1
|
Lavrichenko DS, Chelebieva ES, Kladchenko ES. The mitochondrial membrane potential and the sources of reactive oxygen species in the hemocytes of the ark clam Anadara kagoshimensis under hypoosmotic stress. Comp Biochem Physiol B Biochem Mol Biol 2025; 276:111057. [PMID: 39662678 DOI: 10.1016/j.cbpb.2024.111057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
To compensate for changes in cell volume caused by changes in salt concentration, mollusks use regulatory mechanisms such as the regulation of volume decrease (RVD). This may increase the rate of aerobic metabolism and lead to an increase in reactive oxygen species (ROS). This study examined the production of ROS in the mitochondria of Anadara kagoshiensis hemocytes, the effect of mitochondrial inhibitors on osmotic stability in hemocytes, and the dynamics of changes in ROS levels and mitochondrial membrane potential when RVD is activated under hypo-osmotic conditions. Hemocytes maintained at a control osmolarity of 460 mOsm l-1 showed significant decreases in ROS production following incubation with complex III inhibitors (S3QEL). Hypoosmotic shock stimulated RVD in all experimental groups. The cell volume increased by about 70 % immediately after osmolarity was reduced, and then decreased by about 40 % over the next 30 min. A reduction in osmolarity from about 460 to 200 mOsm l-1 significantly decreased ROS and mitochondrial potentials in A. kashimensis hemocyctes. Inhibitors of mitochondrial complexes did not affect changes in ROS or mitochondria potentials in A kashimiensis hemocytes under hypoosmotic conditions or in hemocyte volume regulation mechanisms.
Collapse
Affiliation(s)
- Daria S Lavrichenko
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow 119991, Russia.
| | - Elina S Chelebieva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow 119991, Russia
| | - Ekaterina S Kladchenko
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow 119991, Russia
| |
Collapse
|
2
|
Lamas T, Fernandes SM, Vasques F, Karagiannidis C, Camporota L, Barrett N. Recent Advances and Future Directions in Extracorporeal Carbon Dioxide Removal. J Clin Med 2024; 14:12. [PMID: 39797096 PMCID: PMC11722077 DOI: 10.3390/jcm14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025] Open
Abstract
Extracorporeal carbon dioxide removal (ECCO2R) is an emerging technique designed to reduce carbon dioxide (CO2) levels in venous blood while enabling lung-protective ventilation or alleviating the work of breathing. Unlike high-flow extracorporeal membrane oxygenation (ECMO), ECCO2R operates at lower blood flows (0.4-1.5 L/min), making it less invasive, with smaller cannulas and simpler devices. Despite encouraging results in controlling respiratory acidosis, its broader adoption is hindered by complications, including haemolysis, thrombosis, and bleeding. Technological advances, including enhanced membrane design, gas exchange efficiency, and anticoagulation strategies, are essential to improving safety and efficacy. Innovations such as wearable prototypes that adapt CO2 removal to patient activity and catheter-based systems for lower blood flow are expanding the potential applications of ECCO2R, including as a bridge-to-lung transplantation and in outpatient settings. Promising experimental approaches include respiratory dialysis, carbonic anhydrase-coated membranes, and electrodialysis to maximise CO2 removal. Further research is needed to optimise device performance, develop cost-effective systems, and establish standardised protocols for safe clinical implementation. As the technology matures, integration with artificial intelligence (AI) and machine learning may personalise therapy, improving outcomes. Ongoing clinical trials will be pivotal in addressing these challenges, ultimately enhancing the role of ECCO2R in critical care and its accessibility across healthcare settings.
Collapse
Affiliation(s)
- Tomás Lamas
- ICU Department at Hospital Egas Moniz, ULSLO, 1349-019 Lisbon, Portugal
- ICU Department at CUF Tejo, 1350-352 Lisbon, Portugal
| | - Susana M. Fernandes
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
- Serviço de Medicina Intensiva, ULS Santa Maria, 1649-035 Lisbon, Portugal
| | - Francesco Vasques
- Department of Adult Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, King’s Health Partners, London SE1 9RT, UK; (F.V.); (L.C.); (N.B.)
- Division of Centre of Human Applied Physiological Sciences, King’s College London, London WC2R 2LS, UK
| | - Christian Karagiannidis
- Department of Pneumology and Critical Care Medicine, ARDS and ECMO Centre, Cologne-Merheim Hospital, 51109 Cologne, Germany;
| | - Luigi Camporota
- Department of Adult Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, King’s Health Partners, London SE1 9RT, UK; (F.V.); (L.C.); (N.B.)
- Division of Centre of Human Applied Physiological Sciences, King’s College London, London WC2R 2LS, UK
| | - Nicholas Barrett
- Department of Adult Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, King’s Health Partners, London SE1 9RT, UK; (F.V.); (L.C.); (N.B.)
| |
Collapse
|
3
|
Chelebieva ES, Kladchenko ES, Mindukshev IV, Gambaryan S, Andreyeva AY. ROS formation, mitochondrial potential and osmotic stability of the lamprey red blood cells: effect of adrenergic stimulation and hypoosmotic stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1341-1352. [PMID: 38647979 DOI: 10.1007/s10695-024-01342-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
Semi-anadromous animals experience salinity fluctuations during their life-span period. Alterations of environmental conditions induce stress response where catecholamines (CA) play a central role. Physiological stress and changes in external and internal osmolarity are frequently associated with increased production of reactive oxygen species (ROS). In this work, we studied the involvement of the cAMP/PKA pathway in mediating catecholamine-dependent effects on osmoregulatory responses, intracellular production of ROS, and mitochondrial membrane potential of the river lamprey (Lampetra fluviatilis, Linnaeus, 1758) red blood cells (RBCs). We also investigated the role of hypoosmotic shock in the process of ROS production and mitochondrial respiration of RBCs. For this, osmotic stability and the dynamics of the regulatory volume decrease (RVD) following hypoosmotic swelling, intracellular ROS levels, and changes in mitochondrial membrane potential were assessed in RBCs treated with epinephrine (Epi, 25 μM) and forskolin (Forsk, 20 μM). Epi and Forsk markedly reduced the osmotic stability of the lamprey RBCs whereas did not affect the dynamics of the RVD response in a hypoosmotic environment. Activation of PKA with Epi and Forsk increased ROS levels and decreased mitochondrial membrane potential of the lamprey RBCs. In contrast, upon hypoosmotic shock enhanced ROS production in RBCs was accompanied by increased mitochondrial membrane potential. Overall, a decrease in RBC osmotic stability and the enhancement of ROS formation induced by β-adrenergic stimulation raises concerns about stress-associated changes in RBC functions in agnathans. Increased ROS production in RBCs under hypoosmotic shock indicates that a decrease in blood osmolarity may be associated with oxidative damage of RBCs during lamprey migration.
Collapse
Affiliation(s)
- Elina S Chelebieva
- Laboratory of Ecological Immunology of Aquatic Organisms, Moscow Representative Office A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave 38, Moscow, Russia, 119991
| | - Ekaterina S Kladchenko
- Laboratory of Ecological Immunology of Aquatic Organisms, Moscow Representative Office A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave 38, Moscow, Russia, 119991.
| | - Igor V Mindukshev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Toreza, 44, St-Petersburg, Russia, 194223
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Toreza, 44, St-Petersburg, Russia, 194223
| | - Alexandra Yu Andreyeva
- Laboratory of Ecological Immunology of Aquatic Organisms, Moscow Representative Office A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave 38, Moscow, Russia, 119991
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Toreza, 44, St-Petersburg, Russia, 194223
| |
Collapse
|
4
|
Glenthøj A, Rasmussen AØ, Bendtsen SK, Hasle H, Hoffmann M, Rieneck K, Dziegiel MH, Sjö LD, Frederiksen H, Hansen DL, Fassi DE, Rathe M, Jensen PDM, Winther-Larsen A, Nielsen C, Olsen M, Toft N, Lorenzen MOB, Jensen LH, Gudbrandsdottir S, Helby J, Rossing M, van Wijk R, Petersen J. DAHEAN: A Danish nationwide study ensuring quality assurance through real-world data for suspected hereditary anemia patients. Orphanet J Rare Dis 2024; 19:284. [PMID: 39085840 PMCID: PMC11290079 DOI: 10.1186/s13023-024-03298-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Hereditary anemias are a group of genetic diseases prevalent worldwide and pose a significant health burden on patients and societies. The clinical phenotype of hereditary anemias varies from compensated hemolysis to life-threatening anemia. They can be roughly categorized into three broad categories: hemoglobinopathies, membranopathies, and enzymopathies. Traditional therapeutic approaches like blood transfusions, iron chelation, and splenectomy are witnessing a paradigm shift with the advent of targeted treatments. However, access to these treatments remains limited due to lacking or imprecise diagnoses. The primary objective of the study is to establish accurate diagnoses for patients with hereditary anemias, enabling optimal management. As a secondary objective, the study aims to enhance our diagnostic capabilities. RESULTS The DAHEAN study is a nationwide cohort study that collects advanced phenotypic and genotypic data from patients suspected of having hereditary anemias from all pediatric and hematological departments in Denmark. The study deliberates monthly by a multidisciplinary anemia board involving experts from across Denmark. So far, fifty-seven patients have been thoroughly evaluated, and several have been given diagnoses not before seen in Denmark. CONCLUSIONS The DAHEAN study and infrastructure harness recent advancements in diagnostic tools to offer precise diagnoses and improved management strategies for patients with hereditary anemias.
