1
|
Bosi G, Maynard BJ, Pironi F, Sayyaf Dezfuli B. Parasites and the neuroendocrine control of fish intestinal function: an ancient struggle between pathogens and host. Parasitology 2022; 149:1842-1861. [PMID: 36076315 PMCID: PMC11010486 DOI: 10.1017/s0031182022001160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 12/29/2022]
Abstract
Most individual fish in wild and farmed populations can be infected with parasites. Fish intestines can harbour protozoans, myxozoans and helminths, which include several species of digeneans, cestodes, nematodes and acanthocephalans. Enteric parasites often induce inflammation of the intestine; the pathogen provokes changes in the host physiology, which will be genetically selected for if they benefit the parasite. The host response to intestinal parasites involves neural, endocrine and immune systems and interaction among these systems is coordinated by hormones, chemokines, cytokines and neurotransmitters including peptides. Intestinal fish parasites have effects on the components of the enteric nervous and endocrine systems; mechanical/chemical changes impair the activity of these systems, including gut motility and digestion. Investigations on the role of the neuroendocrine system in response to fish intestinal parasites are very few. This paper provides immunohistochemical and ultrastructural data on effects of parasites on the enteric nervous system and the enteric endocrine system in several fish–parasite systems. Emphasis is on the occurrence of 21 molecules including cholecystokinin-8, neuropeptide Y, enkephalins, galanin, vasoactive intestinal peptide and serotonin in infected tissues.
Collapse
Affiliation(s)
- Giampaolo Bosi
- Department of Veterinary Medicine and Animal Science, University of Milan, St. dell'Università 6, 26900 Lodi, Italy
| | - Barbara J. Maynard
- The Institute for Learning and Teaching, Colorado State University, Fort Collins, CO 80523, USA
| | - Flavio Pironi
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| | - Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Oxygen consumption and acid secretion in isolated gas gland cells of the European eel Anguilla anguilla. J Comp Physiol B 2022; 192:447-457. [PMID: 35289381 PMCID: PMC9197889 DOI: 10.1007/s00360-022-01432-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023]
Abstract
Swimbladder gas gland cells are known to produce lactic acid required for the acidification of swimbladder blood and decreasing the oxygen carrying capacity of swimbladder blood, i.e., the onset of the Root effect. Gas gland cells have also been shown to metabolize glucose via the pentose phosphate shunt, but the role of the pentose phosphate shunt for acid secretion has not yet been evaluated. Similarly, aerobic metabolism of gas gland cells has been largely neglected so far. In the present study, we therefore simultaneously assessed the role of glycolysis and of the pentose phosphate shunt for acid secretion and recorded oxygen consumption of isolated swimbladder gas gland cells of the European eel. Presence of glucose was essential for acid secretion, and at glucose concentrations of about 1.5 mmol l−1 acid secretion of gas gland cells reached a maximum, indicating that glucose concentrations in swimbladder blood should not be limiting acid production and secretion under physiological conditions. The data revealed that most of the acid was produced in the glycolytic pathway, but a significant fraction was also contributed by the pentose phosphate shunt. Addition of glucose to gas gland cells incubated in a glucose-free medium resulted in a reduction of oxygen uptake. Inhibition of mitochondrial respiration significantly reduced oxygen consumption, but a fraction of mitochondria-independent respiration remained in presence of rotenone and antimycin A. In the presence of glucose, application of either iodo-acetate inhibiting glycolysis or 6-AN inhibiting the pentose phosphate shunt did not significantly affect oxygen uptake, indicating an independent regulation of oxidative phosphorylation and of acid production. Inhibition of the muscarinic acetylcholine receptor caused a slight elevation in acid secretion, while forskolin caused a concentration-dependent reduction in acid secretion, indicating muscarinic and c-AMP-dependent control of acid secretion in gas gland cells.
