1
|
Abu-Dawud R, Graffmann N, Ferber S, Wruck W, Adjaye J. Pluripotent stem cells: induction and self-renewal. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0213. [PMID: 29786549 DOI: 10.1098/rstb.2017.0213] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2017] [Indexed: 12/21/2022] Open
Abstract
Pluripotent stem cells (PSCs) lie at the heart of modern regenerative medicine due to their properties of unlimited self-renewal in vitro and their ability to differentiate into cell types representative of the three embryonic germ layers-mesoderm, ectoderm and endoderm. The derivation of induced PSCs bypasses ethical concerns associated with the use of human embryonic stem cells and also enables personalized cell-based therapies. To exploit their regenerative potential, it is essential to have a firm understanding of the molecular processes associated with their induction from somatic cells. This understanding serves two purposes: first, to enable efficient, reliable and cost-effective production of excellent quality induced PSCs and, second, to enable the derivation of safe, good manufacturing practice-grade transplantable donor cells. Here, we review the reprogramming process of somatic cells into induced PSCs and associated mechanisms with emphasis on self-renewal, epigenetic control, mitochondrial bioenergetics, sub-states of pluripotency, naive ground state, naive and primed. A meta-analysis identified genes expressed exclusively in the inner cell mass and in the naive but not in the primed pluripotent state. We propose these as additional biomarkers defining naive PSCs.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- R Abu-Dawud
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Zahrawi Street, Riyadh 11211, Saudi Arabia
| | - N Graffmann
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - S Ferber
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - W Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - J Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Narad P, Anand L, Gupta R, Sengupta A. Construction of Discrete Model of Human Pluripotency in Predicting Lineage-Specific Outcomes and Targeted Knockdowns of Essential Genes. Sci Rep 2018; 8:11031. [PMID: 30038409 PMCID: PMC6056480 DOI: 10.1038/s41598-018-29480-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/06/2018] [Indexed: 01/08/2023] Open
Abstract
A network consisting of 45 core genes was developed for the genes/proteins responsible for loss/gain of function in human pluripotent stem cells. The nodes were included on the basis of literature curation. The initial network topology was further refined by constructing an inferred Boolean model from time-series RNA-seq expression data. The final Boolean network was obtained by integration of the initial topology and the inferred topology into a refined model termed as the integrated model. Expression levels were observed to be bi-modular for most of the genes involved in the mechanism of human pluripotency. Thus, single and combinatorial perturbations/knockdowns were executed using an in silico approach. The model perturbations were validated with literature studies. A number of outcomes are predicted using the knockdowns of the core pluripotency circuit and we are able to establish the minimum requirement for maintenance of pluripotency in human. The network model is able to predict lineage-specific outcomes and targeted knockdowns of essential genes involved in human pluripotency which are challenging to perform due to ethical constraints surrounding human embryonic stem cells.
Collapse
Affiliation(s)
- Priyanka Narad
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, India.
| | - Lakshay Anand
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, India
| | - Romasha Gupta
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, India
| | - Abhishek Sengupta
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, India
| |
Collapse
|
3
|
Jiang Z, Li Y, Ji X, Tang Y, Yu H, Ding L, Yu M, Cui Q, Zhang M, Ma Y, Li M. Protein profiling identified key chemokines that regulate the maintenance of human pluripotent stem cells. Sci Rep 2017; 7:14510. [PMID: 29109449 PMCID: PMC5674019 DOI: 10.1038/s41598-017-15081-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/20/2017] [Indexed: 12/20/2022] Open
Abstract
Microenvironment (or niche)-providing chemokines regulate many important biological functions of tissue-specific stem cells. However, to what extent chemokines influence human pluripotent stem cells (hPSCs) is not yet completely understood. In this study, we applied protein array to screen chemokines found within the cytokine pool in the culture supernatant of hPSCs. Our results showed that chemokines were the predominant supernatant components, and came from three sources: hPSCs, feeder cells, and culture media. Chemotaxis analysis of IL-8, SDF-1α, and IP-10 suggested that chemokines function as uniform chemoattractants to mediate in vitro migration of the hPSCs. Chemokines mediate both differentiated and undifferentiated states of hPSCs. However, balanced chemokine signaling tends to enhance their stemness in vitro. These results indicate that chemokines secreted from both stem cells and feeder cells are essential to mobilize hPSCs and maintain their stemness.
