterization of ACM mouse models has facilitated the evaluation of new therapeutic approaches. Improved molecular insight into the condition promises to usher in novel forms of therapy that will lead to improved care at the clinical bedside.
Collapse
|
24
|
Clinical presentation of paroxysmal supraventricular tachycardia: evaluation of usual and unusual symptoms. Cardiovasc Endocrinol Metab 2020; 9:153-158. [PMID: 33225230 DOI: 10.1097/xce.0000000000000208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/07/2020] [Indexed: 11/26/2022]
Abstract
Objective Clinical presentation of paroxysmal supraventricular tachycardia may vary from asymptomatic occurrence or mild perception of palpitation to severe chest pain or syncope. This variation is the most challenging issue in the diagnostic evaluation of rhythm disturbances and paroxysmal supraventricular tachycardia as well. This study sought to evaluate the symptoms during the tachycardia attack or index event in patients who underwent electrophysiological study and ablation procedure. Methods This retrospective study included 100 consecutive patients who underwent electrophysiological study and ablation procedures due to supraventricular tachycardia. Structural heart disease, moderate/severe valvular pathology, systemic pathologies, such as connective tissue disease and chronic obstructive lung disease, history of pacemaker implantation was defined as exclusion criteria. In addition, medically managed patients and patients with unsuccessful ablation were not included in the study. Results Palpitation was the most frequently observed symptom in 84% of patients, followed by chest pain in 47%, dyspnea in 38%, syncope 26%, lightheadedness in 19%, and sweating in 18% of the patients. The most common symptoms after tachycardia event were fatigue and lightheadedness with frequencies of 56% and 55%, respectively. Forty-five percent of the patients reported more than one, unusually frequent urination within the following 1-3 hours after the index event. Conclusions Paroxysmal supraventricular tachycardia might manifest itself as gastrointestinal, neurological, psychosomatic symptoms, and unusual complaints in association with or without main symptoms, including palpitation, chest pain, syncope, and dyspnea. Symptoms after tachycardia or index event should be questioned systematically.
Collapse
|
25
|
Yang Y. Aggression and Somatic Symptoms: the Role of Emotion Regulation and Distress Tolerance. Int J Behav Med 2020; 27:466-474. [DOI: 10.1007/s12529-020-09885-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Valenza G, Passamonti L, Duggento A, Toschi N, Barbieri R. Uncovering complex central autonomic networks at rest: a functional magnetic resonance imaging study on complex cardiovascular oscillations. J R Soc Interface 2020; 17:20190878. [PMID: 32183642 DOI: 10.1098/rsif.2019.0878] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This study aims to uncover brain areas that are functionally linked to complex cardiovascular oscillations in resting-state conditions. Multi-session functional magnetic resonance imaging (fMRI) and cardiovascular data were gathered from 34 healthy volunteers recruited within the human connectome project (the '100-unrelated subjects' release). Group-wise multi-level fMRI analyses in conjunction with complex instantaneous heartbeat correlates (entropy and Lyapunov exponent) revealed the existence of a specialized brain network, i.e. a complex central autonomic network (CCAN), reflecting what we refer to as complex autonomic control of the heart. Our results reveal CCAN areas comprised the paracingulate and cingulate gyri, temporal gyrus, frontal orbital cortex, planum temporale, temporal fusiform, superior and middle frontal gyri, lateral occipital cortex, angular gyrus, precuneous cortex, frontal pole, intracalcarine and supracalcarine cortices, parahippocampal gyrus and left hippocampus. The CCAN visible at rest does not include the insular cortex, thalamus, putamen, amygdala and right caudate, which are classical CAN regions peculiar to sympatho-vagal control. Our results also suggest that the CCAN is mainly involved in complex vagal control mechanisms, with possible links with emotional processing networks.
Collapse
Affiliation(s)
- Gaetano Valenza
- Bioengineering and Robotics Research Centre 'E. Piaggio', University of Pisa, Pisa, Italy.,Deparment of Information Engineering, University of Pisa, Pisa, Italy
| | - Luca Passamonti
- Institute of Bioimaging and Molecular Physiology, National Research Council, Milano, Italy.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Andrea Duggento
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Riccardo Barbieri
- Department of Electronics, Informatics and Bioengineering, Politecnico di Milano, Milano, Italy
| |
Collapse
|
27
|
Emotion-body connection dispositions modify the insulae-midcingulate effective connectivity during anger processing. PLoS One 2020; 15:e0228404. [PMID: 32053605 PMCID: PMC7018059 DOI: 10.1371/journal.pone.0228404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/14/2020] [Indexed: 11/25/2022] Open
Abstract
The link between anger and bodily states is readily apparent based on the autonomic and behavioral responses elicited. In everyday life angry people react in different ways, from being agitated with an increased heart rate to remaining silent or detached. Neuroimaging evidence supports the role of mid-posterior insula and midcingulate cortex/MCC as key nodes of a sensorimotor network that predominantly responds to salient stimuli, integration of interoceptive and autonomic information, as well as to awareness of bodily movements for coordinated motion. However, there is still a lack of clarity concerning how interindividual variability in bodily states reactions drives the connectivity within these key nodes in the sensorimotor network during anger processing. Therefore, we investigated whether individual differences in body-centered emotional experience, that is an active (inward prone) or inactive (outward prone) emotion-body connection disposition, would differently affect the information flow within these brain regions. Two groups of participants underwent fMRI scanning session watching video clips of actors performing simple actions with angry and joyful facial expressions. The whole-brain group-by-session interaction analysis showed that the bilateral insula and the right MCC were selectively activated by inward group during the angry session, whereas the outward group activated more the precuneus during the joyful session. Accordingly, dynamic causal modeling analyses (DCM) revealed an excitatory modulatory effect exerted by anger all over the insulae-MCC connectivity in the inward group, whereas in the outward group the modulatory effect exerted was inhibitory. Modeling the variability related to individual differences in body-centered emotional experience allowed to better explain to what extent subjective dispositions contributed to the insular activity and its connectivity. In addition, from the perspective of a hierarchical model of neurovisceral integration, these findings add knowledge to the multiple ways which the insula and MCC dynamically integrate affective and bodily aspects of the human experience.