Collapse
Affiliation(s)
- Andreas Glenthøj
- Danish Red Blood Cell Center, Department of Hematology, Copenhagen University Hospital - Rigshospitalet, Copenhagen University Hospital, Rigshospitalet Blegdamsvej 9, Copenhagen,, DK-2100, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Andreas Ørslev Rasmussen
- Center for Genomic Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Selma Kofoed Bendtsen
- Danish Red Blood Cell Center, Department of Hematology, Copenhagen University Hospital - Rigshospitalet, Copenhagen University Hospital, Rigshospitalet Blegdamsvej 9, Copenhagen,, DK-2100, Denmark
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Marianne Hoffmann
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Klaus Rieneck
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Morten Hanefeld Dziegiel
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Lene Dissing Sjö
- Department of Pathology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Henrik Frederiksen
- Department of Hematology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Daniel El Fassi
- Danish Red Blood Cell Center, Department of Hematology, Copenhagen University Hospital - Rigshospitalet, Copenhagen University Hospital, Rigshospitalet Blegdamsvej 9, Copenhagen,, DK-2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mathias Rathe
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | | | - Anne Winther-Larsen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Christian Nielsen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Marianne Olsen
- Department of Pediatrics and Adolescent Medicine, Aalborg University Hospital, Aalborg, Denmark
| | - Nina Toft
- Danish Red Blood Cell Center, Department of Hematology, Copenhagen University Hospital - Rigshospitalet, Copenhagen University Hospital, Rigshospitalet Blegdamsvej 9, Copenhagen,, DK-2100, Denmark
| | | | | | - Sif Gudbrandsdottir
- Department of Hematology, Region Zealand University, Roskilde Hospital, Roskilde, Denmark
| | - Jens Helby
- Danish Red Blood Cell Center, Department of Hematology, Copenhagen University Hospital - Rigshospitalet, Copenhagen University Hospital, Rigshospitalet Blegdamsvej 9, Copenhagen,, DK-2100, Denmark
| | - Maria Rossing
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Genomic Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Richard van Wijk
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jesper Petersen
- Danish Red Blood Cell Center, Department of Hematology, Copenhagen University Hospital - Rigshospitalet, Copenhagen University Hospital, Rigshospitalet Blegdamsvej 9, Copenhagen,, DK-2100, Denmark
| |
Collapse
|
5
|
Rao H, Wang M, Wu Y, Wu Y, Han C, Yan C, Zhang L, Wang J, Liu Y. In vitro investigation of the mechanics of fixed red blood cells based on optical trap micromanipulation and image analysis. BIOMEDICAL OPTICS EXPRESS 2024; 15:3783-3794. [PMID: 38867786 PMCID: PMC11166448 DOI: 10.1364/boe.523702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Erythrocyte deformability correlates with various diseases. Single-cell measurements via optical tweezers (OTs) enable quantitative exploration but may encounter inaccuracies due to erythrocyte life cycle mixing. We present a three-step methodology to address these challenges. Firstly, density gradient centrifugation minimizes erythrocyte variations. Secondly, OTs measure membrane shear force across layers. Thirdly, MATLAB analyzes dynamic cell areas. Results combined with membrane shear force data reveal erythrocyte deformational capacity. To further characterize the deformability of diseased erythrocytes, the experiments used glutaraldehyde-fixed erythrocytes to simulate diseased cells. OTs detect increased shear modulus, while image recognition indicates decreased deformation. The integration of OTs and image recognition presents a comprehensive approach to deformation analysis, introducing novel ideas and methodologies for investigating erythrocytic lesions.
Collapse
Affiliation(s)
- Hongtao Rao
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, China
| | - Meng Wang
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, China
| | - Yinglian Wu
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, China
| | - Ying Wu
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, China
| | - Caiqin Han
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, China
| | - Changchun Yan
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, China
| | - Le Zhang
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, China
| | - Jingjing Wang
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, China
| | - Ying Liu
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, China
- Xuzhou College of Industrial Technology, Xuzhou, China
| |
Collapse
|
6
|
Carpenter AM, van Hoek ML. Development of a defibrinated human blood hemolysis assay for rapid testing of hemolytic activity compared to computational prediction. J Immunol Methods 2024; 529:113670. [PMID: 38604530 DOI: 10.1016/j.jim.2024.113670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Cytotoxicity studies determining hemolytic properties of antimicrobial peptides or other drugs are an important step in the development of novel therapeutics for clinical use. Hemolysis is an affordable, accessible, and rapid method for initial assessment of cellular toxicity for all drugs under development. However, variability in species of red blood cells and protocols used may result in significant differences in results. AMPs generally possess higher selectivity for bacterial cells but can have toxicity against host cells at high concentrations. Knowing the hemolytic activity of the peptides we are developing contributes to our understanding of their potential toxicity. Computational approaches for predicting hemolytic activity of AMPs exist and were tested head-to-head with our experimental results. RESULTS Starting with an observation of high hemolytic activity of LL-37 peptide against human red blood cells that were collected in EDTA, we explored alternative approaches to develop a more robust, accurate and simple hemolysis assay using defibrinated human blood. We found significant differences between the sensitivity of defibrinated red blood cells and EDTA treated red blood cells. SIGNIFICANCE Accurately determining the hemolytic activity using human red blood cells will allow for a more robust calculation of the therapeutic index of our potential antimicrobial compounds, a critical measure in their pre-clinical development. CONCLUSION We introduce a standardized, more accurate protocol for assessing hemolytic activity using defibrinated human red blood cells. This approach, facilitated by the increased commercial availability of de-identified human blood and defibrination methods, offers a robust tool for evaluating toxicity of emerging drug compounds, especially AMPs.
Collapse
Affiliation(s)
- Ashley M Carpenter
- School of Systems Biology, George Mason University, Manassas, VA 20110, United States of America
| | - Monique L van Hoek
- School of Systems Biology, George Mason University, Manassas, VA 20110, United States of America; Center for Infectious Disease Research, George Mason University, Manassas, VA 20110, United States of America.
| |
Collapse
|
7
|
Murciano N, Kaestner L. The Putative Role of the Transient Receptor Potential Ion Channel of Vanilloid Type 2 in Red Blood Cell Storage Lesions. Transfus Med Hemother 2024; 51:52-54. [PMID: 38314245 PMCID: PMC10836854 DOI: 10.1159/000531282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/18/2023] [Indexed: 02/06/2024] Open
Affiliation(s)
- Nicoletta Murciano
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
- Nanion Technologies GmbH, Munich, Germany
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
- Experimental Physics, Saarland University, Saarbrücken, Germany
| |
Collapse
|
8
|
Barnes MVC, Pantazi P, Holder B. Circulating extracellular vesicles in healthy and pathological pregnancies: A scoping review of methodology, rigour and results. J Extracell Vesicles 2023; 12:e12377. [PMID: 37974377 PMCID: PMC10654380 DOI: 10.1002/jev2.12377] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/27/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023] Open
Abstract
Extracellular vesicles (EVs) play a crucial role in pregnancy, revealed by the presence of placental-derived EVs in maternal blood, their in vitro functionality, and their altered cargo in pregnancy pathologies. These EVs are thought to be involved in the development of pregnancy pathologies, such as pre-eclampsia, pre-term birth, and fetal growth restriction, and have been suggested as a source of biomarkers for gestational diseases. However, to accurately interpret their function and biomarker potential, it is necessary to critically evaluate the EV isolation and characterization methodologies used in pregnant cohorts. In this systematic scoping review, we collated the results from 152 studies that have investigated EVs in the blood of pregnant women, and provide a detailed analysis of the EV isolation and characterization methodologies used. Our findings indicate an overall increase in EV concentrations in pregnant compared to non-pregnant individuals, an increased EV count as gestation progresses, and an increased EV count in some pregnancy pathologies. We highlight the need for improved standardization of methodology, greater focus on gestational changes in EV concentrations, and further investigations into the functionality of EVs. Our review suggests that EVs hold great promise as diagnostic and translational tools for gestational diseases. However, to fully realize their potential, it is crucial to improve the standardization and reliability of EV isolation and characterization methodologies, and to gain a better understanding of their functional roles in pregnancy pathologies.
Collapse
Affiliation(s)
- Megan V. C. Barnes
- Institute of Reproductive and Developmental Biology, Department of MetabolismDigestion and Reproduction, Imperial College LondonLondonUK
| | - Paschalia Pantazi
- Institute of Reproductive and Developmental Biology, Department of MetabolismDigestion and Reproduction, Imperial College LondonLondonUK
| | - Beth Holder
- Institute of Reproductive and Developmental Biology, Department of MetabolismDigestion and Reproduction, Imperial College LondonLondonUK
| |
Collapse
|
9
|
Sadafi A, Bordukova M, Makhro A, Navab N, Bogdanova A, Marr C. RedTell: an AI tool for interpretable analysis of red blood cell morphology. Front Physiol 2023; 14:1058720. [PMID: 37304818 PMCID: PMC10250619 DOI: 10.3389/fphys.2023.1058720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/13/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction: Hematologists analyze microscopic images of red blood cells to study their morphology and functionality, detect disorders and search for drugs. However, accurate analysis of a large number of red blood cells needs automated computational approaches that rely on annotated datasets, expensive computational resources, and computer science expertise. We introduce RedTell, an AI tool for the interpretable analysis of red blood cell morphology comprising four single-cell modules: segmentation, feature extraction, assistance in data annotation, and classification. Methods: Cell segmentation is performed by a trained Mask R-CNN working robustly on a wide range of datasets requiring no or minimum fine-tuning. Over 130 features that are regularly used in research are extracted for every detected red blood cell. If required, users can train task-specific, highly accurate decision tree-based classifiers to categorize cells, requiring a minimal number of annotations and providing interpretable feature importance. Results: We demonstrate RedTell's applicability and power in three case studies. In the first case study we analyze the difference of the extracted features between the cells coming from patients suffering from different diseases, in the second study we use RedTell to analyze the control samples and use the extracted features to classify cells into echinocytes, discocytes and stomatocytes and finally in the last use case we distinguish sickle cells in sickle cell disease patients. Discussion: We believe that RedTell can accelerate and standardize red blood cell research and help gain new insights into mechanisms, diagnosis, and treatment of red blood cell associated disorders.
Collapse
Affiliation(s)
- Ario Sadafi
- Institute of AI for Health, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
- Chair for Computer Aided Medical Procedures & Augmented Reality, Technical University of Munich, Garching, Germany
| | - Maria Bordukova
- Institute of AI for Health, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
| | - Asya Makhro
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Nassir Navab
- Chair for Computer Aided Medical Procedures & Augmented Reality, Technical University of Munich, Garching, Germany
- Computer Aided Medical Procedures, Johns Hopkins University, Baltimore, MD, United States
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
10
|
Danusso R, Rosati R, Possenti L, Lombardini E, Gigli F, Costantino ML, Ferrazzi E, Casagrande G, Lattuada D. Human umbilical cord blood cells suffer major modification by fixatives and anticoagulants. Front Physiol 2023; 14:1070474. [PMID: 37008002 PMCID: PMC10050555 DOI: 10.3389/fphys.2023.1070474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Introduction: Developing techniques for the tagless isolation of homogeneous cell populations in physiological-like conditions is of great interest in medical research. A particular case is Gravitational Field-Flow Fractionation (GrFFF), which can be run avoiding cell fixation, and that was already used to separate viable cells. Cell dimensions have a key role in this process. However, their dimensions under physiological-like conditions are not easily known since the most diffused measurement techniques are performed on fixed cells, and the fixation used to preserve tissues can alter the cell size. This work aims to obtain and compare cell size data under physiological-like conditions and in the presence of a fixative.Methods: We developed a new protocol that allows the analysis of blood cells in different conditions. Then, we applied it to obtain a dataset of human cord blood cell dimensions from 32 subjects, comparing two tubes with anticoagulants (EDTA and Citrate) and two tubes with different preservatives (CellRescue and CellSave). We analyzed a total of 2071 cells by using confocal microscopy via bio-imaging to assess dimensions (cellular and nuclear) and morphology.Results: Cell diameter measured does not differ when using the different anticoagulants, except for the increase reported for monocyte in the presence of citrate. Instead, cell dimensions differ when comparing anticoagulants and cell preservative tubes, with a few exceptions. Cells characterized by high cytoplasm content show a reduction in their size, while morphology appears always preserved. In a subgroup of cells, 3D reconstruction was performed. Cell and nucleus volumes were estimated using different methods (specific 3D tool or reconstruction from 2D projection).Discussion: We found that some cell types benefit from a complete 3D analysis because they contain non-spherical structures (mainly for cells characterized by poly-lobated nucleus). Overall, we showed the effect of the preservatives mixture on cell dimensions. Such an effect must be considered when dealing with problems highly dependent on cell size, such as GrFFF. Additionally, such information is crucial in computational models increasingly being employed to simulate biological events.
