1
|
Yap JQ, Seflova J, Sweazey R, Artigas P, Robia SL. FXYD proteins and sodium pump regulatory mechanisms. J Gen Physiol 2021; 153:211866. [PMID: 33688925 PMCID: PMC7953255 DOI: 10.1085/jgp.202012633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
The sodium/potassium-ATPase (NKA) is the enzyme that establishes gradients of sodium and potassium across the plasma membrane. NKA activity is tightly regulated for different physiological contexts through interactions with single-span transmembrane peptides, the FXYD proteins. This diverse family of regulators has in common a domain containing a Phe-X-Tyr-Asp (FXYD) motif, two conserved glycines, and one serine residue. In humans, there are seven tissue-specific FXYD proteins that differentially modulate NKA kinetics as appropriate for each system, providing dynamic responsiveness to changing physiological conditions. Our understanding of how FXYD proteins contribute to homeostasis has benefitted from recent advances described in this review: biochemical and biophysical studies have provided insight into regulatory mechanisms, genetic models have uncovered remarkable complexity of FXYD function in integrated physiological systems, new posttranslational modifications have been identified, high-resolution structural studies have revealed new details of the regulatory interaction with NKA, and new clinical correlations have been uncovered. In this review, we address the structural determinants of diverse FXYD functions and the special roles of FXYDs in various physiological systems. We also discuss the possible roles of FXYDs in protein trafficking and regulation of non-NKA targets.
Collapse
Affiliation(s)
- John Q Yap
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| | - Jaroslava Seflova
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| | - Ryan Sweazey
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| |
Collapse
|
2
|
Cytotoxicity of glucoevatromonoside alone and in combination with chemotherapy drugs and their effects on Na +,K +-ATPase and ion channels on lung cancer cells. Mol Cell Biochem 2021; 476:1825-1848. [PMID: 33459980 DOI: 10.1007/s11010-020-04040-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022]
Abstract
Cardiac glycosides (CGs) are useful drugs to treat cardiac illnesses and have potent cytotoxic and anticancer effects in cultured cells and animal models. Their receptor is the Na+,K+ ATPase, but other plasma membrane proteins might bind CGs as well. Herein, we evaluated the short- and long-lasting cytotoxic effects of the natural cardenolide glucoevatromonoside (GEV) on non-small-cell lung cancer H460 cells. We also tested GEV effects on Na+,K+ -ATPase activity and membrane currents, alone or in combination with selected chemotherapy drugs. GEV reduced viability, migration, and invasion of H460 cells spheroids. It also induced cell cycle arrest and death and reduced the clonogenic survival and cumulative population doubling. GEV inhibited Na+,K+-ATPase activity on A549 and H460 cells and purified pig kidney cells membrane. However, it showed no activity on the human red blood cell plasma membrane. Additionally, GEV triggered a Cl-mediated conductance on H460 cells without affecting the transient voltage-gated sodium current. The administration of GEV in combination with the chemotherapeutic drugs paclitaxel (PAC), cisplatin (CIS), irinotecan (IRI), and etoposide (ETO) showed synergistic antiproliferative effects, especially when combined with GEV + CIS and GEV + PAC. Taken together, our results demonstrate that GEV is a potential drug for cancer therapy because it reduces lung cancer H460 cell viability, migration, and invasion. Our results also reveal a link between the Na+,K+-ATPase and Cl- ion channels.