Collapse
|
28
|
Orini M, Al-Amodi F, Koelsch S, Bailón R. The Effect of Emotional Valence on Ventricular Repolarization Dynamics Is Mediated by Heart Rate Variability: A Study of QT Variability and Music-Induced Emotions. Front Physiol 2019; 10:1465. [PMID: 31849711 PMCID: PMC6895139 DOI: 10.3389/fphys.2019.01465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022] Open
Abstract
Background Emotions can affect cardiac activity, but their impact on ventricular repolarization variability, an important parameter providing information about cardiac risk and autonomic nervous system activity, is unknown. The beat-to-beat variability of the QT interval (QTV) from the body surface ECG is a non-invasive marker of repolarization variability, which can be decomposed into QTV related to RR variability (QTVrRRV) and QTV unrelated to RRV (QTVuRRV), with the latter thought to be a marker of intrinsic repolarization variability. Aim To determine the effect of emotional valence (pleasant and unpleasant) on repolarization variability in healthy volunteers by means of QTV analysis. Methods 75 individuals (24.5 ± 3.2 years, 36 females) without a history of cardiovascular disease listened to music-excerpts that were either felt as pleasant (n = 6) or unpleasant (n = 6). Excerpts lasted about 90 s and were presented in a random order along with silent intervals (n = 6). QTV and RRV were derived from the ECG and the time-frequency spectrum of RRV, QTV, QTVuRRV and QTVrRRV as well as time-frequency coherence between QTV and RRV were estimated. Analysis was performed in low-frequency (LF), high frequency (HF) and total spectral bands. Results The heart rate-corrected QTV showed a small but significant increase from silence (median 347/interquartile range 31 ms) to listening to music felt as unpleasant (351/30 ms) and pleasant (355/32 ms). The dynamic response of QTV to emotional valence showed a transient phase lasting about 20 s after the onset of each musical excerpt. QTV and RRV were highly correlated in both HF and LF (mean coherence ranging 0.76–0.85). QTV and QTVrRRV decreased during listening to music felt as pleasant and unpleasant with respect to silence and further decreased during listening to music felt as pleasant. QTVuRRV was small and not affected by emotional valence. Conclusion Emotional valence, as evoked by music, has a small but significant effect on QTV and QTVrRRV, but not on QTVuRRV. This suggests that the interaction between emotional valence and ventricular repolarization variability is mediated by cycle length dynamics and not due to intrinsic repolarization variability.
Collapse
Affiliation(s)
- Michele Orini
- Institute of Cardiovascular Sciences, University College London, London, United Kingdom.,The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Faez Al-Amodi
- Institute of Cardiovascular Sciences, University College London, London, United Kingdom
| | - Stefan Koelsch
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Raquel Bailón
- Aragon Institute for Engineering Research, University of Zaragoza, Zaragoza, Spain.,Center for Biomedical Research in the Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
29
|
Rosman L, Lampert R, Ramsey CM, Dziura J, Chui PW, Brandt C, Haskell S, Burg MM. Posttraumatic Stress Disorder and Risk for Early Incident Atrial Fibrillation: A Prospective Cohort Study of 1.1 Million Young Adults. J Am Heart Assoc 2019; 8:e013741. [PMID: 31564191 PMCID: PMC6806049 DOI: 10.1161/jaha.119.013741] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background Acute psychological stress and negative emotions are known risk factors for atrial fibrillation (AF). Whether exposure to chronic stress syndromes, such as posttraumatic stress disorder (PTSD), also increases susceptibility to AF is unknown. Methods and Results We prospectively assessed the incidence of AF over a 13-year period among 988 090 young and middle-aged veterans (mean age, 30.29±9.19 years; 87.8% men, 64.5% white) who first accessed care through the Veterans Health Administration from October 2001 to November 2014 and were free of AF, atrial flutter, or atrial tachycardia at baseline. Time-varying, multivariate Cox proportional hazard models were used to examine the independent contribution of PTSD to new AF. We also tested for effect modification by sex and controlled for healthcare use. During a mean follow-up of 4.8 years, 2491 patients were diagnosed with AF. Patients with PTSD had a higher overall incidence of AF (P<0.0001) and were more likely to develop AF at a younger age than those without PTSD (P=0.004). PTSD was significantly associated with incident AF in unadjusted models (hazard ratio, 1.31; 95% CI, 1.19-1.43) and models that adjusted for demographics, lifestyle factors, cardiovascular risk factors, and depression (hazard ratio, 1.13; 95% CI, 1.02-1.24). The interaction with sex was nonsignificant (P=0.93). Conclusions PTSD was associated increased risk for early incident AF after adjustment for established AF risk factors and depression in this cohort of young and middle-aged veterans. Findings from this study require validation in more diverse populations to determine their generalizability.