Collapse
Affiliation(s)
- Roberta Danusso
- Department of Women-Child-Newborn, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Riccardo Rosati
- Department of Women-Child-Newborn, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Luca Possenti
- LaBS, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Elena Lombardini
- Department of Women-Child-Newborn, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Francesca Gigli
- Department of Women-Child-Newborn, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Maria Laura Costantino
- LaBS, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Enrico Ferrazzi
- Department of Women-Child-Newborn, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Giustina Casagrande
- Department of Women-Child-Newborn, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
- LaBS, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Debora Lattuada
- Department of Women-Child-Newborn, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
- *Correspondence: Debora Lattuada,
| |
Collapse
|
11
|
Merlo A, Losserand S, Yaya F, Connes P, Faivre M, Lorthois S, Minetti C, Nader E, Podgorski T, Renoux C, Coupier G, Franceschini E. Influence of storage and buffer composition on the mechanical behavior of flowing red blood cells. Biophys J 2023; 122:360-373. [PMID: 36476993 PMCID: PMC9892622 DOI: 10.1016/j.bpj.2022.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/17/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
On-chip study of blood flow has emerged as a powerful tool to assess the contribution of each component of blood to its overall function. Blood has indeed many functions, from gas and nutrient transport to immune response and thermal regulation. Red blood cells play a central role therein, in particular through their specific mechanical properties, which directly influence pressure regulation, oxygen perfusion, or platelet and white cell segregation toward endothelial walls. As the bloom of in-vitro studies has led to the apparition of various storage and sample preparation protocols, we address the question of the robustness of the results involving cell mechanical behavior against this diversity. The effects of three conservation media (EDTA, citrate, and glucose-albumin-sodium-phosphate) and storage time on the red blood cell mechanical behavior are assessed under different flow conditions: cell deformability by ektacytometry, shape recovery of cells flowing out of a microfluidic constriction, and cell-flipping dynamics under shear flow. The impact of buffer solutions (phosphate-buffered saline and density-matched suspension using iodixanol/Optiprep) are also studied by investigating individual cell-flipping dynamics, relative viscosity of cell suspensions, and cell structuration under Poiseuille flow. Our results reveal that storing blood samples up to 7 days after withdrawal and suspending them in adequate density-matched buffer solutions has, in most experiments, a moderate effect on the overall mechanical response, with a possible rapid evolution in the first 3 days after sample collection.
Collapse
Affiliation(s)
- Adlan Merlo
- GDR MECABIO, France; Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, Toulouse, France; Biomechanics and Bioengineering Laboratory (UMR 7338), Université de Technologie de Compiègne - CNRS, Compiègne, France
| | - Sylvain Losserand
- GDR MECABIO, France; Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France
| | - François Yaya
- GDR MECABIO, France; Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France
| | - Philippe Connes
- GDR MECABIO, France; Team 'Vascular Biology and Red Blood Cell', Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, France; Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Magalie Faivre
- GDR MECABIO, France; University Lyon, CNRS, INSA Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, Villeurbanne, France
| | - Sylvie Lorthois
- GDR MECABIO, France; Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, Toulouse, France
| | - Christophe Minetti
- Aero Thermo Mechanics CP 165/43, Université libre de Bruxelles, Brussels, Belgium
| | - Elie Nader
- GDR MECABIO, France; Team 'Vascular Biology and Red Blood Cell', Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, France; Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Thomas Podgorski
- GDR MECABIO, France; Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France; Université Grenoble Alpes, CNRS, Grenoble INP, LRP, Grenoble, France
| | - Céline Renoux
- GDR MECABIO, France; Team 'Vascular Biology and Red Blood Cell', Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, France; Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France; Service de biochimie et biologie moléculaire, Hospices Civils de Lyon, Lyon, France
| | - Gwennou Coupier
- GDR MECABIO, France; Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
| | - Emilie Franceschini
- GDR MECABIO, France; Aix-Marseille University, CNRS, Centrale Marseille, LMA, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|
12
|
Maul TM, Herrera G. Coagulation and hemolysis complications in neonatal ECLS: Role of devices. Semin Fetal Neonatal Med 2022; 27:101405. [PMID: 36437186 DOI: 10.1016/j.siny.2022.101405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neonatal extracorporeal life support (ECLS) has enjoyed a long history of successful patient support for both cardiac and respiratory failure. The small size of this patient population has provided many technical challenges from cannulation to pumps and oxygenators. This is further complicated by the relatively meager commercial options for equipment owing to the relatively low utilization of neonatal ECLS compared to adults, which has exploded following the H1N1 epidemic and the availability of the polymethylpentene oxygenator. This paper focuses on the impact of equipment choices on thrombosis and hemolysis in neonatal ECLS and the underlying mechanisms behind them. Based upon the available evidence, it is clear neonatal ECLS requires careful attention to the selection and operation of all parts of the ECLS system. Practitioners should also be aware of the factors that increase blood cell fragility, which can impact decisions around equipment and subsequent operation.
Collapse
Affiliation(s)
- Timothy M Maul
- Nemours Children's Health Florida, Cardiac Center, Orlando, FL, USA; University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, USA; University of Central Florida College of Medicine, Orlando, FL, USA.
| | - Guillermo Herrera
- Children's National Hospital, 111 Michigan Ave, NW, Washington, D.C., USA.
| |
Collapse
|
13
|
Karimi N, Dalirfardouei R, Dias T, Lötvall J, Lässer C. Tetraspanins distinguish separate extracellular vesicle subpopulations in human serum and plasma - Contributions of platelet extracellular vesicles in plasma samples. J Extracell Vesicles 2022; 11:e12213. [PMID: 35524458 PMCID: PMC9077141 DOI: 10.1002/jev2.12213] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The ability to isolate extracellular vesicles (EVs) from blood is vital in the development of EVs as disease biomarkers. Both serum and plasma can be used, but few studies have compared these sources in terms of the type of EVs that are obtained. The aim of this study was to determine the presence of different subpopulations of EVs in plasma and serum. METHOD Blood was collected from healthy subjects, and plasma and serum were isolated in parallel. ACD or EDTA tubes were used for the collection of plasma, while serum was obtained in clot activator tubes. EVs were isolated utilising a combination of density cushion and SEC, a combination of density cushion and gradient or by a bead antibody capturing system (anti-CD63, anti-CD9 and anti-CD81 beads). The subpopulations of EVs were analysed by NTA, Western blot, SP-IRIS, conventional and nano flow cytometry, magnetic bead ELISA and mass spectrometry. Additionally, different isolation protocols for plasma were compared to determine the contribution of residual platelets in the analysis. RESULTS This study shows that a higher number of CD9+ EVs were present in EDTA-plasma compared to ACD-plasma and to serum, and the presence of CD41a on these EVs suggests that they were released from platelets. Furthermore, only a very small number of EVs in blood were double-positive for CD63 and CD81. The CD63+ EVs were enriched in serum, while CD81+ vesicles were the rarest subpopulation in both plasma and serum. Additionally, EDTA-plasma contained more residual platelets than ACD-plasma and serum, and two centrifugation steps were crucial to reduce the number of platelets in plasma prior to EV isolation. CONCLUSION These results show that human blood contains multiple subpopulations of EVs that carry different tetraspanins. Blood sampling methods, including the use of anti-coagulants and choice of centrifugation protocols, can affect EV analyses and should always be reported in detail.
Collapse
Affiliation(s)
- Nasibeh Karimi
- Krefting Research CentreDepartment of Internal Medicine and Clinical NutritionInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Razieh Dalirfardouei
- Krefting Research CentreDepartment of Internal Medicine and Clinical NutritionInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Endometrium and Endometriosis Research CenterHamadan University of Medical SciencesHamadanIran
- Faculty of MedicineDepartment of Medical BiotechnologyMashhad University of Medical SciencesMashhadIran
| | | | - Jan Lötvall
- Krefting Research CentreDepartment of Internal Medicine and Clinical NutritionInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Cecilia Lässer
- Krefting Research CentreDepartment of Internal Medicine and Clinical NutritionInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
14
|
Maurer F, John T, Makhro A, Bogdanova A, Minetti G, Wagner C, Kaestner L. Continuous Percoll Gradient Centrifugation of Erythrocytes-Explanation of Cellular Bands and Compromised Age Separation. Cells 2022; 11:cells11081296. [PMID: 35455975 PMCID: PMC9028966 DOI: 10.3390/cells11081296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: When red blood cells are centrifuged in a continuous Percoll-based density gradient, they form discrete bands. While this is a popular approach for red blood cell age separation, the mechanisms involved in banding were unknown. (2) Methods: Percoll centrifugations of red blood cells were performed under various experimental conditions and the resulting distributions analyzed. The age of the red blood cells was measured by determining the protein band 4.1a to 4.1b ratio based on western blots. Red blood cell aggregates, so-called rouleaux, were monitored microscopically. A mathematical model for the centrifugation process was developed. (3) Results: The red blood cell band pattern is reproducible but re-centrifugation of sub-bands reveals a new set of bands. This is caused by red blood cell aggregation. Based on the aggregation, our mathematical model predicts the band formation. Suppression of red blood cell aggregation reduces the band formation. (4) Conclusions: The red blood cell band formation in continuous Percoll density gradients could be explained physically by red blood cell aggregate formation. This aggregate formation distorts the density-based red blood cell age separation. Suppressing aggregation by osmotic swelling has a more severe effect on compromising the RBC age separation to a higher degree.