Collapse
|
3
|
Ding L, Fan L, Xu X, Fu J, Xue Y. Identification of core genes and pathways in type 2 diabetes mellitus by bioinformatics analysis. Mol Med Rep 2019; 20:2597-2608. [PMID: 31524257 PMCID: PMC6691242 DOI: 10.3892/mmr.2019.10522] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder. Numerous proteins have been identified that are associated with the occurrence and development of T2DM. This study aimed to identify potential core genes and pathways involved in T2DM, through exhaustive bioinformatic analyses using GSE20966 microarray profiles of pancreatic β‑cells obtained from healthy controls and patients with T2DM. The original microarray data were downloaded from the Gene Expression Omnibus database. Data were processed by the limma package in R software and the differentially expressed genes (DEGs) were identified. Gene Ontology functional analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis were carried out to identify potential biological functions and pathways of the DEGs. Key transcription factors were identified using the WEB‑based GEne SeT AnaLysis Toolkit (WebGestalt) and Enrichr. The Search Tool for the Retrieval of Interacting Genes (STRING) database was used to establish a protein‑protein interaction (PPI) network for the DEGs. In total, 329 DEGs were involved in T2DM, with 208 upregulated genes enriched in pancreatic secretion and the complement and coagulation cascades, and 121 downregulated genes enriched in insulin secretion, carbohydrate digestion and absorption, and the Toll‑like receptor pathway. Furthermore, hepatocyte nuclear factor 1‑alpha (HNF1A), signal transducer and activator of transcription 3 (STAT3) and glucocorticoid receptor (GR) were key transcription factors in T2DM. Twenty important nodes were detected in the PPI network. Finally, two core genes, serpin family G member 1 (SERPING1) and alanyl aminopeptidase, membrane (ANPEP), were shown to be associated with the development of T2DM. On the whole, the findings of this study enhance our understanding of the potential molecular mechanisms of T2DM and provide potential targets for further research.
Collapse
Affiliation(s)
- Linchao Ding
- Department of Scientific Research, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Lei Fan
- Department of Pharmacy, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Xiaodong Xu
- Department of Endocrinology, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Jianfei Fu
- Department of Scientific Research, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Yadong Xue
- Department of Scientific Research, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| |
Collapse
|
4
|
Maternal High Fat Diet and in-Utero Metformin Exposure Significantly Impact upon the Fetal Renal Proteome of Male Mice. J Clin Med 2019; 8:jcm8050663. [PMID: 31083566 PMCID: PMC6571731 DOI: 10.3390/jcm8050663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/30/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
There is accumulating evidence for fetal programming of later kidney disease by maternal obesity or associated conditions. We performed a hypothesis-generating study to identify potentially underlying mechanisms. Female mice were randomly split in two groups and fed either a standard diet (SD) or high fat diet (HFD) from weaning until mating and during pregnancy. Half of the dams from both groups were treated with metformin ((M), 380 mg/kg), resulting in four experimental groups (SD, SD-M, HFD, HFD-M). Caesarean section was performed on gestational day 18.5. Fetal kidney tissue was isolated from cryo-slices using laser microdissection methods and a proteomic screen was performed. For single proteins, a fold change ≥1.5 and q-value <0.05 were considered to be statistically significant. Interestingly, HFD versus SD had a larger effect on the proteome of fetal kidneys (56 proteins affected; interaction clusters shown for proteins concerning transcription/translation, mitochondrial processes, eicosanoid metabolism, H2S-synthesis and membrane remodeling) than metformin exposure in either SD (29 proteins affected; clusters shown for proteins involved in transcription/translation) or HFD (6 proteins affected; no cluster). By further analysis, ATP6V1G1, THY1, PRKCA and NDUFB3 were identified as the most promising candidates potentially mediating reprogramming effects of metformin in a maternal high fat diet.
Collapse
|
5
|
Santander VS, Campetelli AN, Monesterolo NE, Rivelli JF, Nigra AD, Arce CA, Casale CH. Tubulin-Na + , K + -ATPase interaction: Involvement in enzymatic regulation and cellular function. J Cell Physiol 2018; 234:7752-7763. [PMID: 30378111 DOI: 10.1002/jcp.27610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022]
Abstract
A new function for tubulin was described by our laboratory: acetylated tubulin forms a complex with Na+ ,K + -ATPase (NKA) and inhibits its activity. This process was shown to be a regulatory factor of physiological importance in cultured cells, human erythrocytes, and several rat tissues. Formation of the acetylated tubulin-NKA complex is reversible. We demonstrated that in cultured cells, high concentrations of glucose induce translocation of acetylated tubulin from cytoplasm to plasma membrane with a consequent inhibition of NKA activity. This effect is reversed by adding glutamate, which is coctransported to the cell with Na + . Another posttranslational modification of tubulin, detyrosinated tubulin, is also involved in the regulation of NKA activity: it enhances the NKA inhibition induced by acetylated tubulin. Manipulation of the content of these modifications of tubulin could work as a new strategy to maintain homeostasis of Na + and K + , and to regulate a variety of functions in which NKA is involved, such as osmotic fragility and deformability of human erythrocytes. The results summarized in this review show that the interaction between tubulin and NKA plays an important role in cellular physiology, both in the regulation of Na + /K + homeostasis and in the rheological properties of the cells, which is mechanically different from other roles reported up to now.