Collapse
Affiliation(s)
- Lindsey Rosman
- Department of Medicine-Cardiology University of North Carolina School of Medicine Chapel Hill NC.,Department of Internal Medicine (Cardiovascular Medicine) Yale School of Medicine New Haven CT.,VA Connecticut Healthcare System West Haven CT
| | - Rachel Lampert
- Department of Internal Medicine (Cardiovascular Medicine) Yale School of Medicine New Haven CT
| | - Christine M Ramsey
- Yale Center for Medical Informatics Yale School of Medicine New Haven CT
| | - James Dziura
- Yale Center for Medical Informatics Yale School of Medicine New Haven CT
| | - Phillip W Chui
- Department of Internal Medicine (Cardiovascular Medicine) Yale School of Medicine New Haven CT.,VA Connecticut Healthcare System West Haven CT
| | - Cynthia Brandt
- Department of Emergency Medicine Yale School of Medicine New Haven CT.,Yale Center for Medical Informatics Yale School of Medicine New Haven CT.,VA Connecticut Healthcare System West Haven CT
| | - Sally Haskell
- Department of Internal Medicine Yale School of Medicine New Haven CT.,VA Connecticut Healthcare System West Haven CT
| | - Matthew M Burg
- Department of Internal Medicine (Cardiovascular Medicine) Yale School of Medicine New Haven CT.,Department of Anesthesiology Yale School of Medicine New Haven CT.,VA Connecticut Healthcare System West Haven CT
| |
Collapse
|
30
|
Functional Linear and Nonlinear Brain–Heart Interplay during Emotional Video Elicitation: A Maximum Information Coefficient Study. ENTROPY 2019. [PMCID: PMC7515428 DOI: 10.3390/e21090892] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Brain and heart continuously interact through anatomical and biochemical connections. Although several brain regions are known to be involved in the autonomic control, the functional brain–heart interplay (BHI) during emotional processing is not fully characterized yet. To this aim, we investigate BHI during emotional elicitation in healthy subjects. The functional linear and nonlinear couplings are quantified using the maximum information coefficient calculated between time-varying electroencephalography (EEG) power spectra within the canonical bands (δ,θ,α,β and γ), and time-varying low-frequency and high-frequency powers from heartbeat dynamics. Experimental data were gathered from 30 healthy volunteers whose emotions were elicited through pleasant and unpleasant high-arousing videos. Results demonstrate that functional BHI increases during videos with respect to a resting state through EEG oscillations not including the γ band (>30 Hz). Functional linear coupling seems associated with a high-arousing positive elicitation, with preferred EEG oscillations in the θ band ([4,8) Hz) especially over the left-temporal and parietal cortices. Differential functional nonlinear coupling between emotional valence seems to mainly occur through EEG oscillations in the δ,θ,α bands and sympathovagal dynamics, as well as through δ,α,β oscillations and parasympathetic activity mainly over the right hemisphere. Functional BHI through δ and α oscillations over the prefrontal region seems primarily nonlinear. This study provides novel insights on synchronous heartbeat and cortical dynamics during emotional video elicitation, also suggesting that a nonlinear analysis is needed to fully characterize functional BHI.
Collapse
|
31
|
Sinus node-like pacemaker mechanisms regulate ectopic pacemaker activity in the adult rat atrioventricular ring. Sci Rep 2019; 9:11781. [PMID: 31409881 PMCID: PMC6692414 DOI: 10.1038/s41598-019-48276-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 07/02/2019] [Indexed: 01/01/2023] Open
Abstract
In adult mammalian hearts, atrioventricular rings (AVRs) surround the atrial orifices of atrioventricular valves and are hotbed of ectopic activity in patients with focal atrial tachycardia. Experimental data offering mechanistic insights into initiation and maintenance of ectopic foci is lacking. We aimed to characterise AVRs in structurally normal rat hearts, identify arrhythmia predisposition and investigate mechanisms underlying arrhythmogenicity. Extracellular potential mapping and intracellular action potential recording techniques were used for electrophysiology, qPCR for gene and, Western blot and immunohistochemistry for protein expression. Conditions favouring ectopic foci were assessed by simulations. In right atrial preparations, sinus node (SN) was dominant and AVRs displayed 1:1 impulse conduction. Detaching SN unmasked ectopic pacemaking in AVRs and pacemaker action potentials were SN-like. Blocking pacemaker current If, and disrupting intracellular Ca2+ release, prolonged spontaneous cycle length in AVRs, indicating a role for SN-like pacemaker mechanisms. AVRs labelled positive for HCN4, and SERCA2a was comparable to SN. Pacemaking was potentiated by isoproterenol and abolished with carbachol and AVRs had abundant sympathetic nerve endings. β2-adrenergic and M2-muscarinic receptor mRNA and β2-receptor protein were comparable to SN. In computer simulations of a sick SN, ectopic foci in AVR were unmasked, causing transient suppression of SN pacemaking.
Collapse
|
32
|
Greco A, Faes L, Catrambone V, Barbieri R, Scilingo EP, Valenza G. Lateralization of directional brain-heart information transfer during visual emotional elicitation. Am J Physiol Regul Integr Comp Physiol 2019; 317:R25-R38. [DOI: 10.1152/ajpregu.00151.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have characterized the physiological interactions between central nervous system (brain) and peripheral cardiovascular system (heart) during affective elicitation in healthy subjects; however, questions related to the directionality of this functional interplay have been gaining less attention from the scientific community. Here, we explore brain-heart interactions during visual emotional elicitation in healthy subjects using measures of Granger causality (GC), a widely used descriptor of causal influences between two dynamical systems. The proposed approach inferences causality between instantaneous cardiovagal dynamics estimated from inhomogeneous point-process models of the heartbeat and high-density electroencephalogram (EEG) dynamics in 22 healthy subjects who underwent pleasant/unpleasant affective elicitation by watching pictures from the International Affective Picture System database. Particularly, we calculated the GC indexes between the EEG spectrogram in the canonical θ-, α-, β-, and γ-bands and both the instantaneous mean heart rate and its continuous parasympathetic modulations (i.e., the instantaneous HF power). Thus we looked for significant statistical differences among GC values estimated during the resting state, neutral elicitation, and pleasant/unpleasant arousing elicitation. As compared with resting state, coupling strength increases significantly in the left hemisphere during positive stimuli and in the right hemisphere during negative stimuli. Our results further reveal a correlation between emotional valence and lateralization of the dynamical information transfer going from brain-to-heart, mainly localized in the prefrontal, somatosensory, and posterior cortexes, and of the information transfer from heart-to-brain, mainly reflected into the fronto-parietal cortex oscillations in the γ-band (30 −45 Hz).
