1
|
Zhao J, Yue P, Mi N, Li M, Fu W, Zhang X, Gao L, Bai M, Tian L, Jiang N, Lu Y, Ma H, Dong C, Zhang Y, Zhang H, Zhang J, Ren Y, Suzuki A, Wong PF, Tanaka K, Rerknimitr R, Junger HH, Cheung TT, Melloul E, Demartines N, Leung JW, Yao J, Yuan J, Lin Y, Schlitt HJ, Meng W. Biliary fibrosis is an important but neglected pathological feature in hepatobiliary disorders: from molecular mechanisms to clinical implications. MEDICAL REVIEW (2021) 2024; 4:326-365. [PMID: 39135601 PMCID: PMC11317084 DOI: 10.1515/mr-2024-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/06/2024] [Indexed: 08/15/2024]
Abstract
Fibrosis resulting from pathological repair secondary to recurrent or persistent tissue damage often leads to organ failure and mortality. Biliary fibrosis is a crucial but easily neglected pathological feature in hepatobiliary disorders, which may promote the development and progression of benign and malignant biliary diseases through pathological healing mechanisms secondary to biliary tract injuries. Elucidating the etiology and pathogenesis of biliary fibrosis is beneficial to the prevention and treatment of biliary diseases. In this review, we emphasized the importance of biliary fibrosis in cholangiopathies and summarized the clinical manifestations, epidemiology, and aberrant cellular composition involving the biliary ductules, cholangiocytes, immune system, fibroblasts, and the microbiome. We also focused on pivotal signaling pathways and offered insights into ongoing clinical trials and proposing a strategic approach for managing biliary fibrosis-related cholangiopathies. This review will offer a comprehensive perspective on biliary fibrosis and provide an important reference for future mechanism research and innovative therapy to prevent or reverse fibrosis.
Collapse
Affiliation(s)
- Jinyu Zhao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ping Yue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningning Mi
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Matu Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wenkang Fu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xianzhuo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Long Gao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Mingzhen Bai
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Liang Tian
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningzu Jiang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yawen Lu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Haidong Ma
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chunlu Dong
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yong Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hengwei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jinduo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yanxian Ren
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Azumi Suzuki
- Department of Gastroenterology, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Peng F. Wong
- Department of Vascular Surgery, The James Cook University Hospital, Middlesbrough, UK
| | - Kiyohito Tanaka
- Department of Gastroenterology, Kyoto Second Red Cross Hospital, Kyoto, Japan
| | - Rungsun Rerknimitr
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn, Bangkok, Thailand
- Excellence Center for Gastrointestinal Endoscopy, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Henrik H. Junger
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Tan T. Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Emmanuel Melloul
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nicolas Demartines
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Joseph W. Leung
- Division of Gastroenterology and Hepatology, UC Davis Medical Center and Sacramento VA Medical Center, Sacramento, CA, USA
| | - Jia Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Jinqiu Yuan
- Clinical Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yanyan Lin
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hans J. Schlitt
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
2
|
O'Hara SP, LaRusso NF. Portal fibroblasts: A renewable source of liver myofibroblasts. Hepatology 2022; 76:1240-1242. [PMID: 35429172 DOI: 10.1002/hep.32528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 12/08/2022]
Affiliation(s)
- Steven P O'Hara
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Lei L, Bruneau A, El Mourabit H, Guégan J, Folseraas T, Lemoinne S, Karlsen TH, Hoareau B, Morichon R, Gonzalez-Sanchez E, Goumard C, Ratziu V, Charbord P, Gautheron J, Tacke F, Jaffredo T, Cadoret A, Housset C. Portal fibroblasts with mesenchymal stem cell features form a reservoir of proliferative myofibroblasts in liver fibrosis. Hepatology 2022; 76:1360-1375. [PMID: 35278227 DOI: 10.1002/hep.32456] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS In liver fibrosis, myofibroblasts derive from HSCs and as yet undefined mesenchymal cells. We aimed to identify portal mesenchymal progenitors of myofibroblasts. APPROACH AND RESULTS Portal mesenchymal cells were isolated from mouse bilio-vascular tree and analyzed by single-cell RNA-sequencing. Thereby, we uncovered the landscape of portal mesenchymal cells in homeostatic mouse liver. Trajectory analysis enabled inferring a small cell population further defined by surface markers used to isolate it. This population consisted of portal fibroblasts with