1
|
Güler C, Yilmaz AM, Kuru L, Ozen B, Agrali OB. The Effect of Tideglusib Application on Type 1 and Type 3 Collagen Expressions by Human Dental-Pulp Derived Stem Cells: A Preliminary Study. Niger J Clin Pract 2024; 27:1065-1072. [PMID: 39348326 DOI: 10.4103/njcp.njcp_866_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/29/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND Although Tideglusib cytotoxicity studies and its effects on human dental pulp-derived stem cells (DPSCs) have been examined in previous studies, there is no study investigating the expression of type 1 collagen and type 3 collagen by Tideglusib. AIM The purpose of this study is to examine the effect of Wnt signaling activation using Tideglusib execution on human DPSC to determine its potential efficacy in collagen expression. METHODS Stem cell isolation was performed from five human third molar wisdom tooth pulps. DPSCs identified in only one sample were treated with 50 nM Tideglusib for 24 h and 1 week. Axin-2, type 1 and type 3 collagen expressions were evaluated by Western blot analysis. DPSCs without treatment served as a negative control. The Mann-Whitney U test was used for statistical analysis. RESULTS The levels of type 1 collagen and Axin-2 in the test group were significantly higher than those in the control group at 24 h (P = 0.000, P = 0.001, respectively). Compared to the control group, a slight increase in type 3 collagen expression was observed in the test group at 24 h (P value = 0.063). Application of 50 nM Tideglusib for 1 week revealed marked decreases in type 1 and type 3 collagen expressions (P = 0.029, P = 0.038, respectively). In contrast, there was a significant increase in the level of Axin-2 (P = 0.000) compared to the control group. CONCLUSION The fact that Wnt signaling pathway activation obtained by Tideglusib application on DPSCs confirmed by the finding in the increase of Axin-2 at short and long-term evaluation periods which is resulted in the increase in the type 1 collagen expression at 24 h and decrease at 1 week together with the decrease in type 3 collagen expression at 1 week warrants further studies to evaluate the effect of Tideglusib on extracellular matrix expression.
Collapse
Affiliation(s)
- C Güler
- Department of Periodontology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - A M Yilmaz
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | - L Kuru
- Department of Periodontology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - B Ozen
- Department of Periodontology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - O B Agrali
- Department of Periodontology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
2
|
Han X, Wang F, Ma Y, Lv X, Zhang K, Wang Y, Yan K, Mei Y, Wang X. TPG-functionalized PLGA/PCL nanofiber membrane facilitates periodontal tissue regeneration by modulating macrophages polarization via suppressing PI3K/AKT and NF-κB signaling pathways. Mater Today Bio 2024; 26:101036. [PMID: 38600919 PMCID: PMC11004206 DOI: 10.1016/j.mtbio.2024.101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
Traditional fibrous membranes employed in guided tissue regeneration (GTR) in the treatment of periodontitis have limitations of bioactive and immunomodulatory properties. We fabricated a novel nTPG/PLGA/PCL fibrous membrane by electrospinning which exhibit excellent hydrophilicity, mechanical properties and biocompatibility. In addition, we investigated its regulatory effect on polarization of macrophages and facilitating the regeneration of periodontal tissue both in vivo and in vitro. These findings showed the 0.5%TPG/PLGA/PCL may inhibit the polarization of RAW 264.7 into M1 phenotype by suppressing the PI3K/AKT and NF-κB signaling pathways. Furthermore, it directly up-regulated the expression of cementoblastic differentiation markers (CEMP-1 and CAP) in periodontal ligament stem cells (hPDLSCs), and indirectly up-regulated the expression of cementoblastic (CEMP-1 and CAP) and osteoblastic (ALP, RUNX2, COL-1, and OCN) differentiation markers by inhibiting the polarization of M1 macrophage. Upon implantation into a periodontal bone defect rats model, histological assessment revealed that the 0.5%TPG/PLGA/PCL membrane could regenerate oriented collagen fibers and structurally intact epithelium. Micro-CT (BV/TV) and the expression of immunohistochemical markers (OCN, RUNX-2, COL-1, and BMP-2) ultimately exhibited satisfactory regeneration of alveolar bone, periodontal ligament. Overall, 0.5%TPG/PLGA/PCL did not only directly promote osteogenic effects on hPDLSCs, but also indirectly facilitated cementoblastic and osteogenic differentiation through its immunomodulatory effects on macrophages. These findings provide a novel perspective for the development of materials for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Xiang Han
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People's Republic of China
| | - Feiyang Wang