Collapse
|
3
|
Drechsel V, Schneebauer G, Fiechtner B, Cutler CP, Pelster B. Aquaporin expression and cholesterol content in eel swimbladder tissue. JOURNAL OF FISH BIOLOGY 2022; 100:609-618. [PMID: 34882794 PMCID: PMC9302985 DOI: 10.1111/jfb.14973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 05/08/2023]
Abstract
Leakiness of the swimbladder wall of teleost fishes must be prevented to avoid diffusional loss of gases out of the swimbladder. Guanine incrustation as well as high concentrations of cholesterol in swimbladder membranes in midwater and deep-sea fish has been connected to a reduced gas permeability of the swimbladder wall. On the contrary, the swimbladder is filled by diffusion of gases, mainly oxygen and CO2 , from the blood and the gas gland cells into the swimbladder lumen. In swimbladder tissue of the zebrafish and the Japanese eel, aquaporin mRNA has been detected, and the aquaporin protein has been considered important for the diffusion of water, which may accidentally be gulped by physostome fish when taking an air breath. In the present study, the expression of two aquaporin 1 genes (Aqp1aa and Aqp1ab) in the swimbladder tissue of the European eel, a functional physoclist fish, was assessed using immunohistochemistry, and the expression of both genes was detected in endothelial cells of swimbladder capillaries as well as in basolateral membranes of gas gland cells. In addition, Aqp1ab was present in apical membranes of swimbladder gas gland cells. The authors also found high concentrations of cholesterol in these membranes, which were several fold higher than in muscle tissue membranes. In yellow eels the cholesterol concentration exceeded the concentration detected in silver eel swimbladder membranes. The authors suggest that aquaporin 1 in swimbladder gas gland cells and endothelial cells facilitates CO2 diffusion into the blood, enhancing the switch-on of the Root effect, which is essential for the secretion of oxygen into the swimbladder. It may also facilitate CO2 diffusion into the swimbladder lumen along the partial gradient established by CO2 production in gas gland cells. Cholesterol has been shown to reduce the gas permeability of membranes and thus could contribute to the gas tightness of swimbladder membranes, which is essential to avoid diffusional loss of gas out of the swimbladder.
Collapse
Affiliation(s)
- Victoria Drechsel
- Institute of ZoologyUniversity of InnsbruckInnsbruckAustria
- Center for Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| | - Gabriel Schneebauer
- Institute of ZoologyUniversity of InnsbruckInnsbruckAustria
- Center for Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| | - Birgit Fiechtner
- Institute of ZoologyUniversity of InnsbruckInnsbruckAustria
- Center for Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| | | | - Bernd Pelster
- Institute of ZoologyUniversity of InnsbruckInnsbruckAustria
- Center for Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
4
|
Schneebauer G, Drechsel V, Dirks R, Faserl K, Sarg B, Pelster B. Expression of transport proteins in the rete mirabile of european silver and yellow eel. BMC Genomics 2021; 22:866. [PMID: 34856920 PMCID: PMC8638102 DOI: 10.1186/s12864-021-08180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/16/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND In physoclist fishes filling of the swimbladder requires acid secretion of gas gland cells to switch on the Root effect and subsequent countercurrent concentration of the initial gas partial pressure increase by back-diffusion of gas molecules in the rete mirabile. It is generally assumed that the rete mirabile functions as a passive exchanger, but a detailed analysis of lactate and water movements in the rete mirabile of the eel revealed that lactate is diffusing back in the rete. In the present study we therefore test the hypothesis that expression of transport proteins in rete capillaries allows for back-diffusion of ions and metabolites, which would support the countercurrent concentrating capacity of the rete mirabile. It is also assumed that in silver eels, the migratory stage of the eel, the expression of transport proteins would be enhanced. RESULTS Analysis of the transcriptome and of the proteome of rete mirabile tissue of the European eel revealed the expression of a large number of membrane ion and metabolite transport proteins, including monocarboxylate and glucose transport proteins. In addition, ion channel proteins, Ca2+-ATPase, Na+/K+-ATPase and also F1F0-ATP synthase were detected. In contrast to our expectation in silver eels the expression of these transport proteins was not elevated as compared to yellow eels. A remarkable number of enzymes degrading reactive oxygen species (ROS) was detected in rete capillaries. CONCLUSIONS Our results reveal the expression of a large number of transport proteins in rete capillaries, so that the back diffusion of ions and metabolites, in particular lactate, may significantly enhance the countercurrent concentrating ability of the rete. Metabolic pathways allowing for aerobic generation of ATP supporting secondary active transport mechanisms are established. Rete tissue appears to be equipped with a high ROS defense capacity, preventing damage of the tissue due to the high oxygen partial pressures generated in the countercurrent system.