Collapse
Affiliation(s)
- Alberto Greco
- Bioengineering and Robotics Research Center E. Piaggio, University of Pisa, Pisa, Italy
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Luca Faes
- Department of Energy, Information Engineering, and Mathematical Models (DEIM), University of Palermo, Palermo, Italy
| | - Vincenzo Catrambone
- Bioengineering and Robotics Research Center E. Piaggio, University of Pisa, Pisa, Italy
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Riccardo Barbieri
- Department of Electronics, Informatics and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Enzo Pasquale Scilingo
- Bioengineering and Robotics Research Center E. Piaggio, University of Pisa, Pisa, Italy
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Gaetano Valenza
- Bioengineering and Robotics Research Center E. Piaggio, University of Pisa, Pisa, Italy
| |
Collapse
|
33
|
Lampert R, Burg MM, Jamner LD, Dziura J, Brandt C, Li F, Donovan T, Soufer R. Effect of β-blockers on triggering of symptomatic atrial fibrillation by anger or stress. Heart Rhythm 2019; 16:1167-1173. [PMID: 31171436 DOI: 10.1016/j.hrthm.2019.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Anger and stress can trigger episodes of atrial fibrillation (AF) in patients with a history of AF. OBJECTIVE The purpose of this study was to determine whether β-blockers can protect against emotionally triggered AF. METHODS In this prospective, controlled, electronic diary-based study of emotions preceding AF, patients with a history of paroxysmal or persistent AF (N = 91) recorded their rhythm on event monitors at the time of AF symptoms and completed a diary entry querying mood states (eg, anger and stress) for the preceding 30 minutes (pre-AF "case period") for 1 year. Also, patients underwent monthly 24-hour Holter monitoring during which they were prompted to complete a diary entry twice per hour. Diaries recorded during sinus rhythm comprise controls. Patients' exposure to each emotion was compared between the pre-AF case period and control periods by using generalized estimating equation modeling, as well as interactions between β-blocker use and emotion tested. RESULTS Sixty percent were prescribed β-blockers. A total of 163 symptomatic AF episodes (in 34 patients) and 11,563 Holter-confirmed sinus rhythm control periods had associated diary data. Overall, the likelihood of an AF episode was significantly higher during anger or stress. This effect, however, was significantly attenuated in patients on β-blockers (odds ratio 22.5; 95% confidence interval 6.7-75.4, P < .0001 for patients not prescribed β-blockers vs odds ratio 4.0, 95% confidence interval 1.7-9.5, P = .002 for those prescribed β-blockers; P = .02 for the interaction). Exclusion of patients on sotalol did not affect findings. CONCLUSION Anger or stress can trigger AF, but use of β-blockers greatly attenuates this deleterious physiological response.
Collapse
Affiliation(s)
- Rachel Lampert
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven Connecticut.
| | - Matthew M Burg
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven Connecticut
| | - Larry D Jamner
- Department of Psychological Science, School of Social Ecology, University of California, Irvine, Irvine, California
| | - James Dziura
- Department of Emergency Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Cynthia Brandt
- Department of Emergency Medicine, Yale University School of Medicine, New Haven, Connecticut; Department of Medicine, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Fangyong Li
- Yale University School of Public Health, Department of Biostatistics, New Haven, Connecticut
| | - Theresa Donovan
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven Connecticut
| | - Robert Soufer
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven Connecticut
| |
Collapse
|
34
|
Seok JW, Cheong C. Dynamic Causal Modeling of Effective Connectivity During Anger Experience in Healthy Young Men: 7T Magnetic Resonance Imaging Study. Adv Cogn Psychol 2019; 15:52-62. [PMID: 32537036 PMCID: PMC7278524 DOI: 10.5709/acp-0256-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Little is known about how anger-associated brain regions integrate and modulate external input. Therefore, we investigated the neural connectivity architecture of anger processing using a dynamic causal modeling (DCM) approach. Thirteen subjects underwent functional magnetic resonance imaging (fMRI) while viewing anger-inducing film clips. Conventional fMRI and DCM analyses were conducted to identify a dominant connectivity model. Viewing anger-inducing film clips led to activation in the left superior temporal gyrus, left insula, and left orbitofrontal cortex (OFC). The results of a group-level comparison of eight connectivity models based on conventional fMRI findings showed superiority of the model including reciprocal effective connectivities between the left insula, left superior temporal gyrus, and left orbitofrontal gyrus and bottom-up connectivity from the left superior temporal gyrus to the left orbitofrontal gyrus. Positive coupling effects were identified for connectivities between the left superior temporal gyrus and left insula and the left superior temporal gyrus and left OFC. A negative coupling effect was identified for connectivity between the left OFC and left insula. In conclusion, we propose a model of effective connectivity associated with the anger experience based on dynamic causal modeling. The findings have implications for various psychiatric disorders related to abnormalities in anger processing.
Collapse
Affiliation(s)
- Ji-Woo Seok
- Department of Counseling Psychology, Honam University, Kwangju, South Korea
- Bioimaging Research Team, Korea Basic Science Institute, Cheongju, South Korea
| | - Chaejoon Cheong
- Bioimaging Research Team, Korea Basic Science Institute, Cheongju, South Korea
| |
Collapse
|
35
|
Chadda KR, Ajijola OA, Vaseghi M, Shivkumar K, Huang CLH, Jeevaratnam K. Ageing, the autonomic nervous system and arrhythmia: From brain to heart. Ageing Res Rev 2018; 48:40-50. [PMID: 30300712 DOI: 10.1016/j.arr.2018.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/21/2018] [Accepted: 09/30/2018] [Indexed: 02/08/2023]
Abstract
An ageing myocardium possesses significant electrophysiological alterations that predisposes the elderly patient to arrhythmic risk. Whilst these alterations are intrinsic to the cardiac myocytes, they are modulated by the cardiac autonomic nervous system (ANS) and consequently, ageing of the cardiac ANS is fundamental to the development of arrhythmias. A systems-based approach that incorporates the influence of the cardiac ANS could lead to better mechanistic understanding of how arrhythmogenic triggers and substrates interact spatially and temporally to produce sustained arrhythmia and why its incidence increases with age. Despite the existence of physiological oscillations of ANS activity on the heart, pathological oscillations can lead to defective activation and recovery properties of the myocardium. Such changes can be attributable to the decrease in functionality and structural alterations to ANS specific receptors in the myocardium with age. These altered ANS adaptive responses can occur either as a normal ageing process or accelerated in the presence of specific cardiac pathologies, such as genetic mutations or neurodegenerative conditions. Targeted intervention that seek to manipulate the ageing ANS influence on the myocardium may prove to be an efficacious approach for the management of arrhythmia in the ageing population.
