1
|
Insight in Hypoxia-Mimetic Agents as Potential Tools for Mesenchymal Stem Cell Priming in Regenerative Medicine. Stem Cells Int 2022; 2022:8775591. [PMID: 35378955 PMCID: PMC8976669 DOI: 10.1155/2022/8775591] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-mimetic agents are new potential tools in MSC priming instead of hypoxia incubators or chambers. Several pharmaceutical/chemical hypoxia-mimetic agents can be used to induce hypoxia in the tissues: deferoxamine (DFO), dimethyloxaloylglycine (DMOG), 2,4-dinitrophenol (DNP), cobalt chloride (CoCl2), and isoflurane (ISO). Hypoxia-mimetic agents can increase cell proliferation, preserve or enhance differentiation potential, increase migration potential, and induce neovascularization in a concentration- and stem cell source-dependent manner. Moreover, hypoxia-mimetic agents may increase HIF-1α, changing the metabolism and enhancing glycolysis like hypoxia. So, there is clear evidence that treatment with hypoxia-mimetic agents is beneficial in regenerative medicine, preserving stem cell capacities. These agents are not studied so wildly as hypoxia but, considering the low cost and ease of use, are believed to find application as pretreatment of many diseases such as ischemic heart disease and myocardial fibrosis and promote cardiac and cartilage regeneration. The knowledge of MSC priming is critical in evaluating safety procedures and use in clinics. In this review, similarities and differences between hypoxia and hypoxia-mimetic agents in terms of their therapeutic efficiency are considered in detail. The advantages, challenges, and future perspectives in MSC priming with hypoxia mimetic agents are also discussed.
Collapse
|
2
|
Abstract
Rapid admission and acute interventional treatment combined with modern antithrombotic pharmacologic therapy have improved outcomes in patients with ST elevation myocardial infarction. The next major target to further advance outcomes needs to address ischemia-reperfusion injury, which may contribute significantly to the final infarct size and hence mortality and postinfarction heart failure. Mechanical conditioning strategies including local and remote ischemic pre-, per-, and postconditioning have demonstrated consistent cardioprotective capacities in experimental models of acute ischemia-reperfusion injury. Their translation to the clinical scenario has been challenging. At present, the most promising mechanical protection strategy of the heart seems to be remote ischemic conditioning, which increases myocardial salvage beyond acute reperfusion therapy. An additional aspect that has gained recent focus is the potential of extended conditioning strategies to improve physical rehabilitation not only after an acute ischemia-reperfusion event such as acute myocardial infarction and cardiac surgery but also in patients with heart failure. Experimental and preliminary clinical evidence suggests that remote ischemic conditioning may modify cardiac remodeling and additionally enhance skeletal muscle strength therapy to prevent muscle waste, known as an inherent component of a postoperative period and in heart failure. Blood flow restriction exercise and enhanced external counterpulsation may represent cardioprotective corollaries. Combined with exercise, remote ischemic conditioning or, alternatively, blood flow restriction exercise may be of aid in optimizing physical rehabilitation in populations that are not able to perform exercise practice at intensity levels required to promote optimal outcomes.
Collapse
Affiliation(s)
- Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital , Aarhus , Denmark
| | | | | |
Collapse
|
3
|
Li R, Li XM, Chen JR. Clinical efficacy and safety of autologous stem cell transplantation for patients with ST-segment elevation myocardial infarction. Ther Clin Risk Manag 2016; 12:1171-89. [PMID: 27536122 PMCID: PMC4975151 DOI: 10.2147/tcrm.s107199] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE The purpose of this study is to evaluate the therapeutic efficacy and safety of stem cells for the treatment of patients with ST-segment elevation myocardial infarction (STEMI). MATERIALS AND METHODS We performed a systematic review and meta-analysis of relevant published clinical studies. A computerized search was conducted for randomized controlled trials of stem cell therapy for STEMI. RESULTS Twenty-eight randomized controlled trials with a total of 1,938 STEMI patients were included in the present meta-analysis. Stem cell therapy resulted in an improvement in long-term (12 months) left ventricular ejection fraction of 3.15% (95% confidence interval 1.01-5.29, P<0.01). The 3-month to 4-month, 6-month, and 12-month left ventricular end-systolic volume showed favorable results in the stem cell therapy group compared with the control group (P≤0.05). Significant decrease was also observed in left ventricular end-diastolic volume after 3-month to 4-month and 12-month follow-up compared with controls (P<0.05). Wall mean score index was reduced significantly in stem cell therapy group when compared with the control group at 6-month and 12-month follow-up (P=0.01). Moreover, our analysis showed a significant change of 12-month infarct size decrease in STEMI patients treated with stem cells compared with controls (P<0.01). In addition, no significant difference was found between treatment group and control in adverse reactions (P>0.05). CONCLUSION Overall, stem cell therapy is efficacious in the treatment of patients with STEMI, with low rates of adverse events compared with control group patients.