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People's Republic of China
| | - Yuzhuo Ma
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People's Republic of China
| | - Xuerong Lv
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People's Republic of China
| | - Kewei Zhang
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People's Republic of China
| | - Yue Wang
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People's Republic of China
| | - Ke Yan
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People's Republic of China
| | - Youmin Mei
- Department of Periodontology, Nantong Stomatological Hospital, Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, 226000, People's Republic of China
| | - Xiaoqian Wang
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People's Republic of China
| |
Collapse
|
3
|
Gao J, Cai S, Wang Z, Li D, Ou M, Zhang X, Tian Z. The optimization of ligature/bone defect-induced periodontitis model in rats. Odontology 2022; 110:697-709. [PMID: 35654915 DOI: 10.1007/s10266-022-00715-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/10/2022] [Indexed: 01/12/2023]
Abstract
The destruction of alveolar bone is a crucial manifestation of severe chronic periodontitis, which stem cell-based bioengineered therapies are expected to cure. Therefore, a cost-effective, reproducible, quantifiability and easier to administrate animal model that mimics human periodontitis is of great importance for further endeavor. In this study, we created periodontitis rat models in silk ligation group, bone defect group and bone defect/silk ligation group, respectively. Obvious periodontal inflammation but slight alveolar bone resorption was observed in the ligation group, while surgical trauma was not robust enough to continually worsen the constructed bone defect area in the bone defect group. In the bone defect/ligature group, significant and stable periodontal inflammation was the most enduring with similar evolving pathological patterns of human periodontitis. It also exhibited enhanced clinical similarity and confirmed its superiority in quantitativeness. The present rat model is the first study to reproduce a pathological process similar to human periodontitis with reliable stability and repeatability, manifesting a priority to previous methods. Day 9-12 is the best time for reproducing severe periodontitis syndromes with vertical bone resorption in this model.
Collapse
Affiliation(s)
- Jingyi Gao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Shatainan Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Simin Cai
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Shatainan Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Zijie Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Shatainan Road, Baiyun District, Guangzhou, 510515, Guangdong, China.,School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.,Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Dan Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Shatainan Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Minyi Ou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Shatainan Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Xinlu Zhang
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Zhihui Tian
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Shatainan Road, Baiyun District, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
4
|
Novello S, Pellen-Mussi P, Jeanne S. Mesenchymal stem cell-derived small extracellular vesicles as cell-free therapy: Perspectives in periodontal regeneration. J Periodontal Res 2021; 56:433-442. [PMID: 33641196 DOI: 10.1111/jre.12866] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSC) are involved in the regeneration of the different missing or compromised periodontal tissues. MSC-derived small extracellular vesicles (sEV) have recently been explored as a favorable substitution for stem cell therapy, as they are capable of producing therapeutic effects comparable to those of their parent cells, with advantages over cell therapy. The aim of this review is to evaluate the use of mesenchymal stem cells (MSC)-derived sEV as cell-free therapy in periodontal regeneration. A review of the scientific literature on sEV and their use in periodontal regeneration was performed. The main characteristics of sEV are described, and their mechanisms of action and potential biological effects in periodontal regeneration are studied. A summary of existing preclinical studies conducted in animals is performed. The results indicate that sEV derived from MSC are emerging as a promising new therapeutic tool in the field of periodontal regeneration and may become an ideal therapeutic option. In this review, we have summarized recent advances in this regard in order to better understand this newly emerging treatment. First results in vivo are promising and show a favorable potential for cell-free therapy in periodontal regeneration.