Collapse
Affiliation(s)
- Gabriel Schneebauer
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences, University Innsbruck, Innsbruck, Austria
| | - Victoria Drechsel
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences, University Innsbruck, Innsbruck, Austria
| | - Ron Dirks
- Future Genomics Technologies, Leiden, The Netherlands
| | - Klaus Faserl
- Institute of Medical Biochemistry, Protein Core Facility, Medical University Innsbruck, Innsbruck, Austria
| | - Bettina Sarg
- Institute of Medical Biochemistry, Protein Core Facility, Medical University Innsbruck, Innsbruck, Austria
| | - Bernd Pelster
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria.
- Center for Molecular Biosciences, University Innsbruck, Innsbruck, Austria.
- Institut für Zoologie Leopold-Franzens-Universität Innsbruck, Technikerstr. 25, A-6020, Innsbruck, Austria.
| |
Collapse
|
5
|
Pelster B. Using the swimbladder as a respiratory organ and/or a buoyancy structure-Benefits and consequences. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2021; 335:831-842. [PMID: 33830682 DOI: 10.1002/jez.2460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 11/07/2022]
Abstract
A swimbladder is a special organ present in several orders of Actinopterygians. As a gas-filled cavity it contributes to a reduction in overall density, but on descend from the water surface its contribution as a buoyancy device is very limited because the swimbladder is compressed by increasing hydrostatic pressure. It serves, however, as a very efficient organ for aerial gas exchange. To avoid the loss of oxygen to hypoxic water at the gills many air-breathing fish show a reduced gill surface area. This, in turn, also reduces surface area available for other functions, so that breathing air is connected to a number of physiological adjustments with respect to ion homeostasis, acid-base regulation and nitrogen excretion. Using the swimbladder as a buoyancy structure resulted in the loss of its function as an air-breathing organ and required the development of a gas secreting mechanism. This was achieved via the Root effect and a countercurrent arrangement of the blood supply to the swimbladder. In addition, a detachable air space with separated blood supply was necessary to allow the resorption of gas from the swimbladder. Gas secretion as well as gas resorption are slow phenomena, so that rapid changes in depth cannot instantaneously be compensated by appropriate volume changes. As gas-filled cavities the respiratory swimbladder and the buoyancy device require surfactant. Due to high oxygen partial pressures inside the bladder air-exposed tissues need an effective reactive oxygen species defense system, which is particularly important for a swimbladder at depth.
Collapse
Affiliation(s)
- Bernd Pelster
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences, University Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Survival of metazoan parasites in fish: Putting into context the protective immune responses of teleost fish. ADVANCES IN PARASITOLOGY 2021; 112:77-132. [PMID: 34024360 DOI: 10.1016/bs.apar.2021.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Defence mechanisms of fish can be divided into specific and non-specific that act in concert and are often interdependent. Most fish in both wild and cultured populations are vulnerable to metazoan parasites. Endoparasitic helminths include several species of digeneans, cestodes, nematodes, and acanthocephalans. Although they may occur in large numbers, helminth infections rarely result in fish mortality. Conversely, some ectoparasites cause mass mortality in farmed fish. Given the importance of fish innate immunity, this review addresses non-specific defence mechanisms of fish against metazoan parasites, with emphasis on granulocyte responses involving mast cells, neutrophils, macrophages, rodlet cells, and mucous cells. Metazoan parasites are important disease agents that affect wild and farmed fish and can induce high economic loss and, as pathogen organisms, deserve considerable attention. The paper will provide our light and transmission electron microscopy data on metazoan parasites-fish innate immune and neuroendocrine systems. Insights about the structure and functions of the cell types listed above and a brief account of the effects and harms of each metazoan taxon to specific fish apparati/organs will be presented.
