1
|
Locke M, Bruccoleri G. Skeletal Muscle Heat Shock Protein Content and the Repeated Bout Effect. Int J Mol Sci 2024; 25:4017. [PMID: 38612826 PMCID: PMC11011896 DOI: 10.3390/ijms25074017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The "Repeated Bout Effect" (RBE) occurs when a skeletal muscle is preconditioned with a few lengthening contractions (LC) prior to exposing the muscle to a greater number of LC. The preconditioning (PC) results in significantly less damage and preservation of force. Since it takes only a few LC to increase muscle heat shock protein (HSP) content, it was of interest to examine the relationship between HSPs and the RBE. To do this, one tibialis anterior (TA) muscle from Sprague-Dawley rats (n = 5/group) was preconditioned with either 0, 5, or 15 lengthening contractions (LC) and exposed to a treatment of 60 LC 48 h later. Preconditioning TA muscles with 15 LC, but not 5 LC, significantly elevated muscle αB-crystallin (p < 0.05), HSP25 (p < 0.05), and HSP72 content (p < 0.001). These preconditioned TA muscles also showed a significantly (p < 0.05) reduced loss of active torque throughout the subsequent 60 LC. While there was a trend for all preconditioned muscles to maintain higher peak torque levels throughout the 60 LC, no significant differences were detected between the groups. Morphologically, preconditioned muscles appeared to show less discernible muscle fiber damage. In conclusion, an elevated skeletal muscle HSP content from preconditioning may contribute to the RBE.
Collapse
Affiliation(s)
- Marius Locke
- Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord Street, Toronto, ON M5S 2W6, Canada;
| | | |
Collapse
|
2
|
Mikami T, Yamauchi H. Preconditioning with whole-body or regional hyperthermia attenuates exercise-induced muscle damage in rodents. Physiol Res 2022; 71:125-134. [PMID: 34505524 DOI: 10.33549/physiolres.934569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Our aim was to investigate whether hyperthermia before exercise protects against exercise-induced skeletal muscle damage. Two hyperthermia protocols were evaluated. In the first, male ICR mice were exposed to 30 min of whole-body heat in an environmental chamber at an ambient temperature of 42 °C. Heat-exposed and non-heat-exposed mice subsequently completed 60 min of downhill running on a treadmill, 24 h after exposure. Heat exposure significantly increased HSP70 and HSP25 content in the soleus muscle compared to controls. Plasma creatine kinase, muscle beta-glucuronidase, and histochemical (hematoxylin and eosin stain) analysis demonstrated that muscle damage was lower in the heat-exposed mice than in the non-heat-exposed mice. In the second, the effect of regional heating of the legs, by microwave diathermy, on the prevention of exercise-induced muscle damage was evaluated in male Wistar rats. Microwave-treated and non-microwave-treated rats again completed the running protocol 24 h after exposure. Microwave diathermy increased the muscle temperature to 40 °C, significantly increased HSP70 and HSP25 content in the soleus muscle, and significantly attenuated exercise-induced muscle damage. Therefore, hyperthermia before exercise increases skeletal muscle HSPs and attenuates the risk of exercise-induced muscle injury.
Collapse
Affiliation(s)
- T Mikami
- Department of Health and Sport Science, Nippon Medical School, Mushasino, Tokyo, Japan.
| | | |
Collapse
|
3
|
Locke M, Salerno SA. Ovariectomy alters lengthening contraction induced heat shock protein expression. Appl Physiol Nutr Metab 2020; 45:530-538. [PMID: 32339026 DOI: 10.1139/apnm-2019-0212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estrogen appears to play a role in minimizing skeletal muscle damage as well as regulating the expression of the protective heat shock proteins (HSPs). To clarify the relationship between estrogen, muscle HSP content, and muscle damage, tibialis anterior (TA) muscles from ovary-intact (OVI; n = 12) and ovariectomized (OVX; 3 weeks, n = 12) female Sprague-Dawley rats were subjected to either 20 or 40 lengthening contractions (LCs). Twenty-four hours after stimulation, TA muscles were removed, processed, and assessed for HSP25 and HSP72 content as well as muscle (damage) morphology. No differences in muscle contractile properties were observed in TA muscles between OVI and OVX animals for peak torque during the LCs. In unstressed TA muscles, the basal expression of HSP72 expression was decreased in OVX animals (P < 0.05) while HSP25 content remained unchanged. Following 20 LCs, HSP25 content was elevated (P < 0.05) in TA muscles from OVX animals but unchanged in muscles from OVI animals. Following 40 LCs, HSP25 content was elevated (P < 0.01) in TA muscles from both OVI and OVX animals while HSP72 content was elevated only in TA muscles from OVI animals (P < 0.05). Taken together, these data suggest the loss of ovarian hormones, such as estrogen, may impair the skeletal muscle cellular stress response thereby rendering muscles more susceptible to certain types of contraction induced damage. Novelty Ovariectomy alters muscle HSP72 content. Muscle contractile measures are maintained following ovariectomy.