Collapse
Affiliation(s)
- Felix Maurer
- Dynamics of Fluids, Experimental Physics, Saarland University, 66123 Saarbrücken, Germany; (F.M.); (T.J.); (C.W.)
| | - Thomas John
- Dynamics of Fluids, Experimental Physics, Saarland University, 66123 Saarbrücken, Germany; (F.M.); (T.J.); (C.W.)
| | - Asya Makhro
- Red Blood Cell Research Group, Institute of Veterinary Physiology, University of Zürich, CH-8057 Zürich, Switzerland; (A.M.); (A.B.)
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, University of Zürich, CH-8057 Zürich, Switzerland; (A.M.); (A.B.)
| | - Giampaolo Minetti
- Laboratories of Biochemistry, Department of Biology and Biotechnology “L Spallanzani”, University of Pavia, I-27100 Pavia, Italy;
| | - Christian Wagner
- Dynamics of Fluids, Experimental Physics, Saarland University, 66123 Saarbrücken, Germany; (F.M.); (T.J.); (C.W.)
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Lars Kaestner
- Dynamics of Fluids, Experimental Physics, Saarland University, 66123 Saarbrücken, Germany; (F.M.); (T.J.); (C.W.)
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Correspondence:
| |
Collapse
|
15
|
von Lindern M, Egée S, Bianchi P, Kaestner L. The Function of Ion Channels and Membrane Potential in Red Blood Cells: Toward a Systematic Analysis of the Erythroid Channelome. Front Physiol 2022; 13:824478. [PMID: 35177994 PMCID: PMC8844196 DOI: 10.3389/fphys.2022.824478] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/04/2022] [Indexed: 01/14/2023] Open
Abstract
Erythrocytes represent at least 60% of all cells in the human body. During circulation, they experience a huge variety of physical and chemical stimulations, such as pressure, shear stress, hormones or osmolarity changes. These signals are translated into cellular responses through ion channels that modulate erythrocyte function. Ion channels in erythrocytes are only recently recognized as utmost important players in physiology and pathophysiology. Despite this awareness, their signaling, interactions and concerted regulation, such as the generation and effects of “pseudo action potentials”, remain elusive. We propose a systematic, conjoined approach using molecular biology, in vitro erythropoiesis, state-of-the-art electrophysiological techniques, and channelopathy patient samples to decipher the role of ion channel functions in health and disease. We need to overcome challenges such as the heterogeneity of the cell population (120 days lifespan without protein renewal) or the access to large cohorts of patients. Thereto we will use genetic manipulation of progenitors, cell differentiation into erythrocytes, and statistically efficient electrophysiological recordings of ion channel activity.
Collapse
Affiliation(s)
- Marieke von Lindern
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Cell Biology and Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Stéphane Egée
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CNRS, UMR 8227, Sorbonne Université, Roscoff Cedex, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | - Paola Bianchi
- Pathophysiology of Anemia Unit, Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico of Milan, Milan, Italy
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
- Dynamics of Fluids, Experimental Physics, Saarland University, Saarbrücken, Germany
- *Correspondence: Lars Kaestner,
| |
Collapse
|
16
|
von Petersdorff-Campen K, Schmid Daners M. Hemolysis Testing In Vitro: A Review of Challenges and Potential Improvements. ASAIO J 2022; 68:3-13. [PMID: 33989208 DOI: 10.1097/mat.0000000000001454] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Many medical devices such as cardiopulmonary bypass systems, mechanical heart valves, or ventricular assist devices are intended to come into contact with blood flow during use. In vitro hemolysis testing can provide valuable information about the hemocompatibility of prototypes and thus help reduce the number of animal experiments required. Such tests play an important role as research and development tools for objective comparisons of prototypes and devices as well as for the extrapolation of their results to clinical outcomes. Therefore, it is important to explore and provide new ways to improve current practices. In this article, the main challenges of hemolysis testing are described, namely the difficult blood sourcing, the high experimental workload, and the low reproducibility of test results. Several approaches to address the challenges identified are proposed and the respective literature is reviewed. These include the replacement of blood as the "shear-sensitive fluid" by alternative test fluids, the replacement of sparse, manual sampling and blood damage assessment by a continuous and automated monitoring, as well as an analysis of categories and causes of variability in hemolysis test results that may serve as a structural template for future studies.
Collapse
Affiliation(s)
- Kai von Petersdorff-Campen
- From the Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
17
|
Coll AC, Ross MK, Williams ML, Wills RW, Mackin AJ, Thomason JM. Effect of washing units of canine red blood cells on storage lesions. J Vet Intern Med 2021; 36:66-77. [PMID: 34939231 PMCID: PMC8783348 DOI: 10.1111/jvim.16340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
Background In humans, washing stored blood products before transfusion reduces storage lesions and incidence of transfusion reactions, but the effectiveness of washing canine blood is unknown. Objectives The objective was to determine if manually washing units of stored blood would reduce storage lesions without adversely affecting erythrocytes. We hypothesized that washing stored units would reduce concentrations of storage lesions and cause minimal erythrocyte damage. Animals Eight healthy research dogs. Methods Repeated measure cohort study. Units of whole blood were stored for 28 days and washed 3 times with 0.9% NaCl. Blood samples were collected before and after storage, after each wash, and after being held at a simulated transfusion temperature. Variables measured included CBC variables, blood gas analysis, erythrocyte morphology, mean corpuscular fragility (MCF), and eicosanoid concentrations. A Friedman's test was used to evaluate changes in variables (P < .05 was considered significant). Results After the first wash, compared to values after storage, there was a significant decrease in potassium (4.3 mmol/L [4.0‐4.7] to 1.2 mmol/L [1‐1.6]; P < .0001, median [range]), lactate (1.45 mmol/L [1.07‐1.79] to 0.69 mmol/L [0.39‐0.93]; P = .002), and partial pressure carbon dioxide (102 mm Hg [80.2‐119.2] to 33.7 mm Hg [24.5‐44.5]; P < .0001), and increase in MCV (69.3 fL [65.7‐72.3] to 74 fL [69.6‐79.5]; P = .0003), and MCF (0.444 fL [0.279‐0.527] to 0.491 fL [0.43‐0.616]; P = .0006). Conclusions and Clinical Importance A single wash of stored whole blood significantly reduces most extracellular storage lesions, and additional washing might cause hemolysis.
Collapse
Affiliation(s)
- Ashley C Coll
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Matthew K Ross
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Matthew L Williams
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Robert W Wills
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Andrew J Mackin
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - John M Thomason
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
18
|
von Petersdorff-Campen K, Fischer P, Bogdanova A, Schmid Daners M. Potential Factors for Poor Reproducibility of In Vitro Hemolysis Testing. ASAIO J 2021; 68:384-393. [PMID: 34593679 DOI: 10.1097/mat.0000000000001577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In vitro testing of hemolysis is essential for the validation and development of ventricular assist devices. However, as many factors influence hemolysis, such tests' inter- and intralaboratory reproducibility is poor. In this work, CentriMag blood pumps were used to conduct a hemolysis study according to ASTM F1841 with blood from 23 bovine donors. Complementary blood analysis, including cell count, plasma composition, and viscosity, was performed to identify factors relevant to the variability of hemolysis testing results. Three strategies were tested to improve reproducibility: albumin supplementation, maintaining glucose concentration, and replacement of plasma with plasma-like buffer. Differences in red blood cell stability among donors were responsible for the largest portion of the total variance. Hematocrit varied widely among donors, and its adjustment to a standard value led to the artificial introduction of between-donor differences, especially in viscosity. It seems likely, that a more careful selection of donors with similar characteristics or repeated blood collection from the same donor could improve reproducibility. However, no direct correlations were found between the susceptibility to hemolysis and individual donor or blood characteristics in this study. The addition of albumin and glucose had a negligible effect while washing blood samples with artificial plasma significantly reduced mean hemolysis, although not its variation. The findings contribute to the understanding of variability in hemolysis experiments and give reason to question the common standard operating procedures, such as hemodilution or maintaining glucose concentration. To confirm the factors identified here, additional studies isolating the effects of individual factors are necessary.
Collapse
Affiliation(s)
- Kai von Petersdorff-Campen
- From the Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
19
|
Andreyeva AY, Kladchenko ES, Sudnitsyna JS, Krivchenko AI, Mindukshev IV, Gambaryan S. Protein kinase A activity and NO are involved in the regulation of crucian carp (Carassius carassius) red blood cell osmotic fragility. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1105-1117. [PMID: 34052972 DOI: 10.1007/s10695-021-00971-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Activation of the cAMP pathway by β-adrenergic stimulation and cGMP pathway by activation of guanylate cyclase substantially affects red blood cell (RBC) membrane properties in mammals. However, whether similar mechanisms are involved in RBC regulation of lower vertebrates, especially teleosts, is not elucidated yet. In this study, we evaluated the effects of adenylate cyclase activation by epinephrine and forskolin, guanylate cyclase activation by sodium nitroprusside, and the role of Na+/H+-exchanger in the changes of osmotic fragility and regulatory volume decrease (RVD) response in crucian carp RBCs. Western blot analysis of protein kinase A and protein kinase G substrate phosphorylation revealed that changes in osmotic fragility were regulated via the protein kinase A, but not protein kinase G signaling pathway. At the same time, the RVD response in crucian carp RBCs was not affected either by activation of adenylate or guanylate cyclase. Adenylate cyclase/protein kinase A activation significantly decreased RBC osmotic fragility, i.e., increased cell rigidity. Inhibition of Na+/H+-exchanger by amiloride had no effect on the epinephrine-mediated decrease of RBC osmotic fragility. NO donor SNP did not activate guanylate cyclase, however affected RBCs osmotic fragility by protein kinase G-independent mechanisms. Taken together, our data demonstrated that the cAMP/PKA signaling pathway and NO are involved in the regulation of crucian carp RBC osmotic fragility, but not in RVD response. The authors confirm that the study has no clinical trial.
Collapse
Affiliation(s)
- Aleksandra Yu Andreyeva
- Department of Animal Physiology and Biochemistry, Moscow Representative Office A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave 38, Moscow, Russia, 119991.