Collapse
|
7
|
Schneebauer G, Lindemann C, Drechsel V, Marohn L, Wysujack K, Santidrian E, Dirks R, Hanel R, Pelster B. Swimming under elevated hydrostatic pressure increases glycolytic activity in gas gland cells of the European eel. PLoS One 2020; 15:e0239627. [PMID: 32997701 PMCID: PMC7526912 DOI: 10.1371/journal.pone.0239627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/09/2020] [Indexed: 02/08/2023] Open
Abstract
In spite of many decades of research, the spawning migration of the European eel Anguilla anguilla from the European coast to the Sargasso Sea remains a mystery. In particular, the role of the swimbladder as a buoyancy regulating structure is not yet understood. In this study, we exercised silver eels in a swim tunnel under elevated hydrostatic pressure. The transcriptome of gas gland tissue of these exercised eels was then compared to the known transcriptome of not exercised (control) silver eel gas gland cells. Due to the high infection rate of the eel population with the swimbladder parasite Anguillicola crassus, the comparison also included an exercised group of silver eels with a heavily damaged swimbladder, and we compared the previously published transcriptome of not exercised silver eels with a highly damaged swimbladder with the exercised group of silver eels with a heavily damaged swimbladder. The comparisons of unexercised (control) silver eels with exercised silver eels with functional swimbladder (EF), as well as with exercised silver eels with damaged swimbladder (ED), both showed a significant elevation in transcripts related to glycolytic enzymes. This could also be observed within the comparison of unexercised silver eels with a highly infected swimbladder with exercised eels with a damaged swimbladder (DED). In contrast to EF, in ED a significant elevation in transcript numbers of mitochondrial NADH dehydrogenase was observed. While in EF the transcriptional changes suggested that acid production and secretion was enhanced, in ED these changes appeared to be related to thickened tissue and thus elevated diffusion distances. The remarkable number of differentially expressed transcripts coding for proteins connected to cAMP-dependent signaling pathways indicated that metabolic control in gas gland cells includes cAMP-dependent pathways. In contrast to ED, in EF significant transcriptional changes could be related to the reconstruction of the extracellular matrix, while in ED tissue repair and inflammation was more pronounced. Surprisingly, in exercised eels hypoxia inducible transcription factor expression was elevated. In EF, a large number of genes related to the circadian clock were transcriptionally modified, which may be connected to the circadian vertical migrations observed during the spawning migration.