Collapse
Affiliation(s)
- Rong Li
- Department of Intensive Care Unit, The People's Hospital of Baoji City
| | | | - Jun-Rong Chen
- Department of Function, Baoji Central Hospital, Baoji, Shaanxi, People's Republic of China
| |
Collapse
|
4
|
Stark CKJ, Tarkia M, Kentala R, Malmberg M, Vähäsilta T, Savo M, Hynninen VV, Helenius M, Ruohonen S, Jalkanen J, Taimen P, Alastalo TP, Saraste A, Knuuti J, Savunen T, Koskenvuo J. Systemic Dosing of Thymosin Beta 4 before and after Ischemia Does Not Attenuate Global Myocardial Ischemia-Reperfusion Injury in Pigs. Front Pharmacol 2016; 7:115. [PMID: 27199757 PMCID: PMC4853610 DOI: 10.3389/fphar.2016.00115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/18/2016] [Indexed: 12/30/2022] Open
Abstract
The use of cardiopulmonary bypass (CPB) and aortic cross-clamping causes myocardial ischemia-reperfusion injury (I-RI) and can lead to reduced postoperative cardiac function. We investigated whether this injury could be attenuated by thymosin beta 4 (TB4), a peptide which has showed cardioprotective effects. Pigs received either TB4 or vehicle and underwent CPB and aortic cross-clamping for 60 min with cold intermittent blood-cardioplegia and were then followed for 30 h. Myocardial function and blood flow was studied by cardiac magnetic resonance and PET imaging. Tissue and plasma samples were analyzed to determine the amount of cardiomyocyte necrosis and apoptosis as well as pharmacokinetics of the peptide. In vitro studies were performed to assess its influence on blood coagulation and vasomotor tone. Serum levels of the peptide were increased after administration compared to control samples. TB4 did not decrease the amount of cell death. Cardiac function and global myocardial blood flow was similar between the study groups. At high doses a vasoconstrictor effect on mesentery arteries and a vasodilator effect on coronary arteries was observed and blood clot firmness was reduced when tested in the presence of an antiplatelet agent. Despite promising results in previous trials the cardioprotective effect of TB4 was not demonstrated in this model for global myocardial I-RI.