Collapse
Affiliation(s)
- Karan R Chadda
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, United Kingdom; Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, UCLA Health System/David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, UCLA Health System/David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center, UCLA Health System/David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom; Department of Biochemistry, Hopkins Building, University of Cambridge, Cambridge, CB2 1QW, United Kingdom
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, United Kingdom; Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom.
| |
Collapse
|
36
|
Jungmann M, Vencatachellum S, Van Ryckeghem D, Vögele C. Effects of Cold Stimulation on Cardiac-Vagal Activation in Healthy Participants: Randomized Controlled Trial. JMIR Form Res 2018; 2:e10257. [PMID: 30684416 PMCID: PMC6334714 DOI: 10.2196/10257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/14/2018] [Accepted: 07/28/2018] [Indexed: 11/20/2022] Open
Abstract
Background The experience of psychological stress has not yet been adequately tackled with digital technology by catering to healthy individuals who wish to reduce their acute stress levels. For the design of digitally mediated solutions, physiological mechanisms need to be investigated that have the potential to induce relaxation with the help of technology. Research has shown that physiological mechanisms embodied in the face and neck regions are effective for diminishing stress-related symptoms. Our study expands on these areas with the design for a wearable in mind. As this study charts new territory in research, it also is a first evaluation of the viability for a wearables concept to reduce stress. Objective The objectives of this study were to assess whether (1) heart rate variability would increase and (2) heart rate would decrease during cold stimulation using a thermode device compared with a (nonstimulated) control condition. We expected effects in particular in the neck and cheek regions and less in the forearm area. Methods The study was a fully randomized, within-participant design. Volunteer participants were seated in a laboratory chair and tested with cold stimulation on the right side of the body. A thermode was placed on the neck, cheek, and forearm. We recorded and subsequently analyzed participants’ electrocardiogram. The cold stimulation was applied in 16-second intervals over 4 trials per testing location. The control condition proceeded exactly like the cold condition, except we manipulated the temperature variable to remain at the baseline temperature. We measured heart rate as interbeat intervals in milliseconds and analyzed root mean square of successive differences to index heart rate variability. We analyzed data using a repeated-measures ANOVA (analysis of variance) approach with 2 repeated-measures factors: body location (neck, cheek, forearm) and condition (cold, control). Results Data analysis of 61 participants (after exclusion of outliers) showed a main effect and an interaction effect for body location and for condition, for both heart rate and heart rate variability. The results demonstrate a pattern of cardiovascular reactivity to cold stimulation, suggesting an increase in cardiac-vagal activation. The effect was significant for cold stimulation in the lateral neck area. Conclusions The results confirmed our main hypothesis that cold stimulation at the lateral neck region would result in higher heart rate variability and lower heart rate than in the control condition. This sets the stage for further investigations of stress reduction potential in the neck region by developing a wearable prototype that can be used for cold application. Future studies should include a stress condition, test for a range of temperatures and durations, and collect self-report data on perceived stress levels to advance findings.
Collapse
Affiliation(s)
- Manuela Jungmann
- Institute for Health and Behaviour, Faculty of Language and Literature, Humanities, Arts and Education, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Shervin Vencatachellum
- Institute for Health and Behaviour, Faculty of Language and Literature, Humanities, Arts and Education, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dimitri Van Ryckeghem
- Institute for Health and Behaviour, Faculty of Language and Literature, Humanities, Arts and Education, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Claus Vögele
- Institute for Health and Behaviour, Faculty of Language and Literature, Humanities, Arts and Education, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
37
|
Valenza G, Duggento A, Passamonti L, Diciotti S, Tessa C, Barbieri R, Toschi N. Resting-state brain correlates of instantaneous autonomic outflow. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2017:3325-3328. [PMID: 29060609 DOI: 10.1109/embc.2017.8037568] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A prominent pathway of brain-heart interaction is represented by autonomic nervous system (ANS) heartbeat modulation. While within-brain resting state networks have been the object of intense functional Magnetic Resonance Imaging (fMRI) research, technological and methodological limitations have hampered research on the central correlates of cardiovascular control dynamics. Here we combine the high temporal and spatial resolution as well as data volume afforded by the Human Connectome Project with a probabilistic model of heartbeat dynamics to characterize central correlates of sympathetic and parasympathetic ANS activity at rest. We demonstrate an involvement of a number of brain regions such as the Insular cortex, Frontal Gyrus, Lateral Occipital Cortex, Paracingulate and Cingulate Gyrus and Precuneous Cortex, as well as subcortical structures (Thalamus, Putamen, Pallidum, Brain-Stem, Hippocampus, Amygdala, and Right Caudate) in the modulation of ANS-mediated cardiovascular control, possibly indicating a broader definition of the central autonomic network (CAN). Our findings provide a basis for an informed neurobiological interpretation of the numerous studies which employ HRV-related measures as standalone biomarkers in health and disease.
Collapse
|
38
|
Poveda-Jaramillo R, Monaco F, Zangrillo A, Landoni G. Ultra-Short–Acting β-Blockers (Esmolol and Landiolol) in the Perioperative Period and in Critically Ill Patients. J Cardiothorac Vasc Anesth 2018; 32:1415-1425. [DOI: 10.1053/j.jvca.2017.11.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Indexed: 01/16/2023]
|
39
|
Fransson EI, Nordin M, Magnusson Hanson LL, Westerlund H. Job strain and atrial fibrillation – Results from the Swedish Longitudinal Occupational Survey of Health and meta-analysis of three studies. Eur J Prev Cardiol 2018; 25:1142-1149. [DOI: 10.1177/2047487318777387] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Knowledge about the impact of occupational exposures, such as work stress, on the risk of atrial fibrillation is limited. The present study aims to investigate the association between job strain, a measure of work stress, and atrial fibrillation. Design Prospective cohort study design and fixed-effect meta-analysis. Methods Data from the Swedish Longitudinal Occupational Survey of Health (SLOSH) was utilised for the main analysis, combining self-reported data on work stress at baseline with follow-up data on atrial fibrillation from nationwide registers. Cox proportional hazard regression analyses were used to estimate hazard ratios and 95% confidence intervals (CIs). A fixed-effect meta-analysis was conducted to pool the results from the present study with results from two similar previously published studies. Results Based on SLOSH data, job strain was associated with an almost 50% increased risk of atrial fibrillation (hazard ratio 1.48, 95% CI 1.00–2.18) after adjustment for age, sex and education. Further adjustment for smoking, physical activity, body mass index and hypertension did not alter the estimated risk. The meta-analysis of the present and two previously published studies showed a consistent pattern, with job strain being associated with increased risk of atrial fibrillation in all three studies. The estimated pooled hazard ratio was 1.37 (95% CI 1.13–1.67). Conclusion The results highlight that occupational exposures, such as work stress, may be important risk factors for incident atrial fibrillation.