Collapse
Affiliation(s)
- Gabriel Schneebauer
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences, University Innsbruck, Innsbruck, Austria
| | | | - Victoria Drechsel
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences, University Innsbruck, Innsbruck, Austria
| | - Lasse Marohn
- Thünen Institute for Fisheries Ecology, Bremerhaven, Germany
| | - Klaus Wysujack
- Thünen Institute for Fisheries Ecology, Bremerhaven, Germany
| | | | - Ron Dirks
- Future Genomics Technologies, Leiden, The Netherlands
| | - Reinhold Hanel
- Thünen Institute for Fisheries Ecology, Bremerhaven, Germany
| | - Bernd Pelster
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences, University Innsbruck, Innsbruck, Austria
| |
Collapse
|
8
|
Bracamonte SE, Johnston PR, Knopf K, Monaghan MT. Experimental infection with Anguillicola crassus alters immune gene expression in both spleen and head kidney of the European eel (Anguilla anguilla). Mar Genomics 2019; 45:28-37. [DOI: 10.1016/j.margen.2018.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 11/25/2022]
|
9
|
Schneebauer G, Mauracher D, Fiechtner B, Pelster B. Transcript levels of members of the SLC2 and SLC5 families of glucose transport proteins in eel swimbladder tissue: the influence of silvering and the influence of a nematode infection. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:599-613. [PMID: 29327317 PMCID: PMC5862955 DOI: 10.1007/s10695-017-0456-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
The rate of glucose metabolism has been shown to be correlated to glucose uptake in swimbladder gas gland cells. Therefore, it is assumed that in the European eel silvering, i.e., the preparation of the eel for the spawning migration to the Sargasso Sea, coincides with an enhanced capacity for glucose uptake. To test this hypothesis expression of all known glucose transport proteins has been assessed at the transcript level in yellow and in silver eels, and we also included Anguillicola crassus infected swimbladders. Glucose uptake by rete mirabile endothelial cells could be crucial for the countercurrent exchange capacity of the rete. Therefore, this tissue was also included in our analysis. The results revealed expression of ten different members of the slc2 family of glucose transporters, of four slc5 family members, and of kiaa1919 in gas gland tissue. Glucose transporters of the slc2 family were expressed at very high level, and slc2a1b made up about 80% of all slc2 family members, irrespective of the developmental state or the infection status of the eel. Overall, the slc5 family contributed to only about 8% of all detected glucose transport transcripts in gas gland tissue, and the slc2 family to more than 85%. In rete capillaries, the contribution of sodium-dependent glucose transporters was significantly higher, leaving only 66% for the slc2 family of glucose transporters. Neither silvering nor the infection status had a significant effect on the expression of glucose transporters in swimbladder gas gland tissue, suggesting that glucose metabolism of eel gas gland cells may not be related to transcriptional changes of glucose transport proteins.
Collapse
Affiliation(s)
- Gabriel Schneebauer
- Institute of Zoology, Leopold-Franzens-Universität Innsbruck, Technikerstr.25, 6020, Innsbruck, Austria
- Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - David Mauracher
- Institute of Zoology, Leopold-Franzens-Universität Innsbruck, Technikerstr.25, 6020, Innsbruck, Austria
- Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Birgit Fiechtner
- Institute of Zoology, Leopold-Franzens-Universität Innsbruck, Technikerstr.25, 6020, Innsbruck, Austria
- Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Bernd Pelster
- Institute of Zoology, Leopold-Franzens-Universität Innsbruck, Technikerstr.25, 6020, Innsbruck, Austria.
- Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
10
|
Sialana FJ, Schneebauer G, Paunkov A, Pelster B, Lubec G. Proteomic Studies on the Swim Bladder of the European Eel (Anguilla anguilla). Proteomics 2018; 18:e1700445. [PMID: 29469228 DOI: 10.1002/pmic.201700445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/08/2018] [Indexed: 01/07/2023]
Abstract
The swim bladder of a fish is a vital organ that with gas gland cells in the swim bladder wall enables key physiological functions including buoyancy regulation in the face of different hydrostatic pressures. Specific gas gland cells produce and secrete acidic metabolites into the blood in order to reduce the physical solubility of gases and blood gas transport capacity for regulating the volume of the swim bladder. Transcriptomic analyses have provided evidence at the RNA level but no specific studies at the protein level have been carried out so far. Herein, it was the aim of the study to show swim bladder proteins of the yellow stage European eel by label-free LCMS (Q-Exactive Plus) that resulted in the identification of 6223 protein groups. Neurotransmitter receptors and transporters were enriched in the membrane fraction and enzymes for acid production were observed. The list of identified proteins may represent a useful tool for further proteomics experiments on this organ. All MS proteomics data are available at the PRIDE repository with the dataset identifier PXD007850.