Collapse
Affiliation(s)
- Veronica S Santander
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Alexis N Campetelli
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Noelia E Monesterolo
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Juan F Rivelli
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Ayelen D Nigra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Carlos A Arce
- entro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), UNC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - César H Casale
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
6
|
Pereira DG, Salgado MA, Rocha SC, Santos HL, Villar JA, Contreras RG, Fontes CF, Barbosa LA, Cortes VF. Involvement of Src signaling in the synergistic effect between cisplatin and digoxin on cancer cell viability. J Cell Biochem 2017; 119:3352-3362. [DOI: 10.1002/jcb.26499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/09/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Duane G. Pereira
- Faculdade de Bioquimica, Laboratorio de Bioquimica Celular, Universidade Federal de São João Del ReiCampus Centro‐Oeste Dona LinduDivinopolis, MGBrazil
| | - Mariana A.R. Salgado
- Faculdade de Bioquimica, Laboratorio de Bioquimica Celular, Universidade Federal de São João Del ReiCampus Centro‐Oeste Dona LinduDivinopolis, MGBrazil
| | - Sayonarah C. Rocha
- Faculdade de Bioquimica, Laboratorio de Bioquimica Celular, Universidade Federal de São João Del ReiCampus Centro‐Oeste Dona LinduDivinopolis, MGBrazil
| | - Hérica L. Santos
- Faculdade de Bioquimica, Laboratorio de Bioquimica Celular, Universidade Federal de São João Del ReiCampus Centro‐Oeste Dona LinduDivinopolis, MGBrazil
| | - José A.F.P. Villar
- Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del ReiCampus Centro‐Oeste Dona LinduDivinopolis, MGBrazil
| | - Rubén G. Contreras
- Department of Physiology, Biophysics and NeurosciencesCenter for Research and Advanced Studies (Cinvestav)Mexico CityMexico
| | - Carlos F.L. Fontes
- Laboratório de Estrutura e Regulação de Proteínas e ATPases, Instituto de Bioquimica Médica Leopoldo de Meis, Centro de Ciências da SaúdeUniversidade Federal do Rio de JaneiroRio de Janeiro, RJBrazil
| | - Leandro A. Barbosa
- Faculdade de Bioquimica, Laboratorio de Bioquimica Celular, Universidade Federal de São João Del ReiCampus Centro‐Oeste Dona LinduDivinopolis, MGBrazil
| | - Vanessa F. Cortes
- Faculdade de Bioquimica, Laboratorio de Bioquimica Celular, Universidade Federal de São João Del ReiCampus Centro‐Oeste Dona LinduDivinopolis, MGBrazil
| |
Collapse
|
7
|
Abstract
The sodium and potassium gradients across the plasma membrane are used by animal cells for numerous processes, and the range of demands requires that the responsible ion pump, the Na,K-ATPase, can be fine-tuned to the different cellular needs. Therefore, several isoforms are expressed of each of the three subunits that make a Na,K-ATPase, the alpha, beta and FXYD subunits. This review summarizes the various roles and expression patterns of the Na,K-ATPase subunit isoforms and maps the sequence variations to compare the differences structurally. Mutations in the Na,K-ATPase genes encoding alpha subunit isoforms have severe physiological consequences, causing very distinct, often neurological diseases. The differences in the pathophysiological effects of mutations further underline how the kinetic parameters, regulation and proteomic interactions of the Na,K-ATPase isoforms are optimized for the individual cellular needs.