Collapse
Affiliation(s)
- Eleonor I Fransson
- School of Health and Welfare, Jönköping University, Sweden
- Stress Research Institute, Stockholm University, Sweden
| | - Maria Nordin
- Department of Psychology, Umeå University, Sweden
| | | | | |
Collapse
|
40
|
Dal Lin C, Tona F, Osto E. The Heart as a Psychoneuroendocrine and Immunoregulatory Organ. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1065:225-239. [PMID: 30051388 DOI: 10.1007/978-3-319-77932-4_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The heart can be viewed not just as muscle pump but also as an important checkpoint for a complex network of nervous, endocrine, and immune signals. The heart is able to process neurological signals independently from the brain and to crosstalk with the endocrine and immune systems. The heart communicates with the psyche through the neuro-endocrine-immune system in a highly integrated way, in order to maintain the homeostasis of the whole body with peculiarities specific to males and females.
Collapse
Affiliation(s)
- Carlo Dal Lin
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Francesco Tona
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Elena Osto
- Laboratory of Translational Nutrition Biology, Federal Institute of Technology Zurich ETHZ, Zurich, Switzerland. .,Center for Molecular Cardiology, University of Zurich and University Heart Center, Cardiology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
41
|
Faes L, Greco A, Lanata A, Barbieri R, Scilingo EP, Valenza G. Causal brain-heart information transfer during visual emotional elicitation in healthy subjects: Preliminary evaluations and future perspectives. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:1559-1562. [PMID: 29060178 DOI: 10.1109/embc.2017.8037134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Complex heartbeat dynamics is known to reflect subject's emotional state, thanks to numerous links to brain cortical and subcortical regions. Likewise, specific brain regions are deeply involved in vagally-mediated emotional processing and regulation. Nevertheless, although the brain-heart interplay has been studied during visual emotion elicitation, directional interactions have not been investigated so far. To fill this gap, in this study we investigate brain-heart dynamics during emotional elicitation in healthy subjects through measures of Granger causality (GC) between the two physiological systems. Data were gathered from 22 healthy volunteers who underwent pleasant/ unpleasant affective elicitation using pictures from the International Affective Picture System. Neutral emotional stimuli were elicited as well. High density electroencephalogram (EEG) signals were processed to obtain time-varying maps of cortical activation, whereas the associated instantaneous cardiovascular dynamics was estimated through inhomogeneous point-process models. Concerning the information transfer brain-to-heart, GE highlighted significant valence-dependent lateralization with respect to resting states. Furthermore, as a proof of concept, the study of heart-to-brain dynamics considering EEG oscillations in the γ band (30-45 Hz) highlighted differential information transfer between neutral and positive elicitations directed to the prefrontal cortex.
Collapse
|
42
|
Kiran U, Ladha S. Anger: An enemy of heart, raj yoga meditation is heart friendly. Ann Card Anaesth 2017; 20:127-128. [PMID: 28393768 PMCID: PMC5408513 DOI: 10.4103/aca.aca_29_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Usha Kiran
- Department of Cardiac Anaesthesia, CTC, AIIMS, New Delhi, India
| | - Suruchi Ladha
- Department of Cardiac Anaesthesia, CTC, AIIMS, New Delhi, India
| |
Collapse
|
43
|
Okoye IC, Anyabolu EN. Electrocardiographic abnormalities in treatment-naïve HIV subjects in south-east Nigeria. Cardiovasc J Afr 2017; 28:315-318. [PMID: 28345730 PMCID: PMC5730734 DOI: 10.5830/cvja-2017-013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 01/26/2017] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Cardiac complications of human immunodeficiency virus (HIV) infection are important causes of morbidity and mortality. We set out to determine the electrocardiographic (ECG) abnormalities in treatment-naïve HIV-positive patients in Enugu, south-east Nigeria. METHODS This was a cross-sectional study involving 250 HIV-positive and 200 HIV-negative subjects. Demographic and anthropometric data, relevant investigations and ECG results were compared between the groups. RESULTS An abnormal ECG was present in 70% of the HIV-positive patients, sinus bradycardia in 64%, QTC prolongation in 48%, T-wave inversion in 21.6%, Wolf-Parkinson-White syndrome in 0.8%, abnormal P waves in 12.8%, 1st degree heart block in 2.4%, ST depression in 30%, and left-axis deviation in 1.6%. Underweight was associated with ECG abnormalities (p = 0.001). The HIV-positive patients had more ECG abnormalities than the HIV-negative subjects (p = 0.001). CONCLUSION Electrocardiographic abnormalities were common in treatment-naïve HIV-positive patients in Enugu, Nigeria. The 70% prevalence of ECG abnormalities in treatment-naïve HIV-positive patients was high. There is a need to evaluate HIV-positive patients at onset for cardiac and non-cardiac abnormalities detectable by ECG.