Collapse
Affiliation(s)
- Solen Novello
- ISCR [(Institut des Sciences Chimiques de Rennes)] - UMR 6226, Univ Rennes, Rennes, France.,Unité de Formation et de Recherche d'Odontologie, Univ Rennes, Rennes, France.,CHU Rennes, Pôle d'Odontologie, UF Parodontologie, Rennes, France
| | - Pascal Pellen-Mussi
- ISCR [(Institut des Sciences Chimiques de Rennes)] - UMR 6226, Univ Rennes, Rennes, France
| | - Sylvie Jeanne
- ISCR [(Institut des Sciences Chimiques de Rennes)] - UMR 6226, Univ Rennes, Rennes, France.,Unité de Formation et de Recherche d'Odontologie, Univ Rennes, Rennes, France.,CHU Rennes, Pôle d'Odontologie, UF Parodontologie, Rennes, France
| |
Collapse
|
5
|
Chen Y, Yang Q, Lv C, Chen Y, Zhao W, Li W, Chen H, Wang H, Sun W, Yuan H. NLRP3 regulates alveolar bone loss in ligature-induced periodontitis by promoting osteoclastic differentiation. Cell Prolif 2020; 54:e12973. [PMID: 33382502 PMCID: PMC7849172 DOI: 10.1111/cpr.12973] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/30/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Objectives NLRP3 inflammasome is a critical part of the innate immune system and plays an important role in a variety of inflammatory diseases. However, the effects of NLRP3 inflammasome on periodontitis have not been fully studied. Materials and methods We used ligature‐induced periodontitis models of NLRP3 knockout mice (NLRP3KO) and their wildtype (WT) littermates to compare their alveolar bone phenotypes. We further used Lysm‐Cre/RosanTnG mouse to trace the changes of Lysm‐Cre+ osteoclast precursors in ligature‐induced periodontitis with or without MCC950 treatment. At last, we explored MCC950 as a potential drug for the treatment of periodontitis in vivo and in vitro. Results Here, we showed that the number of osteoclast precursors, osteoclast differentiation and alveolar bone loss were reduced in NLRP3KO mice compared with WT littermates, by using ligature‐induced periodontitis model. Next, MCC950, a specific inhibitor of the NLRP3 inflammasome, was used to inhibit osteoclast precursors differentiation into osteoclast. Further, we used Lysm‐Cre/RosanTnG mice to demonstrate that MCC950 decreases the number of Lysm‐Cre+ osteoclast precursors in ligature‐induced periodontitis. At last, treatment with MCC950 significantly suppressed alveolar bone loss with reduced IL‐1β activation and osteoclast differentiation in ligature‐induced periodontitis. Conclusion Our findings reveal that NLRP3 regulates alveolar bone loss in ligature‐induced periodontitis by promoting osteoclastic differentiation.
Collapse
Affiliation(s)
- Yuyi Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Qiudong Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Chunhua Lv
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Stomatology, Taizhou People's Hospital of Jiangsu Province, Taizhou, China
| | - Yue Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Wenhua Zhao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Wenlei Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Hongyu Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Hua Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Wen Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Hua Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Li Q, Yang G, Li J, Ding M, Zhou N, Dong H, Mou Y. Stem cell therapies for periodontal tissue regeneration: a network meta-analysis of preclinical studies. Stem Cell Res Ther 2020; 11:427. [PMID: 33008471 PMCID: PMC7531120 DOI: 10.1186/s13287-020-01938-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022] Open
Abstract
Background Periodontal tissue regeneration (PTR) is the ultimate goal of periodontal therapy. Currently, stem cell therapy is considered a promising strategy for achieving PTR. However, there is still no conclusive comparison that distinguishes clear hierarchies among different kinds of stem cells. Methods A systematic review and network meta-analysis (NMA) was performed using MEDLINE (via PubMed), EMBASE, and Web of Science up to February 2020. Preclinical studies assessing five types of stem cells for PTR were included; the five types of stem cells included periodontal ligament-derived stem cells (PDLSCs), bone marrow-derived stem cells (BMSCs), adipose tissue-derived stem cells (ADSCs), dental pulp-derived stem cells (DPSCs), and gingival-derived stem cells (GMSCs). The primary outcomes were three histological indicators with continuous variables: newly formed alveolar bone (NB), newly formed cementum (NC), and newly formed periodontal ligament (NPDL). We performed pairwise meta-analyses using a random-effects model and then performed a random-effects NMA using a multivariate meta-analysis model. Results Sixty preclinical studies assessing five different stem cell-based therapies were identified. The NMA showed that in terms of NB, PDLSCs (standardized mean difference 1.87, 95% credible interval 1.24 to 2.51), BMSCs (1.88, 1.17 to 2.59), and DPSCs (1.69, 0.64 to 2.75) were statistically more efficacious than cell carriers (CCs). In addition, PDLSCs were superior to GMSCs (1.49, 0.04 to 2.94). For NC, PDLSCs (2.18, 1.48 to 2.87), BMSCs (2.11, 1.28 to 2.94), and ADSCs (1.55, 0.18 to 2.91) were superior to CCs. For NPDL, PDLSCs (1.69, 0.92 to 2.47) and BMSCs (1.41, 0.56 to 2.26) were more efficacious than CCs, and PDLSCs (1.26, 0.11 to 2.42) were superior to GMSCs. The results of treatment hierarchies also demonstrated that the two highest-ranked interventions were PDLSCs and BMSCs. Conclusion PDLSCs and BMSCs were the most effective and well-documented stem cells for PTR among the five kinds of stem cells evaluated in this study, and there was no statistical significance between them. To translate the stem cell therapies for PTR successfully in the clinic, future studies should utilize robust experimental designs and reports.
Collapse
Affiliation(s)
- Qiang Li
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guangwen Yang
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jialing Li
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Meng Ding
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Na Zhou
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Heng Dong
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China. .,Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Yongbin Mou
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
7
|
Carluccio M, Ziberi S, Zuccarini M, Giuliani P, Caciagli F, Di Iorio P, Ciccarelli R. Adult mesenchymal stem cells: is there a role for purine receptors in their osteogenic differentiation? Purinergic Signal 2020; 16:263-287. [PMID: 32500422 DOI: 10.1007/s11302-020-09703-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
The role played by mesenchymal stem cells (MSCs) in contributing to adult tissue homeostasis and damage repair thanks to their differentiation capabilities has raised a great interest, mainly in bone regenerative medicine. The growth/function of these undifferentiated cells of mesodermal origin, located in specialized structures (niches) of differentiated organs is influenced by substances present in this microenvironment. Among them, ancestral and ubiquitous molecules such as adenine-based purines, i.e., ATP and adenosine, may be included. Notably, extracellular purine concentrations greatly increase during tissue injury; thus, MSCs are exposed to effects mediated by these agents interacting with their own receptors when they act/migrate in vivo or are transplanted into a damaged tissue. Here, we reported that ATP modulates MSC osteogenic differentiation via different P2Y and P2X receptors, but data are often inconclusive/contradictory so that the ATP receptor importance for MSC physiology/differentiation into osteoblasts is yet undetermined. An exception is represented by P2X7 receptors, whose expression was shown at various differentiation stages of bone cells resulting essential for differentiation/survival of both osteoclasts and osteoblasts. As well, adenosine, usually derived from extracellular ATP metabolism, can promote osteogenesis, likely via A2B receptors, even though findings from human MSCs should be implemented and confirmed in preclinical models. Therefore, although many data have revealed possible effects caused by extracellular purines in bone healing/remodeling, further studies, hopefully performed in in vivo models, are necessary to identify defined roles for these compounds in favoring/increasing the pro-osteogenic properties of MSCs and thereby their usefulness in bone regenerative medicine.