Collapse
Affiliation(s)
- Zongmin Jiang
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China.,Key Laboratory of Molecular Cancer Biology, Yunnan Education Department, Kunming, Yunnan, 650091, China
| | - Yonggang Li
- Department of Reproduction and Genetics, the First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, China
| | - Xinglai Ji
- Key Laboratory of Molecular Cancer Biology, Yunnan Education Department, Kunming, Yunnan, 650091, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 650091, China
| | - Yiyuli Tang
- Key Laboratory of Molecular Cancer Biology, Yunnan Education Department, Kunming, Yunnan, 650091, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 650091, China
| | - Haijing Yu
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China.,Key Laboratory of Molecular Cancer Biology, Yunnan Education Department, Kunming, Yunnan, 650091, China
| | - Lei Ding
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China.,Key Laboratory of Molecular Cancer Biology, Yunnan Education Department, Kunming, Yunnan, 650091, China
| | - Min Yu
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China.,Key Laboratory of Molecular Cancer Biology, Yunnan Education Department, Kunming, Yunnan, 650091, China
| | - Qinghua Cui
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China.,Key Laboratory of Molecular Cancer Biology, Yunnan Education Department, Kunming, Yunnan, 650091, China
| | - Ming Zhang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yanping Ma
- Department of Reproduction and Genetics, the First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, China.
| | - Meizhang Li
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China. .,Key Laboratory of Molecular Cancer Biology, Yunnan Education Department, Kunming, Yunnan, 650091, China.
| |
Collapse
|
4
|
interleukin-11 induces and maintains progenitors of different cell lineages during Xenopus tadpole tail regeneration. Nat Commun 2017; 8:495. [PMID: 28887447 PMCID: PMC5591189 DOI: 10.1038/s41467-017-00594-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 07/10/2017] [Indexed: 02/05/2023] Open
Abstract
Unlike mammals, Xenopus laevis tadpoles possess high ability to regenerate their lost organs. In amphibians, the main source of regenerated tissues is lineage-restricted tissue stem cells, but the mechanisms underlying induction, maintenance and differentiation of these stem/progenitor cells in the regenerating organs are poorly understood. We previously reported that interleukin-11 (il-11) is highly expressed in the proliferating cells of regenerating Xenopus tadpole tails. Here, we show that il-11 knockdown (KD) shortens the regenerated tail length, and the phenotype is rescued by forced-il-11-expression in the KD tadpoles. Moreover, marker genes for undifferentiated notochord, muscle, and sensory neurons are downregulated in the KD tadpoles, and the forced-il-11-expression in intact tadpole tails induces expression of these marker genes. Our findings demonstrate that il-11 is necessary for organ regeneration, and suggest that IL-11 plays a key role in the induction and maintenance of undifferentiated progenitors across cell lineages during Xenopus tail regeneration. Xenopus laevis tadpoles have maintained their ability to regenerate various organs. Here, the authors show that interleukin-11 is necessary for organ regeneration, by inducing and maintaining undifferentiated progenitors across cell lineages during Xenopus tail regeneration.
Collapse
|
5
|
Pir P, Le Novère N. Mathematical Models of Pluripotent Stem Cells: At the Dawn of Predictive Regenerative Medicine. Methods Mol Biol 2016; 1386:331-50. [PMID: 26677190 DOI: 10.1007/978-1-4939-3283-2_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Regenerative medicine, ranging from stem cell therapy to organ regeneration, is promising to revolutionize treatments of diseases and aging. These approaches require a perfect understanding of cell reprogramming and differentiation. Predictive modeling of cellular systems has the potential to provide insights about the dynamics of cellular processes, and guide their control. Moreover in many cases, it provides alternative to experimental tests, difficult to perform for practical or ethical reasons. The variety and accuracy of biological processes represented in mathematical models grew in-line with the discovery of underlying molecular mechanisms. High-throughput data generation led to the development of models based on data analysis, as an alternative to more established modeling based on prior mechanistic knowledge. In this chapter, we give an overview of existing mathematical models of pluripotency and cell fate, to illustrate the variety of methods and questions. We conclude that current approaches are yet to overcome a number of limitations: Most of the computational models have so far focused solely on understanding the regulation of pluripotency, and the differentiation of selected cell lineages. In addition, models generally interrogate only a few biological processes. However, a better understanding of the reprogramming process leading to ESCs and iPSCs is required to improve stem-cell therapies. One also needs to understand the links between signaling, metabolism, regulation of gene expression, and the epigenetics machinery.