Collapse
|
44
|
Wang X, Liu B, Xie L, Yu X, Li M, Zhang J. Cerebral and neural regulation of cardiovascular activity during mental stress. Biomed Eng Online 2016; 15:160. [PMID: 28155673 PMCID: PMC5260034 DOI: 10.1186/s12938-016-0255-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Mental arithmetic has been verified inducing cerebral and cardiovascular responses. However, the mechanism and sequential responses are still ambiguous. This study aims to reveal the mechanism of cardiovascular and autonomic responses and the related scalp positions that regulate the autonomic nerves system (ANS) during MA task. Methods 34 healthy male subjects aged between 19 and 27 years old (mean age 23.6 ± 2.3 years) were recruited in. Electrocardiogram, impedance cardiography, beat-to-beat blood pressure and electroencephalography were measured simultaneously and continuously during the experiments. And the analysis of time–frequency, approximate entropy and Pearson correlation coefficient were adopted. For statistical comparison, paired t test is utilized in the study. Results The results showed that mental arithmetic task increased heart rate (from 72.35 ± 1.88 to 80.38 ± 2.34), blood pressure (systolic blood pressure: from 112.09 ± 3.23 to 126.79 ± 3.44; diastolic blood pressure: from 74.15 ± 1.93 to 81.20 ± 1.97), and cardiac output (from 8.71 ± 0.30 to 9.68 ± 0.35), and the mental arithmetic induced physiological responses could be divided into two stages, the first stage (10–110 s) and late stage (150–250 s). The high frequency power component (HF) of HRV decreased during MA, but the normalized low frequency power component (nLF) and LF/HF ratio of HRV increased only at the late stage. Moreover, during first stage, the correlations between approximate entropy of electroencephalography at Fp2, Fz, F4, F7 and the corresponding time–frequency results of HF were significant. During the late stage, the correlations between approximate entropy of electroencephalography at Fp2, Fz, C3, C4 and the corresponding nLF was significant. Conclusions Our results demonstrated that (1) mental stress induces time-dependent ANS activity and cardiovascular response. (2) Parasympathetic activity is lower during mental arithmetic task, but sympathetic nerve is activated only during late stage of mental arithmetic task. (3) Brain influences the cardiac activity through prefrontal and temporal cortex with the activation of ANS during mental arithmetic.
Collapse
Affiliation(s)
- Xiaoni Wang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Binbin Liu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lin Xie
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaolin Yu
- Department of Information Engineering, Officers College of CAPF, Chengdu, 610213, China
| | - Mengjun Li
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jianbao Zhang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
45
|
Lewek J, Ptaszynski P, Klingenheben T, Cygankiewicz I. The clinical value of T-wave alternans derived from Holter monitoring. Europace 2016; 19:529-534. [DOI: 10.1093/europace/euw292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/19/2016] [Indexed: 11/12/2022] Open
|
46
|
Dubey NK, Syed-Abdul S, Nguyen PA, Dubey R, Iqbal U, Li YC, Chen WH, Deng WP. Association between anxiety state and mitral valve disorders: A Taiwanese population-wide observational study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 132:57-61. [PMID: 27282227 DOI: 10.1016/j.cmpb.2016.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Despite substantial research progress in concurrent diseases, for instance comorbidities involving anxiety state (AS) and mitral valve disorders (MVD), the current measures and care are limited and no consensus about their association has yet been reached. Hence, this study aims to analyze the prevalence and association between AS and MVD among Taiwanese population. METHODS We employed phenome-wide association study (PWAS) portal to investigate the association between AS and MVD using claim data of Taiwan's National Health Insurance Research Database (NHIRD) from year 2000 to 2002. Association strength between AS and MVD was analyzed among overall age and gender groups. RESULTS We found an overall stronger association between AS and MVD, which was significantly higher in younger age group (OR 15, 95% CI 14.82-16.88) than in the elderly age group (OR 1.99, 95% CI 1.76-2.24). Also, the study reveals a higher incidence of co-occurrence in females than males, particularly in age group of 40-49. CONCLUSIONS Based on our results showing considerable strength of association between AS and MVD, this study suggests the necessity of MVD assessment in all patients with AS, particularly in younger females. Moreover, we also propose psychotherapeutic as well as pharmacologic intervention for comorbidity-based pathologies to better the quality care for high-need Taiwanese population.
Collapse
Affiliation(s)
- Navneet Kumar Dubey
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Shabbir Syed-Abdul
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Phung Anh Nguyen
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | | | - Usman Iqbal
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chuan Li
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Hong Chen
- Stem Cell Research Center, Taipei Medical University, Taipei, Taiwan
| | - Win-Ping Deng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; Stem Cell Research Center, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Basic Medicine, Fu-Jen Catholic University, Taipei, Taiwan.
| |
Collapse
|
47
|
Ng GA. Neuro-cardiac interaction in malignant ventricular arrhythmia and sudden cardiac death. Auton Neurosci 2016; 199:66-79. [DOI: 10.1016/j.autneu.2016.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/02/2016] [Accepted: 07/04/2016] [Indexed: 12/30/2022]
|
48
|
Shivkumar K, Ajijola OA, Anand I, Armour JA, Chen PS, Esler M, De Ferrari GM, Fishbein MC, Goldberger JJ, Harper RM, Joyner MJ, Khalsa SS, Kumar R, Lane R, Mahajan A, Po S, Schwartz PJ, Somers VK, Valderrabano M, Vaseghi M, Zipes DP. Clinical neurocardiology defining the value of neuroscience-based cardiovascular therapeutics. J Physiol 2016; 594:3911-54. [PMID: 27114333 PMCID: PMC4945719 DOI: 10.1113/jp271870] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/08/2016] [Indexed: 12/13/2022] Open
Abstract
The autonomic nervous system regulates all aspects of normal cardiac function, and is recognized to play a critical role in the pathophysiology of many cardiovascular diseases. As such, the value of neuroscience-based cardiovascular therapeutics is increasingly evident. This White Paper reviews the current state of understanding of human cardiac neuroanatomy, neurophysiology, pathophysiology in specific disease conditions, autonomic testing, risk stratification, and neuromodulatory strategies to mitigate the progression of cardiovascular diseases.