Collapse
Affiliation(s)
- Marzia Carluccio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy.,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy
| | - Sihana Ziberi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy.,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Francesco Caciagli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy. .,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy. .,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy.
| |
Collapse
|
8
|
Venkataiah VS, Handa K, Njuguna MM, Hasegawa T, Maruyama K, Nemoto E, Yamada S, Sugawara S, Lu L, Takedachi M, Murakami S, Okura H, Matsuyama A, Saito M. Periodontal Regeneration by Allogeneic Transplantation of Adipose Tissue Derived Multi-Lineage Progenitor Stem Cells in vivo. Sci Rep 2019; 9:921. [PMID: 30696909 PMCID: PMC6351614 DOI: 10.1038/s41598-018-37528-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/07/2018] [Indexed: 12/14/2022] Open
Abstract
The ultimate goal of periodontal disease treatment is the reorganization of functional tissue that can regenerate lost periodontal tissue. Regeneration of periodontal tissues is clinically possible by using autogenic transplantation of MSCs. However, autologous MSC transplantation is limited depending on age, systemic disease and tissue quality, thus precluding their clinical application. Therefore, we evaluated the efficacy of allogeneic transplantation of adipose-derived multi-lineage progenitor cells (ADMPC) in a micro-mini pig periodontal defect model. ADMPC were isolated from the greater omentum of micro-mini pigs, and flow cytometry analysis confirmed that the ADMPC expressed MSC markers, including CD44 and CD73. ADMPC exhibited osteogenic, adipogenic and periodontal ligament differentiation capacities in differentiation medium. ADMPC showed high expression of the immune suppressive factors GBP4 and IL1-RA upon treatment with a cytokine cocktail containing interferon-γ, tumor necrosis factor-α and interleukin-6. Allogeneic transplantation of ADMPC in a micro-mini pig periodontal defect model showed significant bone regeneration ability based on bone-morphometric analysis. Moreover, the regeneration ability of ADMPC by allogeneic transplantation was comparable to those of autologous transplantation by histological analysis. These results indicate that ADMPC have immune-modulation capability that can induce periodontal tissue regeneration by allogeneic transplantation.
Collapse
Affiliation(s)
- Venkata Suresh Venkataiah
- Department of Restorative Dentistry, Division of Operative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Keisuke Handa
- Department of Restorative Dentistry, Division of Operative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Mary M Njuguna
- Department of Restorative Dentistry, Division of Operative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Tatsuya Hasegawa
- Department of Restorative Dentistry, Division of Operative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kentaro Maruyama
- Department of Oral Biology, Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Eiji Nemoto
- Department of Oral Biology, Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Satoru Yamada
- Department of Oral Biology, Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Shunji Sugawara
- Division of Oral Immunology, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Lu Lu
- Division of Oral Immunology, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Division of Oral Diagnosis, Department of Oral Medicine and Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Masahide Takedachi
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hanayuki Okura
- Center for Research Promotion and Support, Fujita Health University, Toyoake, Japan
| | - Akifumi Matsuyama
- Department of Regenerative Medicine, Fujita Health University, Graduate School of Medicine, Toyoake, Japan
| | - Masahiro Saito
- Department of Restorative Dentistry, Division of Operative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| |
Collapse
|
9
|
Effect of Adipose-Derived Stem Cells and Their Exo as Adjunctive Therapy to Nonsurgical Periodontal Treatment: A Histologic and Histomorphometric Study in Rats. Biomolecules 2018; 8:biom8040167. [PMID: 30544734 PMCID: PMC6316309 DOI: 10.3390/biom8040167] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/05/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022] Open
Abstract
Scaling and root planing (SRP) is of limited value in many cases, so adjunctive treatment was applied to augment its outcome. Adipose-derived stem/stromal cells (ADSCs) were investigated in periodontal regeneration with promising results. However, they have safety concerns. The exosomes (Exo.), which are extracellular vesicles mediating the action of stem/stromal cells, represent a new approach to overcome these concerns. Ligature-induced periodontitis was induced in 50 rats for 14 days, and they were divided into control (5 healthy rats for histologic comparison), SRP group, ADSCs group, and Exo. group, with evaluation intervals at 2 days, and 2 and 4 weeks, including 5 rats in each interval for each group. The specimens were evaluated for histologic description (H&E), histochemical study (Masson trichrome), and histomorphometric study, to evaluate the area % of newly formed tissues. The Exo. group revealed the best results in all intervals with significantly higher area % of newly formed tissues, followed by ADSCs and, finally, SRP. Both Exo. and ADSCs showed organized newly formed tissues with the Exo. group obtaining comparable histologic results to the normal, healthy tissues by 4 weeks. Adipose-derived stem/stromal cells and their Exo. represent a promising adjunctive treatment to SRP.
