1
|
Ravi B, Kanwar P, Sanyal SK, Bheri M, Pandey GK. VDACs: An Outlook on Biochemical Regulation and Function in Animal and Plant Systems. Front Physiol 2021; 12:683920. [PMID: 34421635 PMCID: PMC8375762 DOI: 10.3389/fphys.2021.683920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
The voltage-dependent anion channels (VDACs) are the most abundant proteins present on the outer mitochondrial membrane. They serve a myriad of functions ranging from energy and metabolite exchange to highly debatable roles in apoptosis. Their role in molecular transport puts them on the center stage as communicators between cytoplasmic and mitochondrial signaling events. Beyond their general role as interchangeable pores, members of this family may exhibit specific functions. Even after nearly five decades of their discovery, their role in plant systems is still a new and rapidly emerging field. The information on biochemical regulation of VDACs is limited. Various interacting proteins and post-translational modifications (PTMs) modulate VDAC functions, amongst these, phosphorylation is quite noticeable. In this review, we have tried to give a glimpse of the recent advancements in the biochemical/interactional regulation of plant VDACs. We also cover a critical analysis on the importance of PTMs in the functional regulation of VDACs. Besides, the review also encompasses numerous studies which can identify VDACs as a connecting link between Ca2+ and reactive oxygen species signaling in special reference to the plant systems.
Collapse
Affiliation(s)
| | | | | | | | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
2
|
Araújo JE, Jorge S, Santos HM, Chiechi A, Galstyan A, Lodeiro C, Diniz M, Kleinman MT, Ljubimova JY, Capelo JL. Proteomic changes driven by urban pollution suggest particulate matter as a deregulator of energy metabolism, mitochondrial activity, and oxidative pathways in the rat brain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:839-848. [PMID: 31412487 DOI: 10.1016/j.scitotenv.2019.06.102] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 06/10/2023]
Abstract
The adverse effects of air pollution have been long studied in the lung and respiratory systems, but the molecular changes that this causes at the central nervous system level have yet to be fully investigated and understood. To explore the evolution with time of protein expression levels in the brain of rats exposed to particulate matter of different sizes, we carried out two-dimensional gel electrophoresis followed by determination of dysregulated proteins through Coomassie blue staining-based densities (SameSpots software) and subsequent protein identification using MALDI-based mass spectrometry. Expression differences in dysregulated proteins were found to be statistically significant with p-value <0.05. A systems biology-based approach was utilized to determine critical biochemical pathways involved in the rats' brain response. Our results suggest that rats' brains have a particulate matter size dependent-response, being the mitochondrial activity and the astrocyte function severely affected. Our proteomic study confirms the dysregulation of different biochemical pathways involving energy metabolism, mitochondrial activity, and oxidative pathways as some of the main effects of PM exposure on the rat brain. SIGNIFICANCE: Rat brains exposed to particulate matter with origin in car engines are affected in two main areas: mitochondrial activity, by the dysregulation of many pathways linked to the respiratory chain, and neuronal and astrocytic function, which stimulates brain changes triggering tumorigenesis and neurodegeneration.
Collapse
Affiliation(s)
- J E Araújo
- BIOSCOPE Group, LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; Proteomass Scientific Society, Rua dos Inventores, Madan Park, 2829-516, Caparica, Portugal
| | - Susana Jorge
- BIOSCOPE Group, LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; Proteomass Scientific Society, Rua dos Inventores, Madan Park, 2829-516, Caparica, Portugal
| | - H M Santos
- BIOSCOPE Group, LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; Proteomass Scientific Society, Rua dos Inventores, Madan Park, 2829-516, Caparica, Portugal
| | - A Chiechi
- Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, Los Angeles, CA 90048, United States
| | - A Galstyan
- Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, Los Angeles, CA 90048, United States
| | - Carlos Lodeiro
- BIOSCOPE Group, LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; Proteomass Scientific Society, Rua dos Inventores, Madan Park, 2829-516, Caparica, Portugal
| | - M Diniz
- UCIBIO, REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - M T Kleinman
- Department of Medicine, University of California at Irvine, 19182 Jamboree Rd. FRF, 100, Irvine, CA, United States
| | - Julia Y Ljubimova
- Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, Los Angeles, CA 90048, United States
| | - J L Capelo
- BIOSCOPE Group, LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; Proteomass Scientific Society, Rua dos Inventores, Madan Park, 2829-516, Caparica, Portugal.