Collapse
Affiliation(s)
- Christoffer K-J Stark
- Research Center of Applied and Preventive Cardiovascular Medicine, University of TurkuTurku, Finland; Heart Center, Turku University Hospital and University of TurkuTurku, Finland
| | - Miikka Tarkia
- Turku PET Centre, Turku University Hospital and University of Turku Turku, Finland
| | - Rasmus Kentala
- Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku Turku, Finland
| | - Markus Malmberg
- Heart Center, Turku University Hospital and University of Turku Turku, Finland
| | - Tommi Vähäsilta
- Research Center of Applied and Preventive Cardiovascular Medicine, University of TurkuTurku, Finland; Heart Center, Turku University Hospital and University of TurkuTurku, Finland
| | - Matti Savo
- Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku Turku, Finland
| | - Ville-Veikko Hynninen
- Department of Anesthesiology, Intensive Care, Emergency Care and Pain Medicine, Turku University Hospital Turku, Finland
| | - Mikko Helenius
- Children's Hospital, Pediatric Cardiology, Helsinki University Hospital Helsinki, Finland
| | - Saku Ruohonen
- Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku Turku, Finland
| | - Juho Jalkanen
- Department of Vascular Surgery, Turku University Hospital and University of Turku Turku, Finland
| | - Pekka Taimen
- Department of Pathology, Turku University Hospital and University of Turku Turku, Finland
| | - Tero-Pekka Alastalo
- Children's Hospital, Pediatric Cardiology, Helsinki University Hospital Helsinki, Finland
| | - Antti Saraste
- Turku PET Centre, Turku University Hospital and University of Turku Turku, Finland
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital and University of Turku Turku, Finland
| | - Timo Savunen
- Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku Turku, Finland
| | - Juha Koskenvuo
- Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku Turku, Finland
| |
Collapse
|
5
|
Choudry F, Hamshere S, Saunders N, Veerapen J, Bavnbek K, Knight C, Pellerin D, Locca D, Westwood M, Rakhit R, Crake T, Kastrup J, Parmar M, Agrawal S, Jones D, Martin J, Mathur A. A randomized double-blind control study of early intra-coronary autologous bone marrow cell infusion in acute myocardial infarction: the REGENERATE-AMI clinical trial†. Eur Heart J 2015; 37:256-63. [PMID: 26405233 PMCID: PMC4712349 DOI: 10.1093/eurheartj/ehv493] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/27/2015] [Indexed: 11/14/2022] Open
Abstract
Aims Clinical trials suggest that intracoronary delivery of autologous bone marrow-derived cells (BMCs) 1–7 days post-acute myocardial infarction (AMI) may improve left ventricular (LV) function. Earlier time points have not been evaluated. We sought to determine the effect of intracoronary autologous BMC on LV function when delivered within 24 h of successful reperfusion therapy. Methods and results A multi-centre phase II randomized, double-blind, and placebo-controlled trial. One hundred patients with anterior AMI and significant regional wall motion abnormality were randomized to receive either intracoronary infusion of BMC or placebo (1:1) within 24 h of successful primary percutaneous intervention (PPCI). The primary endpoint was the change in left ventricular ejection fraction (LVEF) between baseline and 1 year as determined by advanced cardiac imaging. At 1 year, although LVEF increased compared with baseline in both groups, the between-group difference favouring BMC was small (2.2%; 95% confidence interval, CI: −0.5 to 5.0; P = 0.10). However, there was a significantly greater myocardial salvage index in the BMC-treated group compared with placebo (0.1%; 95% CI: 0.0–0.20; P = 0.048). Major adverse events were rare in both treatment groups. Conclusion The early infusion of intracoronary BMC following PPCI for patients with AMI and regional wall motion abnormality leads to a small non-significant improvement in LVEF when compared with placebo; however, it may play an important role in infarct remodelling and myocardial salvage. Clinical trial registration Clinicaltrials.gov NCT00765453 and EudraCT 2007-002144-16.