mesenchymal stem cell features (PMSCs), i.e., high clonogenicity and trilineage differentiation potential, that generated proliferative myofibroblasts, contrasting with nonproliferative HSC-derived myofibroblasts (-MF). Using bulk RNA-sequencing, we built oligogene signatures of the two cell populations that remained discriminant across myofibroblastic differentiation. SLIT2, a prototypical gene of PMSC/PMSC-MF signature, mediated profibrotic and angiogenic effects of these cells, which conditioned medium promoted HSC survival and endothelial cell tubulogenesis. Using PMSC/PMSC-MF 7-gene signature and slit guidance ligand 2 fluorescent in situ hybridization, we showed that PMSCs display a perivascular portal distribution in homeostatic liver and largely expand with fibrosis progression, contributing to the myofibroblast populations that form fibrotic septa, preferentially along neovessels, in murine and human liver disorders, irrespective of etiology. We also unraveled a 6-gene expression signature of HSCs/HSC-MFs that did not vary in these disorders, consistent with their low proliferation rate. CONCLUSIONS PMSCs form a small reservoir of expansive myofibroblasts, which, in interaction with neovessels and HSC-MFs that mainly arise through differentiation from a preexisting pool, underlie the formation of fibrotic septa in all types of liver diseases.
Collapse
Affiliation(s)
- Lin Lei
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Alix Bruneau
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Haquima El Mourabit
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Justine Guégan
- Institut du Cerveau (ICM), Bioinformatics/Biostatistics iCONICS Facility, Sorbonne Université, INSERM, Paris, France
| | - Trine Folseraas
- Division of Surgery, Inflammatory Medicine and Transplantation, Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norwegian PSC Research Center, Oslo, Norway
| | - Sara Lemoinne
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France.,Department of Hepatology, Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis (CRMR MIVB-H, ERN RARE-LIVER), Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
| | - Tom Hemming Karlsen
- Division of Surgery, Inflammatory Medicine and Transplantation, Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norwegian PSC Research Center, Oslo, Norway
| | - Bénédicte Hoareau
- Sorbonne Université, INSERM, UMS Production et Analyse de Données en Sciences de la Vie et en Santé (PASS), Cytométrie Pitié-Salpêtrière (CyPS), Paris, France
| | - Romain Morichon
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Ester Gonzalez-Sanchez
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Claire Goumard
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France.,Departments of Hepatology, Hepatobiliary Surgery and Liver Transplantation, AP-HP, Sorbonne Université, ICAN, Pitié-Salpêtrière Hospital, Paris, France
| | - Vlad Ratziu
- Departments of Hepatology, Hepatobiliary Surgery and Liver Transplantation, AP-HP, Sorbonne Université, ICAN, Pitié-Salpêtrière Hospital, Paris, France
| | - Pierre Charbord
- Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, INSERM, Paris, France
| | - Jérémie Gautheron
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Thierry Jaffredo
- Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, INSERM, Paris, France
| | - Axelle Cadoret
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Chantal Housset
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France.,Department of Hepatology, Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis (CRMR MIVB-H, ERN RARE-LIVER), Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
| |
Collapse
|
4
|
Meurer SK, Karsdal MA, Weiskirchen R. Advances in the clinical use of collagen as biomarker of liver fibrosis. Expert Rev Mol Diagn 2020; 20:947-969. [PMID: 32865433 DOI: 10.1080/14737159.2020.1814746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Hepatic fibrosis is the excessive synthesis and deposition of extracellular matrix including collagen in the tissue. Chronic liver insult leads to progressive parenchymal damage, portal hypertension, and cirrhosis. Determination of hepatic collagen by invasive liver biopsy is the gold standard to estimate severity and stage of fibrosis. However, this procedure is associated with pain, carries the risk of infection and bleeding, and is afflicted with a high degree of sampling error. Therefore, there is urgent need for serological collagen-derived markers to assess collagen synthesis/turnover. AREAS COVERED Biochemical properties of collagens, cellular sources of hepatic collagen synthesis, and regulatory aspects in collagen expression. Markers are discussed suitable to estimate hepatic collagen synthesis and/or turnover. Discussed studies were identified through a PubMed search done in May 2020 and the authors' topic knowledge. EXPERT OPINION Hepatic fibrosis is mainly characterized by accumulation of collagen-rich scar tissue. Although traditionally performed liver biopsy is still standard in estimating hepatic fibrosis, there is evidence that noninvasive diagnostic scores and collagen-derived neo-epitopes provide clinical useful information. These noninvasive tests are less expensive than liver biopsy, better tolerated, safer, and more acceptable to patients. Therefore, these tests will lead to dramatic changes in diagnosis.