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Toreza, 44, St-Petersburg, Russia, 194223.
| | - Ekaterina S Kladchenko
- Department of Animal Physiology and Biochemistry, Moscow Representative Office A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave 38, Moscow, Russia, 119991
| | - Julia S Sudnitsyna
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Toreza, 44, St-Petersburg, Russia, 194223
- Center for Theoretical Problems of Physicochemical Pharmacology, RAS, Srednyaya Kalitnikovskaya Str., 30, Moscow, Russia, 109029
| | - Aleksander I Krivchenko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Toreza, 44, St-Petersburg, Russia, 194223
| | - Igor V Mindukshev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Toreza, 44, St-Petersburg, Russia, 194223
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Toreza, 44, St-Petersburg, Russia, 194223
| |
Collapse
|
20
|
Tomin T, Bordag N, Zügner E, Al-Baghdadi A, Schinagl M, Birner-Gruenberger R, Schittmayer M. Blood Plasma Quality Control by Plasma Glutathione Status. Antioxidants (Basel) 2021; 10:864. [PMID: 34072235 PMCID: PMC8226592 DOI: 10.3390/antiox10060864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
Abstract
Timely centrifugation of blood for plasma preparation is a key step to ensure high plasma quality for analytics. Delays during preparation can significantly influence readouts of key clinical parameters. However, in a routine clinical environment, a strictly controlled timeline is often not feasible. The next best approach is to control for sample preparation delays by a marker that provides a readout of the time-dependent degradation of the sample. In this study, we explored the usefulness of glutathione status as potential marker of plasma preparation delay. As the concentration of glutathione in erythrocytes is at least two orders of magnitude higher than in plasma, even the slightest leakage of glutathione from the cells can be readily observed. Over the 3 h observation period employed in this study, we observed a linear increase of plasma concentrations of both reduced (GSH) and oxidized glutathione (GSSG). Artificial oxidation of GSH is prevented by rapid alkylation with N-ethylmaleimide directly in the blood sampling vessel as recently published. The observed relative leakage of GSH was significantly higher than that of GSSG. A direct comparison with plasma lactate dehydrogenase activity, a widely employed hemolysis marker, clearly demonstrated the superiority of our approach for quality control. Moreover, we show that the addition of the thiol alkylating reagent NEM directly to the blood tubes does not influence downstream analysis of other clinical parameters. In conclusion, we report that GSH gives an excellent readout of the duration of plasma preparation and the associated pre-analytical errors.
Collapse
Affiliation(s)
- Tamara Tomin
- Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Technische Universität Wien, 1060 Vienna, Austria; (T.T.); (M.S.)
| | - Natalie Bordag
- Center for Biomarker Research in Medicine, CBmed GmbH, 8010 Graz, Austria; (N.B.); (A.A.-B.)
- Translational Platform, Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria
- Department of Dermatology and Venereology, Medical University of Graz, 8036 Graz, Austria
| | - Elmar Zügner
- Health Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria;
| | - Abdullah Al-Baghdadi
- Center for Biomarker Research in Medicine, CBmed GmbH, 8010 Graz, Austria; (N.B.); (A.A.-B.)
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Maximilian Schinagl
- Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Technische Universität Wien, 1060 Vienna, Austria; (T.T.); (M.S.)
| | - Ruth Birner-Gruenberger
- Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Technische Universität Wien, 1060 Vienna, Austria; (T.T.); (M.S.)
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Matthias Schittmayer
- Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Technische Universität Wien, 1060 Vienna, Austria; (T.T.); (M.S.)
| |
Collapse
|
21
|
Gardos channelopathy: functional analysis of a novel KCNN4 variant. Blood Adv 2021; 4:6336-6341. [PMID: 33351129 DOI: 10.1182/bloodadvances.2020003285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Key Points
We show that the novel KCNN4 variant p.S314P is a gain-of-function mutation but is less severe than the previously reported p.R352H variant. The clinical heterogeneity, blurred symptoms, and absence of specific diagnostic markers make the diagnosis of Gardos channelopathy challenging.
Collapse
|
22
|
Rabe A, Kihm A, Darras A, Peikert K, Simionato G, Dasanna AK, Glaß H, Geisel J, Quint S, Danek A, Wagner C, Fedosov DA, Hermann A, Kaestner L. The Erythrocyte Sedimentation Rate and Its Relation to Cell Shape and Rigidity of Red Blood Cells from Chorea-Acanthocytosis Patients in an Off-Label Treatment with Dasatinib. Biomolecules 2021; 11:biom11050727. [PMID: 34066168 PMCID: PMC8151862 DOI: 10.3390/biom11050727] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Chorea-acanthocytosis (ChAc) is a rare hereditary neurodegenerative disease with deformed red blood cells (RBCs), so-called acanthocytes, as a typical marker of the disease. Erythrocyte sedimentation rate (ESR) was recently proposed as a diagnostic biomarker. To date, there is no treatment option for affected patients, but promising therapy candidates, such as dasatinib, a Lyn-kinase inhibitor, have been identified. Methods: RBCs of two ChAc patients during and after dasatinib treatment were characterized by the ESR, clinical hematology parameters and the 3D shape classification in stasis based on an artificial neural network. Furthermore, mathematical modeling was performed to understand the contribution of cell morphology and cell rigidity to the ESR. Microfluidic measurements were used to compare the RBC rigidity between ChAc patients and healthy controls. Results: The mechano-morphological characterization of RBCs from two ChAc patients in an off-label treatment with dasatinib revealed differences in the ESR and the acanthocyte count during and after the treatment period, which could not directly be related to each other. Clinical hematology parameters were in the normal range. Mathematical modeling indicated that RBC rigidity is more important for delayed ESR than cell shape. Microfluidic experiments confirmed a higher rigidity in the normocytes of ChAc patients compared to healthy controls. Conclusions: The results increase our understanding of the role of acanthocytes and their associated properties in the ESR, but the data are too sparse to answer the question of whether the ESR is a suitable biomarker for treatment success, whereas a correlation between hematological and neuronal phenotype is still subject to verification.
Collapse
Affiliation(s)
- Antonia Rabe
- Theoretical Medicine and Biosciences, Saarland University, 66424 Homburg, Germany;
- Experimental Physics, Saarland University, 66123 Saarbruecken, Germany; (A.K.); (A.D.); (G.S.); (S.Q.); (C.W.)
| | - Alexander Kihm
- Experimental Physics, Saarland University, 66123 Saarbruecken, Germany; (A.K.); (A.D.); (G.S.); (S.Q.); (C.W.)
| | - Alexis Darras
- Experimental Physics, Saarland University, 66123 Saarbruecken, Germany; (A.K.); (A.D.); (G.S.); (S.Q.); (C.W.)
| | - Kevin Peikert
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18051 Rostock, Germany; (K.P.); (H.G.); (A.H.)
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Greta Simionato
- Experimental Physics, Saarland University, 66123 Saarbruecken, Germany; (A.K.); (A.D.); (G.S.); (S.Q.); (C.W.)
- Institute for Clinical and Experimental Surgery, Saarland University, 66424 Homburg, Germany
| | - Anil Kumar Dasanna
- Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany; (A.K.D.); (D.A.F.)
| | - Hannes Glaß
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18051 Rostock, Germany; (K.P.); (H.G.); (A.H.)
| | - Jürgen Geisel
- Central Laboratory, Saarland University Medical Centre, 66424 Homburg, Germany;
| | - Stephan Quint
- Experimental Physics, Saarland University, 66123 Saarbruecken, Germany; (A.K.); (A.D.); (G.S.); (S.Q.); (C.W.)
- Cysmic GmbH, 66123 Saarbrücken, Germany
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, 81366 Munich, Germany;
| | - Christian Wagner
- Experimental Physics, Saarland University, 66123 Saarbruecken, Germany; (A.K.); (A.D.); (G.S.); (S.Q.); (C.W.)
- Physics and Materials Science Research Unit, University of Luxembourg, 1511 Luxembourg, Luxembourg
| | - Dmitry A. Fedosov
- Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany; (A.K.D.); (D.A.F.)
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18051 Rostock, Germany; (K.P.); (H.G.); (A.H.)
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
- DZNE, German Center for Neurodegenerative Diseases, Research Site Rostock/Greifswald, 18051 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18051 Rostock, Germany
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, 66424 Homburg, Germany;
- Experimental Physics, Saarland University, 66123 Saarbruecken, Germany; (A.K.); (A.D.); (G.S.); (S.Q.); (C.W.)
- Correspondence: ; Tel.: +49-681-302-2417
| |
Collapse
|
23
|
Extracorporeal Membrane Oxygenation-Induced Hemolysis: An In Vitro Study to Appraise Causative Factors. MEMBRANES 2021; 11:membranes11050313. [PMID: 33923070 PMCID: PMC8145168 DOI: 10.3390/membranes11050313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022]
Abstract
In vitro hemolysis testing is commonly used to determine hemocompatibility of ExtraCorporeal Membrane Oxygenation (ECMO). However, poor reproducibility remains a challenging problem, due to several unidentified influencing factors. The present study investigated potential factors, such as flow rates, the use of anticoagulants, and gender of blood donors, which could play a role in hemolysis. Fresh human whole blood was anticoagulated with either citrate (n = 6) or heparin (n = 12; 6 female and 6 male blood donors). Blood was then circulated for 360 min at 4 L/min or 1.5 L/min. Regardless of flow rate conditions, hemolysis remained unchanged over time in citrated blood, but significantly increased after 240 min circulation in heparinized blood (p ≤ 0.01). The ratio of the normalized index of hemolysis (NIH) of heparinized blood to citrated blood was 11.7-fold higher at 4 L/min and 16.5–fold higher at 1.5 L/min. The difference in hemolysis between 1.5 L/min and 4 L/min concurred with findings of previous literature. In addition, the ratio of NIH of male heparinized blood to female was 1.7-fold higher at 4 L/min and 2.2-fold higher at 1.5 L/min. Our preliminary results suggested that the choice of anticoagulant and blood donor gender could be critical factors in hemolysis studies, and should be taken into account to improve testing reliability during ECMO.
Collapse
|
24
|
Darras A, Peikert K, Rabe A, Yaya F, Simionato G, John T, Dasanna AK, Buvalyy S, Geisel J, Hermann A, Fedosov DA, Danek A, Wagner C, Kaestner L. Acanthocyte Sedimentation Rate as a Diagnostic Biomarker for Neuroacanthocytosis Syndromes: Experimental Evidence and Physical Justification. Cells 2021; 10:788. [PMID: 33918219 PMCID: PMC8067274 DOI: 10.3390/cells10040788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 01/28/2023] Open
Abstract
(1) Background: Chorea-acanthocytosis and McLeod syndrome are the core diseases among the group of rare neurodegenerative disorders called neuroacanthocytosis syndromes (NASs). NAS patients have a variable number of irregularly spiky erythrocytes, so-called acanthocytes. Their detection is a crucial but error-prone parameter in the diagnosis of NASs, often leading to misdiagnoses. (2) Methods: We measured the standard Westergren erythrocyte sedimentation rate (ESR) of various blood samples from NAS patients and healthy controls. Furthermore, we manipulated the ESR by swapping the erythrocytes and plasma of different individuals, as well as replacing plasma with dextran. These measurements were complemented by clinical laboratory data and single-cell adhesion force measurements. Additionally, we followed theoretical modeling approaches. (3) Results: We show that the acanthocyte sedimentation rate (ASR) with a two-hour read-out is significantly prolonged in chorea-acanthocytosis and McLeod syndrome without overlap compared to the ESR of the controls. Mechanistically, through modern colloidal physics, we show that acanthocyte aggregation and plasma fibrinogen levels slow down the sedimentation. Moreover, the inverse of ASR correlates with the number of acanthocytes (R2=0.61, p=0.004). (4) Conclusions: The ASR/ESR is a clear, robust and easily obtainable diagnostic marker. Independently of NASs, we also regard this study as a hallmark of the physical view of erythrocyte sedimentation by describing anticoagulated blood in stasis as a percolating gel, allowing the application of colloidal physics theory.