Collapse
Affiliation(s)
- Fernando J Sialana
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Gabriel Schneebauer
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria.,Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Ana Paunkov
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Bernd Pelster
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria.,Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Gert Lubec
- Paracelsus Private Medical University, Salzburg, Austria
| |
Collapse
|
11
|
Schneebauer G, Dirks RP, Pelster B. Anguillicola crassus infection affects mRNA expression levels in gas gland tissue of European yellow and silver eel. PLoS One 2017; 12:e0183128. [PMID: 28817599 PMCID: PMC5560681 DOI: 10.1371/journal.pone.0183128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022] Open
Abstract
Using Illumina sequencing, we investigated transcriptional changes caused by the nematode Anguillicola crassus within yellow and silver eels by comparing swimbladder samples of uninfected yellow with infected yellow eels, and uninfected silver with infected silver eels, respectively. In yellow eel gas gland, the infection caused a modification of steady state mRNA levels of 1675 genes, most of them being upregulated. Functional annotation analysis based on GO terms was used to categorize identified genes with regard to swimbladder metabolism or response to the infection. In yellow eels, the most prominent category was 'immune response', including various inflammatory components, complement proteins, and immunoglobulins. The elevated expression of several glucose and monocarboxylate transporters indicated an attempt to maintain the level of glucose metabolism, even in due to the infection thickened swimbladder tissue. In silver eel swimbladder tissue, on the contrary, the mRNA levels of only 291 genes were affected. Genes in the categories 'glucose metabolism' and 'ROS metabolism' barely responded to the infection and even the reaction of the immune system was much less pronounced compared to infected yellow eels. However, in the category 'extracellular matrix', the mRNA levels of several mucin genes were strongly elevated, suggesting increased mucus production as a defense reaction against the parasite. The present study revealed a strong reaction to an Anguillicola crassus infection on mRNA expression levels in swimbladder tissue of yellow eels, whereas in silver eels the changes ware almost negligible. A possible explanation for this difference is that the silvering process requires so much energy that there is not much scope to cope with the additional challenge of a nematode infection. Another possible explanation could be that gas-secreting activity of the silver eel swimbladder was largely reduced, which could coincide with a reduced responsiveness to other challenges, like a nematode infection.
Collapse
Affiliation(s)
- Gabriel Schneebauer
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences, University Innsbruck, Innsbruck, Austria
| | | | - Bernd Pelster
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences, University Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Jansen HJ, Liem M, Jong-Raadsen SA, Dufour S, Weltzien FA, Swinkels W, Koelewijn A, Palstra AP, Pelster B, Spaink HP, Thillart GEVD, Dirks RP, Henkel CV. Rapid de novo assembly of the European eel genome from nanopore sequencing reads. Sci Rep 2017; 7:7213. [PMID: 28775309 PMCID: PMC5543108 DOI: 10.1038/s41598-017-07650-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023] Open
Abstract
We have sequenced the genome of the endangered European eel using the MinION by Oxford Nanopore, and assembled these data using a novel algorithm specifically designed for large eukaryotic genomes. For this 860 Mbp genome, the entire computational process takes two days on a single CPU. The resulting genome assembly significantly improves on a previous draft based on short reads only, both in terms of contiguity (N50 1.2 Mbp) and structural quality. This combination of affordable nanopore sequencing and light weight assembly promises to make high-quality genomic resources accessible for many non-model plants and animals.
Collapse
Affiliation(s)
| | - Michael Liem
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | - Sylvie Dufour
- Muséum National d'Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, UCN, UA, Paris, France
| | - Finn-Arne Weltzien
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Basic Science and Aquatic Medicine, Oslo, Norway
| | | | | | - Arjan P Palstra
- Animal Breeding and Genomics Centre, Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Bernd Pelster
- Institute of Zoology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Herman P Spaink
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | | | - Christiaan V Henkel
- Institute of Biology, Leiden University, Leiden, The Netherlands.
- University of Applied Sciences Leiden, Leiden, The Netherlands.
- Generade Centre of Expertise in Genomics, Leiden, The Netherlands.
| |
Collapse
|