Collapse
Affiliation(s)
- Marius Locke
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada
| | - Stephanie A Salerno
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada
| |
Collapse
|
4
|
Breed ER, Hilliard CA, Yoseph B, Mittal R, Liang Z, Chen CW, Burd EM, Brewster LP, Hansen LM, Gleason RL, Pandita TK, Ford ML, Hunt CR, Coopersmith CM. The small heat shock protein HSPB1 protects mice from sepsis. Sci Rep 2018; 8:12493. [PMID: 30131526 PMCID: PMC6104051 DOI: 10.1038/s41598-018-30752-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/01/2018] [Indexed: 12/29/2022] Open
Abstract
In vitro studies have implicated the small heat shock protein HSPB1 in a range of physiological functions. However, its in vivo relevance is unclear as the phenotype of unstressed HSPB1−/− mice is unremarkable. To determine the impact of HSPB1 in injury, HSPB1−/− and wild type (WT) mice were subjected to cecal ligation and puncture, a model of polymicrobial sepsis. Ten-day mortality was significantly higher in HSPB1−/− mice following the onset of sepsis (65% vs. 35%). Ex vivo mechanical testing revealed that common carotid arteries from HSPB1−/− mice were more compliant than those in WT mice over pressures of 50–120 mm Hg. Septic HSPB1−/− mice also had increased peritoneal levels of IFN-γ and decreased systemic levels of IL-6 and KC. There were no differences in frequency of either splenic CD4+ or CD8+ T cells, nor were there differences in apoptosis in either cell type. However, splenic CD4+ T cells and CD8+ T cells from HSPB1−/− mice produced significantly less TNF and IL-2 following ex vivo stimulation. Systemic and local bacterial burden was similar in HSPB1−/− and WT mice. Thus while HSPB1−/− mice are uncompromised under basal conditions, HSPB1 has a critical function in vivo in sepsis, potentially mediated through alterations in arterial compliance and the immune response.
Collapse
Affiliation(s)
- Elise R Breed
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, Georgia
| | - Carolyn A Hilliard
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Benyam Yoseph
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, Georgia
| | - Rohit Mittal
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, Georgia
| | - Zhe Liang
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, Georgia
| | - Ching-Wen Chen
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, Georgia
| | - Eileen M Burd
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, Georgia
| | - Luke P Brewster
- Department of Surgery, Division of Vascular Surgery, Emory University School of Medicine, Atlanta, GA, Georgia
| | - Laura M Hansen
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, Georgia
| | - Rudolph L Gleason
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, Georgia
| | - Tej K Pandita
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mandy L Ford
- Department of Surgery and Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, Georgia
| | - Clayton R Hunt
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, USA
| | - Craig M Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, Georgia.
| |
Collapse
|
5
|
Kammoun M, Picard B, Astruc T, Gagaoua M, Aubert D, Bonnet M, Blanquet V, Cassar-Malek I. The Invalidation of HspB1 Gene in Mouse Alters the Ultrastructural Phenotype of Muscles. PLoS One 2016; 11:e0158644. [PMID: 27512988 PMCID: PMC4981447 DOI: 10.1371/journal.pone.0158644] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/20/2016] [Indexed: 12/30/2022] Open
Abstract
Even though abundance of Hsp27 is the highest in skeletal muscle, the relationships between the expression of HspB1 (encoding Hsp27) and muscle characteristics are not fully understood. In this study, we have analysed the effect of Hsp27 inactivation on mouse development and phenotype. We generated a mouse strain devoid of Hsp27 protein by homologous recombination of the HspB1 gene. The HspB1-/- mouse was viable and fertile, showing neither apparent morphological nor anatomical alterations. We detected a gender dimorphism with marked effects in males, a lower body weight (P < 0.05) with no obvious changes in the growth rate, and a lower plasma lipids profile (cholesterol, HDL and triglycerides, 0.001 < P< 0.05). The muscle structure of the animals was examined by optical microscopy and transmission electron microscopy. Not any differences in the characteristics of muscle fibres (contractile and metabolic type, shape, perimeter, cross-sectional area) were detected except a trend for a higher proportion of small fibres. Different myosin heavy chains electrophoretic profiles were observed in the HspB1-/- mouse especially the presence of an additional isoform. Electron microscopy revealed ultrastructural abnormalities in the myofibrillar structure of the HspB1-/- mouse mutant mice (e.g. destructured myofibrils and higher gaps between myofibrils) especially in the m. Soleus. Combined with our previous data, these findings suggest that Hsp27 could directly impact the organization of muscle cytoskeleton at the molecular and ultrastructural levels.