Collapse
Affiliation(s)
- Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, Los Angeles, CA, USA
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, Los Angeles, CA, USA
| | - Inder Anand
- Department of Cardiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - J Andrew Armour
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, Los Angeles, CA, USA
| | - Peng-Sheng Chen
- Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Murray Esler
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Michael C Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jeffrey J Goldberger
- Division of Cardiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ronald M Harper
- Department of Neurobiology and the Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Michael J Joyner
- Division of Cardiovascular Diseases, Mayo Clinic and Mayo Foundation, Rochester, MN, USA
| | | | - Rajesh Kumar
- Departments of Anesthesiology and Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Richard Lane
- Department of Psychiatry, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Aman Mahajan
- Department of Anesthesia, UCLA, Los Angeles, CA, USA
| | - Sunny Po
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- University of Tulsa Oxley College of Health Sciences, Tulsa, OK, USA
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, IRCCS Instituto Auxologico Italiano, c/o Centro Diagnostico e di Ricerrca San Carlo, Milan, Italy
| | - Virend K Somers
- Division of Cardiovascular Diseases, Mayo Clinic and Mayo Foundation, Rochester, MN, USA
| | - Miguel Valderrabano
- Methodist DeBakey Heart and Vascular Center and Methodist Hospital Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, Los Angeles, CA, USA
| | - Douglas P Zipes
- Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
49
|
Mazzola V, Arciero G, Fazio L, Lanciano T, Gelao B, Popolizio T, Vuilleumier P, Bondolfi G, Bertolino A. What Impact does An Angry Context have Upon Us? The Effect of Anger on Functional Connectivity of the Right Insula and Superior Temporal Gyri. Front Behav Neurosci 2016; 10:109. [PMID: 27375449 PMCID: PMC4893496 DOI: 10.3389/fnbeh.2016.00109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 05/20/2016] [Indexed: 11/29/2022] Open
Abstract
Being in a social world requires an understanding of other people that is co-determined in its meaning by the situation at hand. Therefore, we investigated the underlying neural activation occurring when we encounter someone acting in angry or joyful situation. We hypothesized a dynamic interplay between the right insula, both involved in mapping visceral states associated with emotional experiences and autonomic control, and the bilateral superior temporal gyri (STG), part of the “social brain”, when facing angry vs. joyful situations. Twenty participants underwent a functional magnetic resonance imaging (fMRI) scanning session while watching video clips of actors grasping objects in joyful and angry situations. The analyses of functional connectivity, psychophysiological interaction (PPI) and dynamic causal modeling (DCM), all revealed changes in functional connectivity associated with the angry situation. Indeed, the DCM model showed that the modulatory effect of anger increased the ipsilateral forward connection from the right insula to the right STG, while it suppressed the contralateral one. Our findings reveal a critical role played by the right insula when we are engaged in angry situations. In addition, they suggest that facing angry people modulates the effective connectivity between these two nodes associated, respectively, with autonomic responses and bodily movements and human-agent motion recognition. Taken together, these results add knowledge to the current understanding of hierarchical brain network for social cognition.
Collapse
Affiliation(s)
- Viridiana Mazzola
- Department of Mental Health, Psychiatry de Liaison, University Hospitals of GenevaGeneva, Switzerland; Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Neurology, University Hospital and Department of Neuroscience, Medical School University of GenevaGeneva, Switzerland
| | - Giampiero Arciero
- Department of Mental Health, Psychiatry de Liaison, University Hospitals of GenevaGeneva, Switzerland; Institute of Post-Rationalist Psychology IPRARome, Italy
| | - Leonardo Fazio
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro" Bari, Italy
| | - Tiziana Lanciano
- Department of Education, Psychology, Communication, University of Bari Bari, Italy
| | - Barbara Gelao
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro" Bari, Italy
| | - Teresa Popolizio
- Department of Neuroradiology, "Casa Sollievo della Sofferenza" IRCCSS San Giovanni Rotondo, FG, Italy
| | - Patrik Vuilleumier
- Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Neurology, University Hospital and Department of Neuroscience, Medical School University of Geneva Geneva, Switzerland
| | - Guido Bondolfi
- Department of Mental Health, Psychiatry de Liaison, University Hospitals of GenevaGeneva, Switzerland; Department of Psychiatry, University of GenevaGeneva, Switzerland
| | - Alessandro Bertolino
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro" Bari, Italy
| |
Collapse
|
50
|
Valenza G, Greco A, Gentili C, Lanata A, Sebastiani L, Menicucci D, Gemignani A, Scilingo EP. Combining electroencephalographic activity and instantaneous heart rate for assessing brain-heart dynamics during visual emotional elicitation in healthy subjects. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0176. [PMID: 27044990 PMCID: PMC4822439 DOI: 10.1098/rsta.2015.0176] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/04/2016] [Indexed: 05/03/2023]
Abstract
Emotion perception, occurring in brain areas such as the prefrontal cortex and amygdala, involves autonomic responses affecting cardiovascular dynamics. However, how such brain-heart dynamics is further modulated by emotional valence (pleasantness/unpleasantness), also considering different arousing levels (the intensity of the emotional stimuli), is still unknown. To this extent, we combined electroencephalographic (EEG) dynamics and instantaneous heart rate estimates to study emotional processing in healthy subjects. Twenty-two healthy volunteers were elicited through affective pictures gathered from the International Affective Picture System. The experimental protocol foresaw 110 pictures, each of which lasted 10 s, associated to 25 different combinations of arousal and valence levels, including neutral elicitations. EEG data were processed using short-time Fourier transforms to obtain time-varying maps of cortical activation, whereas the associated instantaneous cardiovascular dynamics was estimated in the time and frequency domains through inhomogeneous point-process models. Brain-heart linear and nonlinear coupling was estimated through the maximal information coefficient (MIC). Considering EEG oscillations in theθband (4-8 Hz), MIC highlighted significant arousal-dependent changes between positive and negative stimuli, especially occurring at intermediate arousing levels through the prefrontal cortex interplay. Moreover, high arousing elicitations seem to mitigate changes in brain-heart dynamics in response to pleasant/unpleasant visual elicitation.
Collapse
Affiliation(s)
- G Valenza
- University of Pisa, Pisa, Italy Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - A Greco
- University of Pisa, Pisa, Italy
| | - C Gentili
- University of Pisa, Pisa, Italy University of Padua, Padua, Italy
| | | | | | | | | | | |
Collapse
|