Collapse
|
10
|
Gaubys A, Papeckys V, Pranskunas M. Use of Autologous Stem Cells for the Regeneration of Periodontal Defects in Animal Studies: a Systematic Review and Meta-Analysis. J Oral Maxillofac Res 2018; 9:e3. [PMID: 30116515 PMCID: PMC6090251 DOI: 10.5037/jomr.2018.9203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/24/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To overview preclinical animal trials and quantify the effect size that stem cell therapy has on the regeneration of periodontal tissue complex. MATERIAL AND METHODS A systematic MEDLINE (PubMed) online library search was conducted for preclinical animal studies in vivo , using autologous periodontal ligament, dental pulp, cementum, alveolar periosteal, gingival margin or adipose stem cell types for periodontal tissue complex regeneration purposes. Studies had to be published between 2007.09.01 and 2017.09.01 in the English language. RESULTS Online library search yielded 2099 results. After the title, abstract and full-text screening ten studies fit inclusion criteria and were pooled into meta-analysis. Overall the stem cell regenerative therapy had a statistically significant positive influence on the periodontal tissue regeneration when compared to the control groups. The biggest influence was made to the regeneration of cementum (standardised mean difference [SMD] 2.25 [95% confidence interval (CI) = 1.31 to 3.2]) while the smallest influence was made to the alveolar bone (SMD 1.47 [95% CI = 0.7 to 2.25]) the effect size for periodontal ligament regeneration was (SMD 1.8 [95% CI = 1 to 2.59]). Subgroup analysis showed statistically significant (P < 0.05) differences between different cell types in the alveolar bone and cementum regeneration groups and in alveolar bone group in relation to scaffold materials. CONCLUSIONS Stem cell therapy has a positive impact on periodontal tissue complex regeneration. Such therapy has the biggest influence on cementum regeneration meanwhile alveolar bone regeneration is influenced by the least amount. However more and less diverse preclinical studies are needed to have a greater statistical power in future meta-analyses.
Collapse
Affiliation(s)
- Algimantas Gaubys
- Department of Maxillofacial Surgery, Lithuanian University of Health Sciences, KaunasLithuania.
| | - Valdas Papeckys
- Department of Maxillofacial Surgery, Lithuanian University of Health Sciences, KaunasLithuania.
| | - Mindaugas Pranskunas
- Department of Maxillofacial Surgery, Lithuanian University of Health Sciences, KaunasLithuania.
| |
Collapse
|
11
|
Fawzy El-Sayed KM, Dörfer CE. Animal Models for Periodontal Tissue Engineering: A Knowledge-Generating Process. Tissue Eng Part C Methods 2017; 23:900-925. [DOI: 10.1089/ten.tec.2017.0130] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Karim M. Fawzy El-Sayed
- Department of Oral Medicine and Periodontology, Faculty of Oral and Dental Medicine, Cairo University, Giza, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
12
|
Čebatariūnienė A, Jarmalavičiūtė A, Tunaitis V, Pūrienė A, Venalis A, Pivoriūnas A. Microcarrier culture enhances osteogenic potential of human periodontal ligament stromal cells. J Craniomaxillofac Surg 2017; 45:845-854. [DOI: 10.1016/j.jcms.2017.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 02/22/2017] [Accepted: 03/20/2017] [Indexed: 11/15/2022] Open
|
13
|
Li H, Ji Q, Chen X, Sun Y, Xu Q, Deng P, Hu F, Yang J. Accelerated bony defect healing based on chitosan thermosensitive hydrogel scaffolds embedded with chitosan nanoparticles for the delivery of BMP2 plasmid DNA. J Biomed Mater Res A 2016; 105:265-273. [PMID: 27636714 DOI: 10.1002/jbm.a.35900] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/27/2016] [Accepted: 09/13/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Hui Li