Collapse
Affiliation(s)
- Steffen K Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen , Aachen, Germany
| | - Morten A Karsdal
- Nordic Bioscience, Fibrosis Biomarkers and Research , Herlev, Denmark
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen , Aachen, Germany
| |
Collapse
|
5
|
Yin Y, Han Y, Shi C, Xia Z. IGF-1 regulates the growth of fibroblasts and extracellular matrix deposition in pelvic organ prolapse. Open Med (Wars) 2020; 15:833-840. [PMID: 33336041 PMCID: PMC7712242 DOI: 10.1515/med-2020-0216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/25/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
This study was carried out to observe the impact of insulin-like growth factor-1 (IGF-1) on human vaginal fibroblasts (HVFs) in the context of pelvic organ prolapse (POP) and to explore its effects on mitogen-activated protein kinases (MAPK) and nuclear factor-κB (NF-κB) signaling pathways. First, it was found that IGF-1 expression reduced in the vaginal wall tissues derived from POP compared to that in non-POP cases. Then the role of IGF-1 was explored in HVFs and thiazolyl blue tetrazolium bromide (MTT) and flow cytometry were used to detect cell viability and cell apoptosis. Western blot assay and quantitative real-time polymerase chain reaction were used to detect the protein and mRNA expression. The results showed that knockdown of IGF-1 inhibited the cell viability of HVFs, promoted the cell apoptosis of HVFs, and decreased the expression of types I and III collagen in HVFs, which was through inhibiting the expression of IGF-1 receptor and MAPK/NF-κB pathways. However, IGF-1 plasmid had the opposite effects on HVFs. In conclusion, our results showed that IGF-1 could activate MAPK and NF-κB pathways, thereby enhancing collagen metabolism and the growth of vaginal wall fibroblasts then to inhibit POP development.
Collapse
Affiliation(s)
- Yitong Yin
- Department of Obstetrics and Gynecology, Pelvic Floor Disease Diagnosis and Treatment Center, Shengjing Hospital of China Medical University, No. 36 San Hao Street, Heping District, Shenyang, 110004, China
| | - Ying Han
- Department of Obstetrics and Gynecology, Pelvic Floor Disease Diagnosis and Treatment Center, Shengjing Hospital of China Medical University, No. 36 San Hao Street, Heping District, Shenyang, 110004, China
| | - Chang Shi
- Department of Obstetrics and Gynecology, Pelvic Floor Disease Diagnosis and Treatment Center, Shengjing Hospital of China Medical University, No. 36 San Hao Street, Heping District, Shenyang, 110004, China
| | - Zhijun Xia
- Department of Obstetrics and Gynecology, Pelvic Floor Disease Diagnosis and Treatment Center, Shengjing Hospital of China Medical University, No. 36 San Hao Street, Heping District, Shenyang, 110004, China
| |
Collapse
|
6
|
Gao Y, Liu JF, Zhang C, Liu L, Liu YP, Zhang SL, Zhao LM. Enzyme-injected method of enzymatic dispersion at low temperature is effective for isolation of smooth muscle cells from human esophagogastric junction. Exp Ther Med 2020; 19:2933-2948. [PMID: 32256779 PMCID: PMC7086163 DOI: 10.3892/etm.2020.8560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/09/2020] [Indexed: 11/29/2022] Open
Abstract
The present study was conducted to examine the feasibility of in vitro isolation and primary culture of smooth muscle cells (SMCs) from the esophagogastric junction (EGJ). Smooth muscles of EGJ were harvested from 23 patients with esophageal cancer during esophagostomy from January 2015 to December 2017. Enzymatic dispersion (ED) was performed for isolation. Collagenase II and Trypsin/EDTA were applied by enzyme injection (EI) into tissue fragments or immersion of tissue fragments into enzyme solution. Growth characteristics and proliferation [Cell Counting Kit-8 (CCK-8)] of cells were recorded for both smooth muscle cell medium (SMCM) and DMEM/F12 containing 10% newborn bovine serum (10%-F12). All ED methods could isolate primary cells; EI was the most effective method with low collagenase II concentration (0.5 mg/ml) at 4˚C for 14-24 h. Primary cells demonstrated mainly spindle- and long-spindle-shaped with ‘hills and valleys’ morphology. The CCK-8 assay in SMCM showed better proliferation results than in 10%-F12. After passaging for 4-8 generations in SMCM or 2-4 generations in 10%-F12, cells enlarged gradually with passages and lost spindle structures. mRNA and proteins of α-smooth muscle actin (α-SMA), smooth muscle 22 α (SM22α), vimentin, desmin, CD90 and proliferating cell nuclear antigen were detected in tissues and cells with different levels of expression. SMCs of esophageal circular muscle, esophageal longitudinal muscle, gastric circular muscle near sling in gastric bottom and gastric circular muscle near clasp in lesser gastric curvature, all cultured in 10%-F12, exhibited superior smooth muscle phenotypes compared with SMCs cultured in SMCM in terms of α-SMA, SM22α and vimentin expression. The EI method of ED at low temperature appears effective for isolation and primary culture of SMCs from human EGJ in vitro.
Collapse
Affiliation(s)
- Yang Gao
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China.,Graduate School of Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Jun-Feng Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Chao Zhang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Liang Liu
- Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yue-Ping Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Sheng-Lei Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Lian-Mei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
7
|
Shajari S, Saeed A, Smith-Cortinez NF, Heegsma J, Sydor S, Faber KN. Hormone-sensitive lipase is a retinyl ester hydrolase in human and rat quiescent hepatic stellate cells. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1258-1267. [PMID: 31150775 DOI: 10.1016/j.bbalip.2019.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/13/2019] [Accepted: 05/24/2019] [Indexed: 01/04/2023]
Abstract
Hepatic stellate cells (HSC) store vitamin A as retinyl esters and control circulating retinol levels. Upon liver injury, quiescent (q)HSC lose their vitamin A and transdifferentiate to myofibroblasts, e.g. activated (a)HSC, which promote fibrosis by producing excessive extracellular matrix. Adipose triglyceride lipase/patatin-like phospholipase domain-containing protein 2 (ATGL/PNPLA2) and adiponutrin (ADPN/PNPLA3) have so far been shown to mobilize retinol from retinyl esters in HSC. Here, we studied the putative role of hormone-sensitive lipase (HSL/LIPE) in HSC, as it is the major retinyl ester hydrolase (REH) in adipose tissue. Lipe/HSL expression was analyzed in rat liver and primary human and rat qHSC and culture-activated aHSC. Retinyl hydrolysis was analyzed after Isoproterenol-mediated phosphorylation/activation of HSL. Primary human HSC contain 2.5-fold higher LIPE mRNA levels compared to hepatocytes. Healthy rat liver contains significant mRNA and protein levels of HSL/Lipe, which predominates in qHSC and cells of the portal tree. Q-PCR comparison indicates that Lipe mRNA levels in qHSC are dominant over Pnpla2 and Pnpla3. HSL is mostly phosphorylated/activated in qHSC and partly colocalizes with vitamin A-containing lipid droplets. Lipe/HSL and Pnpla3 expression is rapidly lost during HSC culture-activation, while Pnpla2 expression is maintained. HSL super-activation by isoproterenol accelerates loss of lipid droplets and retinyl palmitate from HSC, which coincided with a small, but significant reduction in HSC proliferation and suppression of Collagen1A1 mRNA and protein levels. In conclusion, HSL participates in vitamin A metabolism in qHSC. Equivalent activities of ATGL and ADPN provide the healthy liver with multiple routes to control circulating retinol levels.