| |
Collapse
|
3
|
AMPK is activated early in cerebellar granule cells undergoing apoptosis and influences VADC1 phosphorylation status and activity. Apoptosis 2018. [PMID: 28643197 DOI: 10.1007/s10495-017-1389-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The neurodegeneration of cerebellar granule cells, after low potassium induced apoptosis, is known to be temporally divided into an early and a late phase. Voltage-dependent anion channel-1 (VDAC1) protein, changing from the closed inactive state to the active open state, is central to the switch between the early and late phase. It is also known that: (i) VDAC1 can undergo phosphorylation events and (ii) AMP-activated protein kinase (AMPK), the sensor of cellular stress, may have a role in neuronal homeostasis. In the view of this, the involvement of AMPK activation and its correlation with VDAC1 status and activity has been investigated in the course of cerebellar granule cells apoptosis. The results reported in this study show that an increased level of the phosphorylated, active, isoform of AMPK occurs in the early phase, peaks at 3 h and guarantees an increase in the phosphorylation status of VDCA1, resulting in a reduced activity of this latter. However this situation is transient in nature, since, in the late phase, AMPK activation decreases as well as the level of phosphorylated VDAC1. In a less phosphorylated status, VDAC1 fully recovers its gating activity and drives cells along the death route.
Collapse
|
4
|
Gupta R, Ghosh S. Phosphorylation of purified mitochondrial Voltage-Dependent Anion Channel by c-Jun N-terminal Kinase-3 modifies channel voltage-dependence. BIOCHIMIE OPEN 2017; 4:78-87. [PMID: 29450145 PMCID: PMC5802065 DOI: 10.1016/j.biopen.2017.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/02/2017] [Indexed: 02/05/2023]
Abstract
Voltage-Dependent Anion Channel (VDAC) phosphorylated by c-Jun N-terminal Kinase-3 (JNK3) was incorporated into the bilayer lipid membrane. Single-channel electrophysiological properties of the native and the phosphorylated VDAC were compared. The open probability versus voltage curve of the native VDAC displayed symmetry around the voltage axis, whereas that of the phosphorylated VDAC showed asymmetry. This result indicates that phosphorylation by JNK3 modifies voltage-dependence of VDAC.
Collapse
Affiliation(s)
- Rajeev Gupta
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Subhendu Ghosh
- Department of Biophysics, University of Delhi South Campus, India
| |
Collapse
|
5
|
Piroli GG, Manuel AM, Clapper AC, Walla MD, Baatz JE, Palmiter RD, Quintana A, Frizzell N. Succination is Increased on Select Proteins in the Brainstem of the NADH dehydrogenase (ubiquinone) Fe-S protein 4 (Ndufs4) Knockout Mouse, a Model of Leigh Syndrome. Mol Cell Proteomics 2015; 15:445-61. [PMID: 26450614 DOI: 10.1074/mcp.m115.051516] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Indexed: 12/21/2022] Open
Abstract
Elevated fumarate concentrations as a result of Krebs cycle inhibition lead to increases in protein succination, an irreversible post-translational modification that occurs when fumarate reacts with cysteine residues to generate S-(2-succino)cysteine (2SC). Metabolic events that reduce NADH re-oxidation can block Krebs cycle activity; therefore we hypothesized that oxidative phosphorylation deficiencies, such as those observed in some mitochondrial diseases, would also lead to increased protein succination. Using the Ndufs4 knockout (Ndufs4 KO) mouse, a model of Leigh syndrome, we demonstrate for the first time that protein succination is increased in the brainstem (BS), particularly in the vestibular nucleus. Importantly, the brainstem is the most affected region exhibiting neurodegeneration and astrocyte and microglial proliferation, and these mice typically die of respiratory failure attributed to vestibular nucleus pathology. In contrast, no increases in protein succination were observed in the skeletal muscle, corresponding with the lack of muscle pathology observed in this model. 2D SDS-PAGE followed by immunoblotting for succinated proteins and MS/MS analysis of BS proteins allowed us to identify the voltage-dependent anion channels 1 and 2 as specific targets of succination in the Ndufs4 knockout. Using targeted mass spectrometry, Cys(77) and Cys(48) were identified as endogenous sites of succination in voltage-dependent anion channels 2. Given the important role of voltage-dependent anion channels isoforms in the exchange of ADP/ATP between the cytosol and the mitochondria, and the already decreased capacity for ATP synthesis in the Ndufs4 KO mice, we propose that the increased protein succination observed in the BS of these animals would further decrease the already compromised mitochondrial function. These data suggest that fumarate is a novel biochemical link that may contribute to the progression of the neuropathology in this mitochondrial disease model.
Collapse
Affiliation(s)
- Gerardo G Piroli
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Allison M Manuel
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Anna C Clapper
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Michael D Walla
- §Mass Spectrometry Center, Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29205
| | - John E Baatz
- ¶Department of Pediatrics, College of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Richard D Palmiter
- ‖Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Albert Quintana
- ‖Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, Washington 98195; **Center for Integrative Brain Research and Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, Washington 98101
| | - Norma Frizzell
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209;
| |
Collapse
|