Collapse
Affiliation(s)
- Alexis Darras
- Experimental Physics, Saarland University, 66123 Saarbruecken, Germany; (A.R.); (F.Y.); (G.S.); (T.J.); (C.W.)
| | - Kevin Peikert
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18051 Rostock, Germany; (K.P.); (A.H.)
- Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Antonia Rabe
- Experimental Physics, Saarland University, 66123 Saarbruecken, Germany; (A.R.); (F.Y.); (G.S.); (T.J.); (C.W.)
- Theoretical Medicine and Biosciences, Saarland University, 66424 Homburg, Germany
| | - François Yaya
- Experimental Physics, Saarland University, 66123 Saarbruecken, Germany; (A.R.); (F.Y.); (G.S.); (T.J.); (C.W.)
- Laboratoire Interdisciplinaire de Physique, UMR 5588, 38402 Saint Martin d’Hères, France
| | - Greta Simionato
- Experimental Physics, Saarland University, 66123 Saarbruecken, Germany; (A.R.); (F.Y.); (G.S.); (T.J.); (C.W.)
- Institute for Clinical and Experimental Surgery, Saarland University, 66424 Homburg, Germany;
| | - Thomas John
- Experimental Physics, Saarland University, 66123 Saarbruecken, Germany; (A.R.); (F.Y.); (G.S.); (T.J.); (C.W.)
| | - Anil Kumar Dasanna
- Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany; (A.K.D.); (S.B.); (D.A.F.)
| | - Semen Buvalyy
- Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany; (A.K.D.); (S.B.); (D.A.F.)
| | - Jürgen Geisel
- Institute for Clinical and Experimental Surgery, Saarland University, 66424 Homburg, Germany;
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18051 Rostock, Germany; (K.P.); (A.H.)
- Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, 01062 Dresden, Germany
- DZNE, German Center for Neurodegenerative Diseases, Research Site Rostock/Greifswald, 18051 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18051 Rostock, Germany
| | - Dmitry A. Fedosov
- Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany; (A.K.D.); (S.B.); (D.A.F.)
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, 81366 Munich, Germany;
| | - Christian Wagner
- Experimental Physics, Saarland University, 66123 Saarbruecken, Germany; (A.R.); (F.Y.); (G.S.); (T.J.); (C.W.)
- Physics and Materials Science Research Unit, University of Luxembourg, 1511 Luxembourg, Luxembourg
| | - Lars Kaestner
- Experimental Physics, Saarland University, 66123 Saarbruecken, Germany; (A.R.); (F.Y.); (G.S.); (T.J.); (C.W.)
- Theoretical Medicine and Biosciences, Saarland University, 66424 Homburg, Germany
| |
Collapse
|
25
|
Melzak KA, Spouge JL, Boecker C, Kirschhöfer F, Brenner-Weiss G, Bieback K. Hemolysis Pathways during Storage of Erythrocytes and Inter-Donor Variability in Erythrocyte Morphology. Transfus Med Hemother 2021; 48:39-47. [PMID: 33708051 DOI: 10.1159/000508711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/03/2020] [Indexed: 01/10/2023] Open
Abstract
Background Red blood cells (RBCs) stored for transfusions can lyse over the course of the storage period. The lysis is traditionally assumed to occur via the formation of spiculated echinocyte forms, so that cells that appear smoother are assumed to have better storage quality. We investigate this hypothesis by comparing the morphological distribution to the hemolysis for samples from different donors. Methods Red cell concentrates were obtained from a regional blood bank quality control laboratory. Out of 636 units processed by the laboratory, we obtained 26 high hemolysis units and 24 low hemolysis units for assessment of RBC morphology. The association between the morphology and the hemolysis was tested with the Wilcoxon-Mann-Whitney U test. Results Samples with high stomatocyte counts (p = 0.0012) were associated with increased hemolysis, implying that cells can lyse via the formation of stomatocytes. Conclusion RBCs can lyse without significant echinocyte formation. Lower degrees of spiculation are not a good indicator of low hemolysis when RBCs from different donors are compared.
Collapse
Affiliation(s)
- Kathryn A Melzak
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - John L Spouge
- National Center for Biotechnology Information, National Institutes of Health USA, Bethesda, Maryland, USA
| | - Clemens Boecker
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Frank Kirschhöfer
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Gerald Brenner-Weiss
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Karen Bieback
- Institute for Transfusion Medicine and Immunology, Flowcore Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
26
|
Ugurel E, Kisakurek ZB, Aksu Y, Goksel E, Cilek N, Yalcin O. Calcium/protein kinase C signaling mechanisms in shear-induced mechanical responses of red blood cells. Microvasc Res 2021; 135:104124. [PMID: 33359148 DOI: 10.1016/j.mvr.2020.104124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022]
Abstract
Red blood cell (RBC) deformability has vital importance for microcirculation in the body, as RBCs travel in narrow capillaries under shear stress. Deformability can be defined as a remarkable cell ability to change shape in response to an external force which allows the cell to pass through the narrowest blood capillaries. Previous studies showed that RBC deformability could be regulated by Ca2+/protein kinase C (PKC) signaling mechanisms due to the phosphorylative changes in RBC membrane proteins by kinases and phosphatases. We investigated the roles of Ca2+/PKC signaling pathway on RBC mechanical responses and impaired RBC deformability under continuous shear stress (SS). A protein kinase C inhibitor Chelerythrine, a tyrosine phosphatase inhibitor Calpeptin, and a calcium channel blocker Verapamil were applied into human blood samples in 1 micromolar concentration. Samples with drugs were treated with or without 3 mM Ca2+. A shear stress at 5 Pa level was applied to each sample continuously for 300 s. RBC deformability was measured by a laser-assisted optical rotational cell analyzer (LORRCA) and was calculated as the change in elongation index (EI) of RBC upon a range of shear stress (SS, 0.3-50 Pa). RBC mechanical stress responses were evaluated before and after continuous SS through the parameterization of EI-SS curves. The drug administrations did not produce any significant alterations in RBC mechanical responses when they were applied alone. However, the application of the drugs together with Ca2+ substantially increased RBC deformability compared to calcium alone. Verapamil significantly improved Ca2+-induced impairments of deformability both before and after 5 Pa SS exposure (p < 0.0001). Calpeptin and Chelerythrine significantly ameliorated impaired deformability only after continuous SS (p < 0.05). Shear-induced improvements of deformability were conserved by the drug administrations although shear-induced deformability was impaired when the drugs were applied with calcium. The blocking of Ca2+ channel by Verapamil improved impaired RBC mechanical responses independent of the SS effect. The inhibition of tyrosine phosphatase and protein kinase C by Calpeptin and Chelerythrine, respectively, exhibited ameliorating effects on calcium-impaired deformability with the contribution of shear stress. The modulation of Ca2+/PKC signaling pathway could regulate the mechanical stress responses of RBCs when cells are under continuous SS exposure. Shear-induced improvements in the mechanical properties of RBCs by this signaling mechanism could facilitate RBC flow in the microcirculation of pathophysiological disorders, wherein Ca2+ homeostasis is disturbed and RBC deformability is reduced.
Collapse
Affiliation(s)
- Elif Ugurel
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey; Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | | | - Yasemin Aksu
- School of Medicine, Koç University, Istanbul, Turkey
| | - Evrim Goksel
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey; Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Neslihan Cilek
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey; Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Ozlem Yalcin
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey; Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey; School of Medicine, Koç University, Istanbul, Turkey.
| |
Collapse
|
27
|
Dias GF, Grobe N, Rogg S, Jörg DJ, Pecoits-Filho R, Moreno-Amaral AN, Kotanko P. The Role of Eryptosis in the Pathogenesis of Renal Anemia: Insights From Basic Research and Mathematical Modeling. Front Cell Dev Biol 2020; 8:598148. [PMID: 33363152 PMCID: PMC7755649 DOI: 10.3389/fcell.2020.598148] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
Red blood cells (RBC) are the most abundant cells in the blood. Despite powerful defense systems against chemical and mechanical stressors, their life span is limited to about 120 days in healthy humans and further shortened in patients with kidney failure. Changes in the cell membrane potential and cation permeability trigger a cascade of events that lead to exposure of phosphatidylserine on the outer leaflet of the RBC membrane. The translocation of phosphatidylserine is an important step in a process that eventually results in eryptosis, the programmed death of an RBC. The regulation of eryptosis is complex and involves several cellular pathways, such as the regulation of non-selective cation channels. Increased cytosolic calcium concentration results in scramblase and floppase activation, exposing phosphatidylserine on the cell surface, leading to early clearance of RBCs from the circulation by phagocytic cells. While eryptosis is physiologically meaningful to recycle iron and other RBC constituents in healthy subjects, it is augmented under pathological conditions, such as kidney failure. In chronic kidney disease (CKD) patients, the number of eryptotic RBC is significantly increased, resulting in a shortened RBC life span that further compounds renal anemia. In CKD patients, uremic toxins, oxidative stress, hypoxemia, and inflammation contribute to the increased eryptosis rate. Eryptosis may have an impact on renal anemia, and depending on the degree of shortened RBC life span, the administration of erythropoiesis-stimulating agents is often insufficient to attain desired hemoglobin target levels. The goal of this review is to indicate the importance of eryptosis as a process closely related to life span reduction, aggravating renal anemia.