- Department of Stomatology; The Affiliated Hospital of Qingdao University; Qingdao Shandong 266001 China
- School of Stomatology; Qingdao University; Qingdao Shandong 266001 China
- Department of Stomatology; Beijing Tongzhou Xinhua Hospital; Tongzhou Beijing 101100 China
| | - Qiuxia Ji
- Department of Stomatology; The Affiliated Hospital of Qingdao University; Qingdao Shandong 266001 China
- School of Stomatology; Qingdao University; Qingdao Shandong 266001 China
| | - Ximin Chen
- Orthopedic Center; Qilu Hospital of Shandong University; Qingdao Shandong 266035 China
| | - Yan Sun
- Department of Stomatology; The Affiliated Hospital of Qingdao University; Qingdao Shandong 266001 China
- School of Stomatology; Qingdao University; Qingdao Shandong 266001 China
| | - Quanchen Xu
- Department of Stomatology; The Affiliated Hospital of Qingdao University; Qingdao Shandong 266001 China
- School of Stomatology; Qingdao University; Qingdao Shandong 266001 China
| | - Panpan Deng
- Department of Stomatology; The Affiliated Hospital of Qingdao University; Qingdao Shandong 266001 China
- School of Stomatology; Qingdao University; Qingdao Shandong 266001 China
| | - Fang Hu
- Department of Stomatology; The Affiliated Hospital of Qingdao University; Qingdao Shandong 266001 China
- School of Stomatology; Qingdao University; Qingdao Shandong 266001 China
| | - Jianjun Yang
- Department of Stomatology; The Affiliated Hospital of Qingdao University; Qingdao Shandong 266001 China
- School of Stomatology; Qingdao University; Qingdao Shandong 266001 China
| |
Collapse
|
14
|
Martino MM, Maruyama K, Kuhn GA, Satoh T, Takeuchi O, Müller R, Akira S. Inhibition of IL-1R1/MyD88 signalling promotes mesenchymal stem cell-driven tissue regeneration. Nat Commun 2016; 7:11051. [PMID: 27001940 PMCID: PMC4804175 DOI: 10.1038/ncomms11051] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 02/11/2016] [Indexed: 02/06/2023] Open
Abstract
Tissue injury and the healing response lead to the release of endogenous danger signals including Toll-like receptor (TLR) and interleukin-1 receptor, type 1 (IL-1R1) ligands, which modulate the immune microenvironment. Because TLRs and IL-1R1 have been shown to influence the repair process of various tissues, we explored their role during bone regeneration, seeking to design regenerative strategies integrating a control of their signalling. Here we show that IL-1R1/MyD88 signalling negatively regulates bone regeneration, in the mouse. Furthermore, IL-1β which is released at the bone injury site, inhibits the regenerative capacities of mesenchymal stem cells (MSCs). Mechanistically, IL-1R1/MyD88 signalling impairs MSC proliferation, migration and differentiation by inhibiting the Akt/GSK-3β/β-catenin pathway. Lastly, as a proof of concept, we engineer a MSC delivery system integrating inhibitors of IL-1R1/MyD88 signalling. Using this strategy, we considerably improve MSC-based bone regeneration in the mouse, demonstrating that this approach may be useful in regenerative medicine applications. TLR and IL-1R1 ligands are danger signals released following tissue injury and during the healing response. Here, the authors show that IL-1β signalling via IL-1R1/MyD88 inhibits the Akt/GSK-3β/β-catenin pathway in mesenchymal stem cells, which suppresses their mobilization, proliferation, and differentiation into osteoblasts, processes necessary for bone regeneration.