Collapse
Affiliation(s)
- Fizzah Choudry
- Department of Cardiology, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - Stephen Hamshere
- Department of Cardiology, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - Natalie Saunders
- Stem Cell Laboratory, Barts Health NHS Trust and Blizard Institute, Queen Mary University of London, London, UK
| | - Jessry Veerapen
- Department of Cardiology, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - Katrine Bavnbek
- Institute of Cardiovascular Science, University College London, The Heart Hospital, UCLH, 16-18 Westmoreland Street, London W1G 8PH, UK
| | - Charles Knight
- Department of Cardiology, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - Denis Pellerin
- Institute of Cardiovascular Science, University College London, The Heart Hospital, UCLH, 16-18 Westmoreland Street, London W1G 8PH, UK
| | - Didier Locca
- Service de Cardiologie et Département de Médecine Interne, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Mark Westwood
- Department of Cardiology, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - Roby Rakhit
- Department of Cardiology, The Royal Free Hospital, Royal Free London Foundation Trust, London, UK
| | - Tom Crake
- Institute of Cardiovascular Science, University College London, The Heart Hospital, UCLH, 16-18 Westmoreland Street, London W1G 8PH, UK
| | - Jens Kastrup
- Department of Cardiology, Rigshopitale, University of Copenhagen, Copenhagen, Denmark
| | - Mahesh Parmar
- Cancer Division, Medical Research Council Clinical Trials Unit, London, UK
| | - Samir Agrawal
- Stem Cell Laboratory, Barts Health NHS Trust and Blizard Institute, Queen Mary University of London, London, UK
| | - Daniel Jones
- Department of Cardiology, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - John Martin
- British Heart Foundation Laboratories, Department of Medicine, University College London, London WC1E 6JJ, UK
| | - Anthony Mathur
- Department of Cardiology, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK Barts Health NIHR Cardiovascular Biomedical Research Unit, Barts Health NHS Trust, London EC1A 7BE, UK
| |
Collapse
|
6
|
Saraste A, Koskenvuo JW, Airaksinen J, Ramachandran N, Munteanu I, Udd B, Huovinen S, Kalimo H, Minassian BA. No cardiomyopathy in X-linked myopathy with excessive autophagy. Neuromuscul Disord 2015; 25:485-7. [PMID: 25845477 DOI: 10.1016/j.nmd.2015.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/05/2015] [Accepted: 03/09/2015] [Indexed: 01/12/2023]
Abstract
In X-linked myopathy with excessive autophagy (XMEA) progressive sarcoplasmic accumulation of autolysosomes filled with undegraded debris leads to atrophy and weakness of skeletal muscles. XMEA is caused by compromised acidification of lysosomes resulting from hypofunction of the proton pump vacuolar ATPase (V-ATPase), due to hypomorphic mutations in VMA21, whose protein product assembles V-ATPase. To what extent the cardiac muscle is affected is unknown. Therefore we performed a comprehensive cardiac evaluation in four male XMEA patients, and also examined pathology of one deceased patient's cardiac and skeletal muscle. None of the symptomatic men (aged 25-48 years) had history or symptoms of cardiomyopathy. Resting electrocardiograms and echocardiographies were normal. MRI showed normal left ventricle ejection fraction and myocardial mass. Myocardial late-gadolinium enhancement was not detected. The deceased patient's skeletal but not cardiac muscle showed characteristic accumulation of autophagic vacuoles. In conclusion, in classic XMEA the myocardium is structurally, electrically and clinically spared.
Collapse
Affiliation(s)
- Antti Saraste
- Heart Center, Turku University Hospital and University of Turku, Turku FI-20520, Finland; PET Centre, Turku University Hospital and University of Turku, Finland
| | - Juha W Koskenvuo
- Department of Clinical Physiology, Nuclear Medicine and PET, Turku University Hospital, Turku, Finland
| | - Juhani Airaksinen
- Heart Center, Turku University Hospital and University of Turku, Turku FI-20520, Finland
| | - Nivetha Ramachandran
- Program in Genetics and Genome Biology and Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Iulia Munteanu
- Program in Genetics and Genome Biology and Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bjarne Udd
- Folkhälsan Institute of Genetics and Department of Medical Genetics, University of Helsinki, Helsinki, Finland; Neuromuscular Research Unit, Department of Neurology, University Hospital and University of Tampere, Tampere, Finland
| | - Sanna Huovinen
- Department of Pathology, Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Hannu Kalimo
- Department of Pathology, University of Helsinki, Helsinki, Finland; Department of Forensic Medicine, Institute of Biomedicine, University of Turku, Turku, Finland.