Collapse
Affiliation(s)
- Shiva Shajari
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ali Saeed
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Institute of Molecular Biology & Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Natalia F Smith-Cortinez
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Janette Heegsma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Svenja Sydor
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
8
|
Loeuillard E, El Mourabit H, Lei L, Lemoinne S, Housset C, Cadoret A. Endoplasmic reticulum stress induces inverse regulations of major functions in portal myofibroblasts during liver fibrosis progression. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3688-3696. [DOI: 10.1016/j.bbadis.2018.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022]
|
9
|
Weiskirchen R, Weiskirchen S, Tacke F. Organ and tissue fibrosis: Molecular signals, cellular mechanisms and translational implications. Mol Aspects Med 2018; 65:2-15. [PMID: 29958900 DOI: 10.1016/j.mam.2018.06.003] [Citation(s) in RCA: 388] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/25/2018] [Indexed: 02/08/2023]
Abstract
Fibrosis denotes excessive scarring, which exceeds the normal wound healing response to injury in many tissues. Although the extracellular matrix deposition appears unstructured disrupting the normal tissue architecture and subsequently impairing proper organ function, fibrogenesis is a highly orchestrated process determined by defined sequences of molecular signals and cellular response mechanisms. Persistent injury and parenchymal cell death provokes tissue inflammation, macrophage activation and immune cell infiltration. The release of biologically highly active soluble mediators (alarmins, cytokines, chemokines) lead to the local activation of collagen producing mesenchymal cells such as pericytes, myofibroblasts or Gli1 positive mesenchymal stem cell-like cells, to a transition of various cell types into myofibroblasts as well as to the recruitment of fibroblast precursors. Clinical observations and experimental models highlighted that fibrosis is not a one-way road. Specific mechanistic principles of fibrosis regression involve the resolution of chronic tissue injury, the shift of inflammatory processes towards recovery, deactivation of myofibroblasts and finally fibrolysis of excess matrix scaffold. The thorough understanding of common principles of fibrogenic molecular signals and cellular mechanisms in various organs - such as liver, kidney, lung, heart or skin - is the basis for developing improved diagnostics including biomarkers or imaging techniques and novel antifibrotic therapeutics.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Germany
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Germany
| | - Frank Tacke
- Dept. of Medicine III, University Hospital Aachen, Germany.