Collapse
Affiliation(s)
- Gabriela Ferreira Dias
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
- Renal Research Institute, New York, NY, United States
| | - Nadja Grobe
- Renal Research Institute, New York, NY, United States
| | - Sabrina Rogg
- Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany
| | - David J. Jörg
- Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany
| | - Roberto Pecoits-Filho
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
- Arbor Research Collaborative for Health, Ann Arbor, MI, United States
| | | | - Peter Kotanko
- Renal Research Institute, New York, NY, United States
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
28
|
Mahkro A, Hegemann I, Seiler E, Simionato G, Claveria V, Bogdanov N, Sasselli C, Torgerson P, Kaestner L, Manz MG, Goede JS, Gassmann M, Bogdanova A. A pilot clinical phase II trial MemSID: Acute and durable changes of red blood cells of sickle cell disease patients on memantine treatment. EJHAEM 2020; 1:23-34. [PMID: 35847705 PMCID: PMC9175962 DOI: 10.1002/jha2.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 01/12/2023]
Abstract
An increase in abundance and activity of N-methyl D-aspartate receptors (NMDAR) was previously reported for red blood cells (RBCs) of sickle cell disease (SCD) patients. Increased Ca2+ uptake through the receptor supported dehydration and RBC damage. In a pilot phase IIa-b clinical trial MemSID, memantine, a blocker of NMDAR, was used for treatment of four patients for 12 months. Two more patients that have enrolled into the study did not finish it. One of them had psychotic event following the involuntary overdose of the drug, whereas the other had vertigo and could not comply to the trial visits schedule. Acute and durable responses of RBCs of SCD patients to daily oral administration of memantine were monitored. Markers of RBC turnover, changes in cell density, and alterations in ion handling and RBC morphology were assessed. Acute transient shifts in intracellular Ca2+, volume and density, and reduction in plasma lactate dehydrogenate activity were observed already within the first month of treatment. Durable effects of memantine included (a) decrease in reticulocyte counts, (b) reduction in reticulocyte hemoglobinization, (c) advanced membrane maturation and its stabilization as follows from reduction in the number of NMDAR per cell and reduction in hemolysis, and (iv) rehydration and decrease in K+ leakage from patients' RBC. Memantine therapy resulted in reduction in number of cells with sickle morphology that was sustained at least over 2 months after therapy was stopped indicating an improvement in RBC longevity.
Collapse
Affiliation(s)
- Asya Mahkro
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
- Zurich Center for Integrative Human Physiology (ZIHP)University of ZurichZurichSwitzerland
| | - Inga Hegemann
- Department of Medical HematologyUniversity Hospital ZurichZürichSwitzerland
| | - Elena Seiler
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
- Zurich Center for Integrative Human Physiology (ZIHP)University of ZurichZurichSwitzerland
| | - Greta Simionato
- Theoretical Medicine and BiosciencesSaarland UniversityHomburgGermany
- Experimental PhysicsSaarland UniversitySaarbrückenGermany
| | - Viviana Claveria
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM UMR 1054University of MontpellierMontpellierFrance
| | - Nikolay Bogdanov
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
- Zurich Center for Integrative Human Physiology (ZIHP)University of ZurichZurichSwitzerland
| | - Clelia Sasselli
- Department of Medical HematologyUniversity Hospital ZurichZürichSwitzerland
| | - Paul Torgerson
- Section of EpidemiologyVetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Lars Kaestner
- Theoretical Medicine and BiosciencesSaarland UniversityHomburgGermany
- Experimental PhysicsSaarland UniversitySaarbrückenGermany
| | - Markus G. Manz
- Department of Medical HematologyUniversity Hospital ZurichZürichSwitzerland
| | - Jeroen S. Goede
- Department of Medical HematologyUniversity Hospital ZurichZürichSwitzerland
- Division of Medical Oncology and HematologyCantonal Hospital WinterthurWinterthurSwitzerland
| | - Max Gassmann
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
- Zurich Center for Integrative Human Physiology (ZIHP)University of ZurichZurichSwitzerland
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
- Zurich Center for Integrative Human Physiology (ZIHP)University of ZurichZurichSwitzerland
| |
Collapse
|
29
|
Kaestner L, Bianchi P. Trends in the Development of Diagnostic Tools for Red Blood Cell-Related Diseases and Anemias. Front Physiol 2020; 11:387. [PMID: 32528298 PMCID: PMC7264400 DOI: 10.3389/fphys.2020.00387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/01/2020] [Indexed: 01/19/2023] Open
Abstract
In the recent years, the progress in genetic analysis and next-generation sequencing technologies have opened up exciting landscapes for diagnosis and study of molecular mechanisms, allowing the determination of a particular mutation for individual patients suffering from hereditary red blood cell-related diseases or anemia. However, the huge amount of data obtained makes the interpretation of the results and the identification of the pathogenetic variant responsible for the diseases sometime difficult. Moreover, there is increasing evidence that the same mutation can result in varying cellular properties and different symptoms of the disease. Even for the same patient, the phenotypic expression of the disorder can change over time. Therefore, on top of genetic analysis, there is a further request for functional tests that allow to confirm the pathogenicity of a molecular variant, possibly to predict prognosis and complications (e.g., vaso-occlusive pain crises or other thrombotic events) and, in the best case, to enable personalized theranostics (drug and/or dose) according to the disease state and progression. The mini-review will reflect recent and future directions in the development of diagnostic tools for red blood cell-related diseases and anemias. This includes point of care devices, new incarnations of well-known principles addressing physico-chemical properties, and interactions of red blood cells as well as high-tech screening equipment and mobile laboratories.
Collapse
Affiliation(s)
- Lars Kaestner
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany.,Experimental Physics, Faculty of Natural Science and Technology, Saarland University, Saarbrücken, Germany
| | - Paola Bianchi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, UOC Ematologia, UOS Fisiopatologia delle Anemie, Milan, Italy
| |
Collapse
|
30
|
Bogdanova A, Kaestner L, Simionato G, Wickrema A, Makhro A. Heterogeneity of Red Blood Cells: Causes and Consequences. Front Physiol 2020; 11:392. [PMID: 32457644 PMCID: PMC7221019 DOI: 10.3389/fphys.2020.00392] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022] Open
Abstract
Mean values of hematological parameters are currently used in the clinical laboratory settings to characterize red blood cell properties. Those include red blood cell indices, osmotic fragility test, eosin 5-maleimide (EMA) test, and deformability assessment using ektacytometry to name a few. Diagnosis of hereditary red blood cell disorders is complemented by identification of mutations in distinct genes that are recognized "molecular causes of disease." The power of these measurements is clinically well-established. However, the evidence is growing that the available information is not enough to understand the determinants of severity of diseases and heterogeneity in manifestation of pathologies such as hereditary hemolytic anemias. This review focuses on an alternative approach to assess red blood cell properties based on heterogeneity of red blood cells and characterization of fractions of cells with similar properties such as density, hydration, membrane loss, redox state, Ca2+ levels, and morphology. Methodological approaches to detect variance of red blood cell properties will be presented. Causes of red blood cell heterogeneity include cell age, environmental stress as well as shear and metabolic stress, and multiple other factors. Heterogeneity of red blood cell properties is also promoted by pathological conditions that are not limited to the red blood cells disorders, but inflammatory state, metabolic diseases and cancer. Therapeutic interventions such as splenectomy and transfusion as well as drug administration also impact the variance in red blood cell properties. Based on the overview of the studies in this area, the possible applications of heterogeneity in red blood cell properties as prognostic and diagnostic marker commenting on the power and selectivity of such markers are discussed.
Collapse
Affiliation(s)
- Anna Bogdanova
- Red Blood Cell Research Group, Vetsuisse Faculty, The Zurich Center for Integrative Human Physiology (ZHIP), Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Lars Kaestner
- Experimental Physics, Dynamics of Fluids, Faculty of Natural Sciences and Technology, Saarland University, Saarbrücken, Germany
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
| | - Greta Simionato
- Experimental Physics, Dynamics of Fluids, Faculty of Natural Sciences and Technology, Saarland University, Saarbrücken, Germany
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Amittha Wickrema
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Asya Makhro
- Red Blood Cell Research Group, Vetsuisse Faculty, The Zurich Center for Integrative Human Physiology (ZHIP), Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Sparer A, Serp B, Schwarz L, Windberger U. Storability of porcine blood in forensics: How far should we go? Forensic Sci Int 2020; 311:110268. [PMID: 32283501 DOI: 10.1016/j.forsciint.2020.110268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/21/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022]
Abstract
Previous studies on the storability of porcine blood for bloodstain pattern analysis (BPA) focused on abattoir blood only and did not include measurements of viscoelasticity. Although known to provoke echinocyte formation, EDTA is widely used for BPA issues. We compared ageing samples taken from live pigs with abattoir blood and detected considerable differences in hematocrit (HCT), total protein and shear viscosity that even worsened with time. Upon storage, high shear viscosity continuously increased, resulting in a partial loss of the typical shear thinning property of blood. Furthermore, we explored CPDA-1, the gold standard in preserving red blood cells (RBCs), for storage of forensic samples. We found it to be a superior choice for anticoagulation, as the rise of high shear viscosity was attenuated compared to EDTA. When performing oscillation measurements, we found a sudden change of viscoelasticity of blood after 22 days, providing a cut-off for storage time. To highlight the importance of hematological and hemorheological changes upon cold storage, we performed simple drip pattern experiments. These tests revealed a tendency to smaller stain diameters and higher numbers of satellite spatter. While this contradicts expectations from elevated viscosity values, we associate this trend to microscopic inhomogeneities due to storage. We recommend CPDA-1 for prolonged storage of BPA samples and suggest the use of comprehensive test protocols including viscoelasticity for determination of the maximum shelf life of pig blood.
Collapse
Affiliation(s)
- Andreas Sparer
- Center for Biomedical Research, Medical University of Vienna, Austria
| | - Bianca Serp
- Center for Biomedical Research, Medical University of Vienna, Austria
| | - Lukas Schwarz
- University Clinic for Swine, University of Veterinary Medicine Vienna, Austria
| | - Ursula Windberger
- Center for Biomedical Research, Medical University of Vienna, Austria.
| |
Collapse
|
32
|
Huisjes R, Makhro A, Llaudet-Planas E, Hertz L, Petkova-Kirova P, Verhagen LP, Pignatelli S, Rab MAE, Schiffelers RM, Seiler E, van Solinge WW, Corrons JLLV, Kaestner L, Mañú-Pereira M, Bogdanova A, van Wijk R. Density, heterogeneity and deformability of red cells as markers of clinical severity in hereditary spherocytosis. Haematologica 2020; 105:338-347. [PMID: 31147440 PMCID: PMC7012482 DOI: 10.3324/haematol.2018.188151] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/28/2019] [Indexed: 02/06/2023] Open
Abstract
Hereditary spherocytosis (HS) originates from defective anchoring of the cytoskeletal network to the transmembrane protein complexes of the red blood cell (RBC). Red cells in HS are characterized by membrane instability and reduced deformability and there is marked heterogeneity in disease severity among patients. To unravel this variability in disease severity, we analyzed blood samples from 21 HS patients with defects in ankyrin, band 3, α-spectrin or β-spectrin using red cell indices, eosin-5-maleimide binding, microscopy, the osmotic fragility test, Percoll density gradients, vesiculation and ektacytometry to assess cell membrane stability, cellular density and deformability. Reticulocyte counts, CD71 abundance, band 4.1 a:b ratio, and glycated hemoglobin were used as markers of RBC turnover. We observed that patients with moderate/severe spherocytosis have short-living erythrocytes of low density and abnormally high intercellular heterogeneity. These cells show a prominent decrease in membrane stability and deformability and, as a consequence, are quickly removed from the circulation by the spleen. In contrast, in mild spherocytosis less pronounced reduction in deformability results in prolonged RBC lifespan and, hence, cells are subject to progressive loss of membrane. RBC from patients with mild spherocytosis thus become denser before they are taken up by the spleen. Based on our findings, we conclude that RBC membrane loss, cellular heterogeneity and density are strong markers of clinical severity in spherocytosis.