Collapse
Affiliation(s)
- Pınar Pir
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - Nicolas Le Novère
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
6
|
Cabillic F, Corlu A. Regulation of Transdifferentiation and Retrodifferentiation by Inflammatory Cytokines in Hepatocellular Carcinoma. Gastroenterology 2016; 151:607-15. [PMID: 27443822 DOI: 10.1053/j.gastro.2016.06.052] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/14/2016] [Accepted: 06/29/2016] [Indexed: 01/02/2023]
Abstract
Liver cancers are typically inflammation-associated cancers characterized by close communication between the tumor cells and the tumor environment. This supportive inflammatory environment contributes to the establishment of a pathologic niche consisting of transformed epithelial cells, tumor-educated fibroblasts, endothelial cells, and immunosuppressive immature myeloid cells. Stromal and infiltrated immune cells help determine tumor fate, but the tumor cells themselves, including cancer stem cells, also influence the surrounding cells. This bidirectional communication generates an intricate network of signals that promotes tumor growth. Cell plasticity, which includes transdifferentiation and retrodifferentiation of differentiated cells, increases tumor heterogeneity. Plasticity allows non-cancer stem cells to replenish the cancer stem cell pool, initiate tumorigenesis, and escape the effects of therapeutic agents; it also promotes tumor aggressiveness. There is increasing evidence that an inflammatory environment promotes the retrodifferentiation of tumor cells into stem or progenitor cells; this could account for the low efficacies of some chemotherapies and the high rates of cancer recurrence. Increasing our understanding of the signaling network that connects inflammation with retrodifferentiation could identify new therapeutic targets, and lead to combined therapies that are effective against highly heterogeneous tumors.
Collapse
Affiliation(s)
- Florian Cabillic
- Institut National de la Santé et de la Recherche Médicale, UMR 991, Liver Metabolism and Cancer, Hôpital Pontchaillou, Rennes, France; Université de Rennes 1, Rennes, France; Laboratoire de Cytogénétique et Biologie Cellulaire, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Anne Corlu
- Institut National de la Santé et de la Recherche Médicale, UMR 991, Liver Metabolism and Cancer, Hôpital Pontchaillou, Rennes, France; Université de Rennes 1, Rennes, France.
| |
Collapse
|
7
|
Kerkhofs J, Leijten J, Bolander J, Luyten FP, Post JN, Geris L. A Qualitative Model of the Differentiation Network in Chondrocyte Maturation: A Holistic View of Chondrocyte Hypertrophy. PLoS One 2016; 11:e0162052. [PMID: 27579819 PMCID: PMC5007039 DOI: 10.1371/journal.pone.0162052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/18/2016] [Indexed: 01/15/2023] Open
Abstract
Differentiation of chondrocytes towards hypertrophy is a natural process whose control is essential in endochondral bone formation. It is additionally thought to play a role in several pathophysiological processes, with osteoarthritis being a prominent example. We perform a dynamic analysis of a qualitative mathematical model of the regulatory network that directs this phenotypic switch to investigate the influence of the individual factors holistically. To estimate the stability of a SOX9 positive state (associated with resting/proliferation chondrocytes) versus a RUNX2 positive one (associated with hypertrophy) we employ two measures. The robustness of the state in canalisation (size of the attractor basin) is assessed by a Monte Carlo analysis and the sensitivity to perturbations is assessed by a perturbational analysis of the attractor. Through qualitative predictions, these measures allow for an in silico screening of the effect of the modelled factors on chondrocyte maintenance and hypertrophy. We show how discrepancies between experimental data and the model’s results can be resolved by evaluating the dynamic plausibility of alternative network topologies. The findings are further supported by a literature study of proposed therapeutic targets in the case of osteoarthritis.