| |
Collapse
|
10
|
Altered AKAP12 expression in portal fibroblasts and liver sinusoids mediates transition from hepatic fibrogenesis to fibrosis resolution. Exp Mol Med 2018; 50:1-13. [PMID: 29700280 PMCID: PMC5938025 DOI: 10.1038/s12276-018-0074-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis can be reversed by removing its causative injuries; however, the molecular mechanisms mediating the resolution of liver fibrogenesis are poorly understood. We investigate the role of a scaffold protein, A-Kinase Anchoring Protein 12 (AKAP12), during liver fibrosis onset, and resolution. Biliary fibrogenesis and fibrosis resolution was induced in wild-type (WT) or AKAP12-deficient C57BL/6 mice through different feeding regimens with 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-containing chow. AKAP12 expression in portal fibroblasts (PFs) and liver sinusoidal endothelial cells (LSECs) gradually decreased as fibrosis progressed but was restored after cessation of the fibrotic challenge. Histological analysis of human liver specimens with varying degrees of fibrosis of different etiologies revealed that AKAP12 expression diminishes in hepatic fibrosis from its early stages onward. AKAP12 KO mice displayed reduced fibrosis resolution in a DDC-induced biliary fibrosis model, which was accompanied by impaired normalization of myofibroblasts and capillarized sinusoids. RNA sequencing of the liver transcriptome revealed that genes related to ECM accumulation and vascular remodeling were mostly elevated in AKAP12 KO samples. Gene ontology (GO) and bioinformatic pathway analyses identified that the differentially expressed genes were significantly enriched in GO categories and pathways, such as the adenosine 3′,5′-cyclic monophosphate (cAMP) pathway. Knockdown of the AKAP12 gene in cultured primary PFs revealed that AKAP12 inhibited PF activation in association with the adenosine 3′,5′-cyclic monophosphate (cAMP) pathway. Moreover, AKAP12 knockdown in LSECs led to enhanced angiogenesis, endothelin-1 expression and alterations in laminin composition. Collectively, this study demonstrates that AKAP12-mediated regulation of PFs and LSECs has a central role in resolving hepatic fibrosis. A scaffolding protein that modulates cell signaling pathways contributes to reverse liver scarring. Liver fibrosis is caused by a build-up of scar tissue that interferes with liver function. However, the damage is reversed when the cause of injury is removed. Kyu-Won Kim at Seoul National University, South Korea, and colleagues examined the levels of A-Kinase Anchoring Protein 12 (AKAP12), a scaffolding protein that regulates the subcellular location of signaling proteins, in mouse and human livers. Levels of AKAP12 were reduced in fibrotic livers but restored when fibrosis was reversed. Mice lacking AKAP12 were unable to effectively repair the damage caused by fibrosis. Genetic analyses suggest that AKAP12 stimulates signaling through the adenosine 3′,5′-cyclic monophosphate (cAMP) pathway, which can inhibit fibrosis. These findings highlight a key role for AKAP12 in accelerating liver recovery.
Collapse
|
11
|
Chen YS, Wang XJ, Feng W, Hua KQ. Advanced glycation end products decrease collagen I levels in fibroblasts from the vaginal wall of patients with POP via the RAGE, MAPK and NF-κB pathways. Int J Mol Med 2017; 40:987-998. [PMID: 28849117 PMCID: PMC5593496 DOI: 10.3892/ijmm.2017.3097] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 08/01/2017] [Indexed: 12/20/2022] Open
Abstract
The present study was carried out to observe the impact of advanced glycation end products (AGEs) on collagen I derived from vaginal fibroblasts in the context of pelvic organ prolapse (POP), and explore the downstream effects on MAPK and nuclear factor-κB (NF-κB) signaling. After treating primary cultured human vaginal fibroblasts (HVFs) derived from POP and non-POP cases with AGEs, cell counting was carried out by sulforhodamine B. The expression levels of collagen I, receptor of advanced glycation end products (RAGE), matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were detected by western blot analysis and PCR. RAGE, MAPK and NF-κB were molecularly and pharmacologically-inhibited by siRNA, SB203580 and PDTC, respectively, and downstream changes were detected by western blot analysis and PCR. Inhibition of HVF proliferation by AGEs occurred more readily in POP patients than that noted in the controls. After treatment with AGEs, collagen I levels decreased and MMP-1 levels increased to a greater extent in the HVFs of POP than that noted in the controls. During this same period, RAGE and TIMP-1 levels remained stable. Following treatment with AGEs and RAGE pathway inhibitors by siRNA, SB203580 and PDTC, the impact induced by AGEs was diminished. The inhibition of p-p38 MAPK alone was not able to block the promoting effect of AGEs on the levels of NF-κB, which suggests that AGEs may function through other pathways, as well as p-p38 MAPK. On the whole, this study demonstrated that AGEs inhibited HVF proliferation in POP cases and decreased the expression of collagen I through RAGE and/or p-p38 MAPK and NF-κB-p-p65 pathways. Our results provide important insights into the collagen I metabolism in HVFs in POP.
Collapse
Affiliation(s)
- Yi-Song Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| | - Xiao-Juan Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| | - Weiwei Feng
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, P.R. China
| | - Ke-Qin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| |
Collapse
|