Collapse
Affiliation(s)
- Mikaël M Martino
- WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kenta Maruyama
- WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Gisela A Kuhn
- Institute for Biomechanics, Leopold-Ruzicka-Weg 4, ETH Zurich, Zurich 8093, Switzerland
| | - Takashi Satoh
- WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Osamu Takeuchi
- WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.,Institute for Virus Research, Kyoto University, 53 Shogoin Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ralph Müller
- Institute for Biomechanics, Leopold-Ruzicka-Weg 4, ETH Zurich, Zurich 8093, Switzerland
| | - Shizuo Akira
- WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Chatzivasileiou K, Kriebel K, Steinhoff G, Kreikemeyer B, Lang H. Do oral bacteria alter the regenerative potential of stem cells? A concise review. J Cell Mol Med 2015; 19:2067-74. [PMID: 26058313 PMCID: PMC4568911 DOI: 10.1111/jcmm.12613] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/15/2015] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are widely recognized as critical players in tissue regeneration. New insights into stem cell biology provide evidence that MSCs may also contribute to host defence and inflammation. In case of tissue injury or inflammatory diseases, e.g. periodontitis, stem cells are mobilized towards the site of damage, thus coming in close proximity to bacteria and bacterial components. Specifically, in the oral cavity, complex ecosystems of commensal bacteria live in a mutually beneficial state with the host. However, the formation of polymicrobial biofilm communities with pathogenic properties may trigger an inadequate host inflammatory-immune response, leading to the disruption of tissue homoeostasis and development of disease. Because of their unique characteristics, MSCs are suggested as crucial regulators of tissue regeneration even under such harsh environmental conditions. The heterogeneous effects of bacteria on MSCs across studies imply the complexity underlying the interactions between stem cells and bacteria. Hence, a better understanding of stem cell behaviour at sites of inflammation appears to be a key strategy in developing new approaches for in situ tissue regeneration. Here, we review the literature on the effects of oral bacteria on cell proliferation, differentiation capacity and immunomodulation of dental-derived MSCs.
Collapse
Affiliation(s)
- Kyriaki Chatzivasileiou
- Department of Operative Dentistry and Periodontology, University of Rostock, Rostock, Germany
| | - Katja Kriebel
- Department of Operative Dentistry and Periodontology, University of Rostock, Rostock, Germany
| | - Gustav Steinhoff
- Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | - Hermann Lang
- Department of Operative Dentistry and Periodontology, University of Rostock, Rostock, Germany
| |
Collapse
|
16
|
Yan XZ, Yang F, Jansen JA, de Vries RBM, van den Beucken JJJP. Cell-Based Approaches in Periodontal Regeneration: A Systematic Review and Meta-Analysis of Periodontal Defect Models in Animal Experimental Work. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:411-26. [PMID: 25929285 DOI: 10.1089/ten.teb.2015.0049] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Various cell types have been assessed for experimental periodontal tissue regeneration in a variety of animal models. Nonetheless, the efficacy of cell-based approaches for periodontal regeneration is still controversial. Therefore, the purpose of this study was to systematically review cell-based approaches for periodontal regeneration in animal studies including a meta-analysis to obtain more clarity on their efficacy. The results of this systematic review and meta-analysis revealed that cell-based approaches have a favorable effect on periodontal tissue regeneration, as displayed by the positive effect of cell-based approaches on new bone, cementum, and periodontal ligament (PDL) formation in periodontal defects. Moreover, subgroup analysis showed a favorable effect on PDL formation by PDL-derived cells, but not by bone marrow mesenchymal stem cells (BMSCs). However, meta-analysis did not show any statistically significant differences in effect between PDL-derived cells and BMSCs. These results provide important information for the implementation of cell-based approaches in clinical practice as a routine treatment for periodontal regeneration in the future.
Collapse
Affiliation(s)
- Xiang-Zhen Yan
- 1 Radboudumc, Department of Biomaterials, Nijmegen, The Netherlands .,2 Department of Periodontology, the Affiliated Stomatology Hospital of Tongji University , Shanghai, China
| | - Fang Yang
- 1 Radboudumc, Department of Biomaterials, Nijmegen, The Netherlands
| | - John A Jansen
- 1 Radboudumc, Department of Biomaterials, Nijmegen, The Netherlands
| | - Rob B M de Vries
- 3 Radboudumc, SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE) , Central Animal Laboratory, Nijmegen, The Netherlands
| | | |
Collapse
|