Collapse
Affiliation(s)
- Johan Kerkhofs
- Biomechanics Research Unit, University of Liège, Liège, Belgium
- Biomechanics section, KU Leuven, Leuven, Belgium
- Prometheus, the Leuven R&D division of skeletal tissue engineering, KU Leuven, Leuven, Belgium
| | - Jeroen Leijten
- Prometheus, the Leuven R&D division of skeletal tissue engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Johanna Bolander
- Prometheus, the Leuven R&D division of skeletal tissue engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Frank P. Luyten
- Prometheus, the Leuven R&D division of skeletal tissue engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Janine N. Post
- Developmental BioEngineering, MIRA Institute for biomedical technology and technical medicine, University of Twente, Enschede, The Netherlands
| | - Liesbet Geris
- Biomechanics Research Unit, University of Liège, Liège, Belgium
- Biomechanics section, KU Leuven, Leuven, Belgium
- Prometheus, the Leuven R&D division of skeletal tissue engineering, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
8
|
Dittrich A, Hessenkemper W, Schaper F. Systems biology of IL-6, IL-12 family cytokines. Cytokine Growth Factor Rev 2015; 26:595-602. [PMID: 26187858 DOI: 10.1016/j.cytogfr.2015.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
Abstract
Interleukin-6-type cytokines play important roles in the communication between cells of multicellular organisms. They are involved in the regulation of complex cellular processes such as proliferation and differentiation and act as key player during inflammation and immune response. A major challenge is to understand how these complex non-linear processes are connected and regulated. Systems biology approaches are used to tackle this challenge in an iterative process of quantitative experimental and mathematical analyses. Here we review quantitative experimental studies and systems biology approaches dealing with the function of Interleukin-6-type cytokines in physiological and pathophysiological conditions. These approaches cover the analyses of signal transduction on a cellular level up to pharmacokinetic and pharmacodynamic studies on a whole organism level.
Collapse
Affiliation(s)
- Anna Dittrich
- Institute of Biology, Otto-von-Guericke-University, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Wiebke Hessenkemper
- Institute of Biology, Otto-von-Guericke-University, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Fred Schaper
- Institute of Biology, Otto-von-Guericke-University, Universitätsplatz 2, 39106 Magdeburg, Germany.
| |
Collapse
|
9
|
Khan IN, Al-Karim S, Bora RS, Chaudhary AG, Saini KS. Cancer stem cells: a challenging paradigm for designing targeted drug therapies. Drug Discov Today 2015; 20:1205-16. [PMID: 26143148 DOI: 10.1016/j.drudis.2015.06.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/19/2015] [Accepted: 06/24/2015] [Indexed: 02/06/2023]
Abstract
Despite earlier controversies about their role and existence within tumors, cancer stem cells (CSCs) are now emerging as a plausible target for new drug discovery. Research and development (R&D) efforts are being directed against key gene(s) driving initiation, growth, and metastatic pathways in CSCs and the tumor microenvironment (TME). However, the niche signals that enable these pluripotent CSCs to evade radio- and chemotherapy, and to travel to secondary tissues remain enigmatic. Small-molecule drugs, biologics, miRNA, RNA interference (RNAi), and vaccines, among others, are under active investigation. Here, we examine the feasibility of leveraging current knowhow of the molecular biology of CSCs and their cellular milieu to design futuristic, targeted drugs with potentially lower toxicity that can override the multiple drug-resistance issues currently observed with existing therapeutics.
Collapse
Affiliation(s)
- Ishaq N Khan
- Embryonic & Cancer Stem Cell Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre of Innovation for Personalized Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Saleh Al-Karim
- Embryonic & Cancer Stem Cell Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Embryonic Stem Cell Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Roop S Bora
- Embryonic & Cancer Stem Cell Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; School of Biotechnology, Eternal University, Baru Sahib 173 101, Himachal Pradesh, India
| | - Adeel G Chaudhary
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre of Innovation for Personalized Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kulvinder S Saini
- Embryonic & Cancer Stem Cell Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; School of Biotechnology, Eternal University, Baru Sahib 173 101, Himachal Pradesh, India.
| |
Collapse
|
10
|
Zahonero C, Aguilera P, Ramírez-Castillejo C, Pajares M, Bolós MV, Cantero D, Perez-Nuñez A, Hernández-Laín A, Sánchez-Gómez P, Sepúlveda JM. Preclinical Test of Dacomitinib, an Irreversible EGFR Inhibitor, Confirms Its Effectiveness for Glioblastoma. Mol Cancer Ther 2015; 14:1548-58. [PMID: 25939761 DOI: 10.1158/1535-7163.mct-14-0736] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 04/27/2015] [Indexed: 11/16/2022]
Abstract
Glioblastomas (GBM) are devastating tumors in which there has been little clinical improvement in the last decades. New molecularly directed therapies are under development. EGFR is one of the most promising targets, as this receptor is mutated and/or overexpressed in nearly half of the GBMs. However, the results obtained with first-generation tyrosine-kinase inhibitors have been disappointing with no clear predictive markers of tumor response. Here, we have tested the antitumoral efficacy of a second-generation inhibitor, dacomitinib (PF299804, Pfizer), that binds in an irreversible way to the receptor. Our results confirm that dacomitinib has an effect on cell viability, self-renewal, and proliferation in EGFR-amplified ± EGFRvIII GBM cells. Moreover, systemic administration of dacomitinib strongly impaired the in vivo tumor growth rate of these EGFR-amplified cell lines, with a decrease in the expression of stem cell-related markers. However, continuous administration of the compound was required to maintain the antitumor effect. The data presented here confirm that dacomitinib clearly affects receptor signaling in vivo and that its strong antitumoral effect is independent of the presence of mutant receptor isoforms although it could be affected by the PTEN status (as it is less effective in a PTEN-deleted GBM line). Dacomitinib is being tested in second line for EGFR-amplified GBMs. We hope that our results could help to select retrospectively molecular determinants of this response and to implement future trials with dacomitinib (alone or in combination with other inhibitors) in newly diagnosed GBMs.