Collapse
Affiliation(s)
- Malek Kammoun
- INRA, UMR1213 Herbivores, F-63122, Saint-Genès-Champanelle, France
- Clermont Université, VetAgro Sup, UMR1213 Herbivores, BP 10448, F-63000, Clermont-Ferrand, France
| | - Brigitte Picard
- INRA, UMR1213 Herbivores, F-63122, Saint-Genès-Champanelle, France
- Clermont Université, VetAgro Sup, UMR1213 Herbivores, BP 10448, F-63000, Clermont-Ferrand, France
| | - Thierry Astruc
- INRA, UR0370 Qualité des Produits Animaux, F-63122, Saint-Genès-Champanelle, France
| | - Mohammed Gagaoua
- INRA, UMR1213 Herbivores, F-63122, Saint-Genès-Champanelle, France
- Equipe Maquav, INATAA, Université Frères Mentouri Constantine, Constantine, Algeria
| | - Denise Aubert
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, École Normale Supérieure de Lyon, F-69364, Lyon, France
| | - Muriel Bonnet
- INRA, UMR1213 Herbivores, F-63122, Saint-Genès-Champanelle, France
- Clermont Université, VetAgro Sup, UMR1213 Herbivores, BP 10448, F-63000, Clermont-Ferrand, France
| | | | - Isabelle Cassar-Malek
- INRA, UMR1213 Herbivores, F-63122, Saint-Genès-Champanelle, France
- Clermont Université, VetAgro Sup, UMR1213 Herbivores, BP 10448, F-63000, Clermont-Ferrand, France
- * E-mail:
| |
Collapse
|
6
|
|
7
|
Amadio EM, Serra AJ, Guaraldo SA, Silva JA, Antônio EL, Silva F, Portes LA, Tucci PJF, Leal-Junior ECP, de Carvalho PDTC. The action of pre-exercise low-level laser therapy (LLLT) on the expression of IL-6 and TNF-α proteins and on the functional fitness of elderly rats subjected to aerobic training. Lasers Med Sci 2015; 30:1127-34. [PMID: 25647393 DOI: 10.1007/s10103-015-1713-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 01/09/2015] [Indexed: 01/01/2023]
Abstract
The aim of the present study was to determine whether low-level laser therapy (LLLT), when used in conjunction with aerobic training, interferes with the expression of inflammatory markers IL-6 and TNF-α, thereby influencing the performance of old rats participating in swimming. A total of 30 Wistar rats (Rattus norvegicus albinus) were used for this study: 24 aged rats, and 6 young rats. The older animals were randomly divided into four groups designated as follows: aged-control, aged-exercise, aged-LLLT, aged-LLLT/exercise group, and young-control animals. Aerobic capacity (VO2max) was analyzed before and after training period. The aged-exercise and aged-LLLT/exercise groups were trained for 6 weeks. LLLT laser was applied before each training session with 808 nm and 4 J of energy to the indicated groups throughout training. The rats were euthanized, and muscle tissue and serum were collected for muscle cross-sectional area and IL-6 and TNF-α protein analysis. In VO2 showed statistical difference between young- and aged-control groups (used as baseline) (p < 0.05). The same difference can be observed in the young control group compared with all intervention groups (exercise, LLLT and LLLT + exercise). In comparison with the aged-control group, a difference was observed only for comparison with the exercise group (p < 0.05), and exercise associated with LLLT group (p < 0.001). Levels of IL-6 and TNF-α for the aged-exercise and the aged-LLLT/exercise groups were significantly decreased compared to the aged-control group (p < 0.05). Analysis of the transverse section of the gastrocnemius muscle showed a significant difference between the aged-exercise and aged-LLLT/exercise groups (p < 0.001). These results suggest that laser therapy in conjunction with aerobic training may provide a therapeutic approach for reducing the inflammatory markers (IL-6 and TNF-α), however, LLLT without exercise was not able to improve physical performance of aged rats.
Collapse
Affiliation(s)
- Eliane Martins Amadio
- Postgraduate Program in Biophotonics Applied Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|