Collapse
Affiliation(s)
- Michael V Clausen
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhus, Denmark
| | - Florian Hilbers
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhus, Denmark
| | - Hanne Poulsen
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhus, Denmark
| |
Collapse
|
8
|
Pirkmajer S, Kirchner H, Lundell LS, Zelenin PV, Zierath JR, Makarova KS, Wolf YI, Chibalin AV. Early vertebrate origin and diversification of small transmembrane regulators of cellular ion transport. J Physiol 2017; 595:4611-4630. [PMID: 28436536 DOI: 10.1113/jp274254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS Small transmembrane proteins such as FXYDs, which interact with Na+ ,K+ -ATPase, and the micropeptides that interact with sarco/endoplasmic reticulum Ca2+ -ATPase play fundamental roles in regulation of ion transport in vertebrates. Uncertain evolutionary origins and phylogenetic relationships among these regulators of ion transport have led to inconsistencies in their classification across vertebrate species, thus hampering comparative studies of their functions. We discovered the first FXYD homologue in sea lamprey, a basal jawless vertebrate, which suggests small transmembrane regulators of ion transport emerged early in the vertebrate lineage. We also identified 13 gene subfamilies of FXYDs and propose a revised, phylogeny-based FXYD classification that is consistent across vertebrate species. These findings provide an improved framework for investigating physiological and pathophysiological functions of small transmembrane regulators of ion transport. ABSTRACT Small transmembrane proteins are important for regulation of cellular ion transport. The most prominent among these are members of the FXYD family (FXYD1-12), which regulate Na+ ,K+ -ATPase, and phospholamban, sarcolipin, myoregulin and DWORF, which regulate the sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA). FXYDs and regulators of SERCA are present in fishes, as well as terrestrial vertebrates; however, their evolutionary origins and phylogenetic relationships are obscure, thus hampering comparative physiological studies. Here we discovered that sea lamprey (Petromyzon marinus), a representative of extant jawless vertebrates (Cyclostomata), expresses an FXYD homologue, which strongly suggests that FXYDs predate the emergence of fishes and other jawed vertebrates (Gnathostomata). Using a combination of sequence-based phylogenetic analysis and conservation of local chromosome context, we determined that FXYDs markedly diversified in the lineages leading to cartilaginous fishes (Chondrichthyes) and bony vertebrates (Euteleostomi). Diversification of SERCA regulators was much less extensive, indicating they operate under different evolutionary constraints. Finally, we found that FXYDs in extant vertebrates can be classified into 13 gene subfamilies, which do not always correspond to the established FXYD classification. We therefore propose a revised classification that is based on evolutionary history of FXYDs and that is consistent across vertebrate species. Collectively, our findings provide an improved framework for investigating the function of ion transport in health and disease.
Collapse
Affiliation(s)
- Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Henriette Kirchner
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Leonidas S Lundell
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Pavel V Zelenin
- Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Kira S Makarova
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| |
Collapse
|
9
|
Matchkov VV, Krivoi II. Specialized Functional Diversity and Interactions of the Na,K-ATPase. Front Physiol 2016; 7:179. [PMID: 27252653 PMCID: PMC4879863 DOI: 10.3389/fphys.2016.00179] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022] Open
Abstract
Na,K-ATPase is a protein ubiquitously expressed in the plasma membrane of all animal cells and vitally essential for their functions. A specialized functional diversity of the Na,K-ATPase isozymes is provided by molecular heterogeneity, distinct subcellular localizations, and functional interactions with molecular environment. Studies over the last decades clearly demonstrated complex and isoform-specific reciprocal functional interactions between the Na,K-ATPase and neighboring proteins and lipids. These interactions are enabled by a spatially restricted ion homeostasis, direct protein-protein/lipid interactions, and protein kinase signaling pathways. In addition to its "classical" function in ion translocation, the Na,K-ATPase is now considered as one of the most important signaling molecules in neuronal, epithelial, skeletal, cardiac and vascular tissues. Accordingly, the Na,K-ATPase forms specialized sub-cellular multimolecular microdomains which act as receptors to circulating endogenous cardiotonic steroids (CTS) triggering a number of signaling pathways. Changes in these endogenous cardiotonic steroid levels and initiated signaling responses have significant adaptive values for tissues and whole organisms under numerous physiological and pathophysiological conditions. This review discusses recent progress in the studies of functional interactions between the Na,K-ATPase and molecular microenvironment, the Na,K-ATPase-dependent signaling pathways and their significance for diversity of cell function.
Collapse
Affiliation(s)
| | - Igor I Krivoi
- Department of General Physiology, St. Petersburg State University St. Petersburg, Russia
| |
Collapse
|