Collapse
Affiliation(s)
- Cristina Zahonero
- Neuro-Oncology Unit, Instituto de Salud Carlos III-UFIEC, Madrid, Spain
| | - Pilar Aguilera
- Neuro-Oncology Unit, Instituto de Salud Carlos III-UFIEC, Madrid, Spain
| | | | - Marta Pajares
- Neuro-Oncology Unit, Instituto de Salud Carlos III-UFIEC, Madrid, Spain
| | | | - Diana Cantero
- Unidad Multidisciplinar de Neurooncología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Angel Perez-Nuñez
- Unidad Multidisciplinar de Neurooncología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Aurelio Hernández-Laín
- Unidad Multidisciplinar de Neurooncología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Juan Manuel Sepúlveda
- Unidad Multidisciplinar de Neurooncología, Hospital Universitario 12 de Octubre, Madrid, Spain.
| |
Collapse
|
11
|
Unique gene expression profile of the proliferating Xenopus tadpole tail blastema cells deciphered by RNA-sequencing analysis. PLoS One 2015; 10:e0111655. [PMID: 25775398 PMCID: PMC4361676 DOI: 10.1371/journal.pone.0111655] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 10/05/2014] [Indexed: 12/19/2022] Open
Abstract
Organ regenerative ability depends on the animal species and the developmental stage. The molecular bases for variable organ regenerative ability, however, remain unknown. Previous studies have identified genes preferentially expressed in the blastema tissues in various animals, but transcriptome analysis of the isolated proliferating blastema cells has not yet been reported. In the present study, we used RNA-sequencing analysis to analyze the gene expression profile of isolated proliferating blastema cells of regenerating Xenopus laevis tadpole tails. We used flow cytometry to isolate proliferating cells, and non-proliferating blastema cells, from regenerating tadpole tails as well as proliferating tail bud cells from tail bud embryos, the latter two of which were used as control cells, based on their DNA content. Among the 28 candidate genes identified by RNA-sequencing analysis, quantitative reverse transcription-polymerase chain reaction identified 10 genes whose expression was enriched in regenerating tadpole tails compared with non-regenerating tadpole tails or tails from the tail bud embryos. Among them, whole mount in situ hybridization revealed that chromosome segregation 1-like and interleukin 11 were expressed in the broad area of the tail blastema, while brevican, lysyl oxidase, and keratin 18 were mainly expressed in the notochord bud in regenerating tails. We further combined whole mount in situ hybridization with immunohistochemistry for the incorporated 5-bromo-2-deoxyuridine to confirm that keratin 18 and interleukin 11 were expressed in the proliferating tail blastema cells. Based on the proposed functions of their homologs in other animal species, these genes might have roles in the extracellular matrix formation in the notochord bud (brevican and lysyl oxidase), cell proliferation (chromosome segregation 1-like and keratin 18), and in the maintenance of the differentiation ability of proliferating blastema cells (interleukin 11) in regenerating tadpole tails.
Collapse
|
12
|
Taniguchi K, Karin M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin Immunol 2014; 26:54-74. [PMID: 24552665 DOI: 10.1016/j.smim.2014.01.001] [Citation(s) in RCA: 509] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/06/2014] [Indexed: 11/17/2022]
Abstract
Inflammatory responses play pivotal roles in cancer development, including tumor initiation, promotion, progression, and metastasis. Cytokines are now recognized as important mediators linking inflammation and cancer, and are therefore potential therapeutic and preventive targets as well as prognostic factors. The interleukin (IL)-6 family of cytokines, especially IL-6 and IL-11, is highly up-regulated in many cancers and considered as one of the most important cytokine families during tumorigenesis and metastasis. This review discusses molecular mechanisms linking the IL-6 cytokine family to solid malignancies and their treatment.
Collapse
Affiliation(s)
- Koji Taniguchi
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; UC San Diego Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|