| | - Berge A Minassian
- Program in Genetics and Genome Biology and Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Zhao B, Liao Z, Chen S, Yuan Z, Yilin C, Lee KKH, Qi X, Shen X, Zheng X, Quinn T, Cai D. Intramyocardial transplantation of cardiac telocytes decreases myocardial infarction and improves post-infarcted cardiac function in rats. J Cell Mol Med 2014; 18:780-9. [PMID: 24655344 PMCID: PMC4119384 DOI: 10.1111/jcmm.12259] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/22/2014] [Indexed: 12/21/2022] Open
Abstract
The midterm effects of cardiac telocytes (CTs) transplantation on myocardial infarction (MI) and the cellular mechanisms involved in the beneficial effects of CTs transplantation are not understood. In the present study, we have revealed that transplantation of CTs was able to significantly decrease the infarct size and improved cardiac function 14 weeks after MI. It has established that CT transplantation exerted a protective effect on the myocardium and this was maintained for at least 14 weeks. The cellular mechanism behind this beneficial effect on MI was partially attributed to increased cardiac angiogenesis, improved reconstruction of the CT network and decreased myocardial fibrosis. These combined effects decreased the infarct size, improved the reconstruction of the LV and enhanced myocardial function in MI. Our findings suggest that CTs could be considered as a potential cell source for therapeutic use to improve cardiac repair and function following MI, used either alone or in tandem with stem cells.
Collapse
Affiliation(s)
- Baoyin Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, Ji Nan University, Guangzhou, China; Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Ji Nan University, Guangzhou, China; International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology & Guangdong Province, Guangzhou, China; Department of Developmental and Regenerative Biology, Ji Nan University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Liehn EA, Radu E, Schuh A. Chemokine contribution in stem cell engraftment into the infarcted myocardium. Curr Stem Cell Res Ther 2014; 8:278-83. [PMID: 23547962 PMCID: PMC3782704 DOI: 10.2174/1574888x11308040003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/23/2012] [Accepted: 03/31/2013] [Indexed: 02/06/2023]
Abstract
Modern life styles have made cardiovascular disease the leading cause of morbidity and mortality worldwide. Although current treatments substantially ameliorate patients’ prognosis after MI, they cannot restore the affected tissue or entirely re-establish organ function. Therefore, the main goal of modern cardiology should be to design strategies to reduce myocardial necrosis and optimize cardiac repair following MI. Cell-based therapy was considered a novel and potentially new strategy in regenerative medicine; however, its clinical implementation has not yielded the expected results. Chemokines seem to increase the efficiency of cell-therapy and may represent a reliable method to be exploited in the future. This review surveys current knowledge of cell therapy and highlights key insights into the role of chemokines in stem cell engraftment in infarcted myocardium and their possible clinical implications.
Collapse
Affiliation(s)
- Elisa A Liehn
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Germany.
| | | | | |
Collapse
|
9
|
Silvestre JS, Smadja DM, Lévy BI. Postischemic revascularization: from cellular and molecular mechanisms to clinical applications. Physiol Rev 2013; 93:1743-802. [PMID: 24137021 DOI: 10.1152/physrev.00006.2013] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
After the onset of ischemia, cardiac or skeletal muscle undergoes a continuum of molecular, cellular, and extracellular responses that determine the function and the remodeling of the ischemic tissue. Hypoxia-related pathways, immunoinflammatory balance, circulating or local vascular progenitor cells, as well as changes in hemodynamical forces within vascular wall trigger all the processes regulating vascular homeostasis, including vasculogenesis, angiogenesis, arteriogenesis, and collateral growth, which act in concert to establish a functional vascular network in ischemic zones. In patients with ischemic diseases, most of the cellular (mainly those involving bone marrow-derived cells and local stem/progenitor cells) and molecular mechanisms involved in the activation of vessel growth and vascular remodeling are markedly impaired by the deleterious microenvironment characterized by fibrosis, inflammation, hypoperfusion, and inhibition of endogenous angiogenic and regenerative programs. Furthermore, cardiovascular risk factors, including diabetes, hypercholesterolemia, hypertension, diabetes, and aging, constitute a deleterious macroenvironment that participates to the abrogation of postischemic revascularization and tissue regeneration observed in these patient populations. Thus stimulation of vessel growth and/or remodeling has emerged as a new therapeutic option in patients with ischemic diseases. Many strategies of therapeutic revascularization, based on the administration of growth factors or stem/progenitor cells from diverse sources, have been proposed and are currently tested in patients with peripheral arterial disease or cardiac diseases. This review provides an overview from our current knowledge regarding molecular and cellular mechanisms involved in postischemic revascularization, as well as advances in the clinical application of such strategies of therapeutic revascularization.
Collapse
|