Collapse
Affiliation(s)
- Rick Huisjes
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Asya Makhro
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Esther Llaudet-Planas
- Red Blood Cell Defects and Hematopoietic Disorders Unit, Josep Carreras Leukemia Research Institute, Badalona, Barcelona, Spain
| | - Laura Hertz
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg/Saar, Germany
| | - Polina Petkova-Kirova
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg/Saar, Germany
| | - Liesbeth P Verhagen
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Silvia Pignatelli
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Minke A E Rab
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Raymond M Schiffelers
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Elena Seiler
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Wouter W van Solinge
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Joan-LLuis Vives Corrons
- Red Blood Cell Defects and Hematopoietic Disorders Unit, Josep Carreras Leukemia Research Institute, Badalona, Barcelona, Spain
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg/Saar, Germany.,Experimental Physics, Saarland University, Saarbruecken, Germany
| | - Maria Mañú-Pereira
- Rare Anemia Research Unit. Vall d'Hebron Research Institution, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Richard van Wijk
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
33
|
Bernhardt I, Nguyen DB, Wesseling MC, Kaestner L. Intracellular Ca 2+ Concentration and Phosphatidylserine Exposure in Healthy Human Erythrocytes in Dependence on in vivo Cell Age. Front Physiol 2020; 10:1629. [PMID: 31998145 PMCID: PMC6965055 DOI: 10.3389/fphys.2019.01629] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/24/2019] [Indexed: 12/24/2022] Open
Abstract
After about 120 days of circulation in the blood stream, erythrocytes are cleared by macrophages in the spleen and the liver. The “eat me” signal of this event is thought to be the translocation of phosphatidylserine from the inner to the outer membrane leaflet due to activation of the scramblase, while the flippase is inactivated. Both processes are triggered by an increased intracellular Ca2+ concentration. Although this is not the only mechanism involved in erythrocyte clearance, in this minireview, we focus on the following questions: Is the intracellular-free Ca2+ concentration and hence phosphatidylserine exposure dependent on the erythrocyte age, i.e. is the Ca2+ concentration, progressively raising during the erythrocyte aging in vivo? Can putative differences in intracellular Ca2+ and exposure of phosphatidylserine to the outer membrane leaflet be measured in age separated cell populations? Literature research revealed less than dozen of such publications with vastly contradicting results for the Ca2+ concentrations but consistency for a lack of change for the phosphatidylserine exposure. Additionally, we performed reanalysis of published data resulting in an ostensive illustration of the situation described above. Relating these results to erythrocyte physiology and biochemistry, we can conclude that the variation of the intracellular free Ca2+ concentration is limited with 10 μM as the upper level of the concentration. Furthermore, we propose the hypothesis that variations in measured Ca2+ concentrations may to a large extent depend on the experimental conditions applied but reflect a putatively changed Ca2+ susceptibility of erythrocytes in dependence of in vivo cell age.
Collapse
Affiliation(s)
- Ingolf Bernhardt
- Laboratory of Biophysics, Faculty of Natural Science and Technology, Saarland University, Saarbrücken, Germany
| | - Duc Bach Nguyen
- Laboratory of Biophysics, Faculty of Natural Science and Technology, Saarland University, Saarbrücken, Germany
| | - Mauro C Wesseling
- Laboratory of Biophysics, Faculty of Natural Science and Technology, Saarland University, Saarbrücken, Germany
| | - Lars Kaestner
- Experimental Physics, Faculty of Natural Science and Technology, Saarland University, Saarbrücken, Germany.,Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
| |
Collapse
|
34
|
Liu Q, Välimäki S, Shaukat A, Shen B, Linko V, Kostiainen MA. Serum Albumin-Peptide Conjugates for Simultaneous Heparin Binding and Detection. ACS OMEGA 2019; 4:21891-21899. [PMID: 31891067 PMCID: PMC6933801 DOI: 10.1021/acsomega.9b02883] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/26/2019] [Indexed: 05/14/2023]
Abstract
Heparin is a polysaccharide-based anticoagulant agent, which is widely used in surgery and blood transfusion. However, overdosage of heparin may cause severe side effects such as bleeding and low blood platelet count. Currently, there is only one clinically licensed antidote for heparin: protamine sulfate, which is known to provoke adverse effects. In this work, we present a stable and biocompatible alternative for protamine sulfate that is based on serum albumin, which is conjugated with a variable number of heparin-binding peptides. The heparin-binding efficiency of the conjugates was evaluated with methylene blue displacement assay, dynamic light scattering, and anti-Xa assay. We found that multivalency of the peptides played a key role in the observed heparin-binding affinity and complex formation. The conjugates had low cytotoxicity and low hemolytic activity, indicating excellent biocompatibility. Furthermore, a sensitive DNA competition assay for heparin detection was developed. The detection limit of heparin was 0.1 IU/mL, which is well below its therapeutic range (0.2-0.4 IU/mL). Such biomolecule-based systems are urgently needed for next-generation biocompatible materials capable of simultaneous heparin binding and sensing.
Collapse
Affiliation(s)
- Qing Liu
- Biohybrid
Materials, Department of Bioproducts and Biosystems and HYBER Center of Excellence, Department
of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Salla Välimäki
- Biohybrid
Materials, Department of Bioproducts and Biosystems and HYBER Center of Excellence, Department
of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Ahmed Shaukat
- Biohybrid
Materials, Department of Bioproducts and Biosystems and HYBER Center of Excellence, Department
of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Boxuan Shen
- Biohybrid
Materials, Department of Bioproducts and Biosystems and HYBER Center of Excellence, Department
of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Veikko Linko
- Biohybrid
Materials, Department of Bioproducts and Biosystems and HYBER Center of Excellence, Department
of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Mauri A. Kostiainen
- Biohybrid
Materials, Department of Bioproducts and Biosystems and HYBER Center of Excellence, Department
of Applied Physics, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
35
|
Fauth M, Hegewald AB, Schmitz L, Krone DJ, Saul MJ. Validation of extracellular miRNA quantification in blood samples using RT-qPCR. FASEB Bioadv 2019; 1:481-492. [PMID: 32123845 PMCID: PMC6996320 DOI: 10.1096/fba.2019-00018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 02/27/2019] [Accepted: 06/04/2019] [Indexed: 12/25/2022] Open
Abstract
Extracellular microRNAs (miRs) have been proposed as important blood-based biomarkers for several diseases. Contrary to proteins and other RNA classes, miRs are stable and easily detectable in body fluids. In this respect, miRs represent a perfect candidate for minimal invasive biomarkers which can hopefully become a complement for invasive histological examinations of tumor tissue. Despite the high number of miR biomarker studies, the specificity and reproducibility of these studies is missing. Therefore, the standardization of pre-analytical and analytical methods is urgently needed. Here, we validated miR analysis for RNA isolation and miR quantification by quantitative polymerase chain reaction (RT-qPCR) based on good laboratory practice (GLP). Validation was carried out exemplarily on four miRs, which had already been described as potential biomarkers in previous studies. As basis for RNA analysis using RT-qPCR, the Minimum Information for Publication of Quantitative Real-Time PCR Experiments were applied and adapted on the analysis of circulating miRs from human plasma. In our study, we identified and solved several pitfalls from handling to normalization strategy in the analysis of extracellular miRs that lead to inconsistent and non-repeatable data. Principles of GLP set a framework of experimental design, performance and monitoring to ensure high quality and reliable data. Within this study, we appointed first acceptance criteria for circulating miR quantification during validation which set standards for future miR quantification in blood samples.
Collapse
Affiliation(s)
- Maria Fauth
- Department of BiologyTechnische Universität DarmstadtDarmstadtGermany
- Prolytic GmbHFrankfurt/MGermany
| | - Anett B. Hegewald
- Department of BiologyTechnische Universität DarmstadtDarmstadtGermany
| | | | | | - Meike J. Saul
- Department of BiologyTechnische Universität DarmstadtDarmstadtGermany
- Institute of Pharmaceutical ChemistryGoethe Universität FrankfurtFrankfurt/MGermany
| |
Collapse
|
36
|
Abay A, Simionato G, Chachanidze R, Bogdanova A, Hertz L, Bianchi P, van den Akker E, von Lindern M, Leonetti M, Minetti G, Wagner C, Kaestner L. Glutaraldehyde - A Subtle Tool in the Investigation of Healthy and Pathologic Red Blood Cells. Front Physiol 2019; 10:514. [PMID: 31139090 PMCID: PMC6527840 DOI: 10.3389/fphys.2019.00514] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/11/2019] [Indexed: 01/03/2023] Open
Abstract
Glutaraldehyde is a well-known substance used in biomedical research to fix cells. Since hemolytic anemias are often associated with red blood cell shape changes deviating from the biconcave disk shape, conservation of these shapes for imaging in general and 3D-imaging in particular, like confocal microscopy, scanning electron microscopy or scanning probe microscopy is a common desire. Along with the fixation comes an increase in the stiffness of the cells. In the context of red blood cells this increased rigidity is often used to mimic malaria infected red blood cells because they are also stiffer than healthy red blood cells. However, the use of glutaraldehyde is associated with numerous pitfalls: (i) while the increase in rigidity by an application of increasing concentrations of glutaraldehyde is an analog process, the fixation is a rather digital event (all or none); (ii) addition of glutaraldehyde massively changes osmolality in a concentration dependent manner and hence cell shapes can be distorted; (iii) glutaraldehyde batches differ in their properties especially in the ratio of monomers and polymers; (iv) handling pitfalls, like inducing shear artifacts of red blood cell shapes or cell density changes that needs to be considered, e.g., when working with cells in flow; (v) staining glutaraldehyde treated red blood cells need different approaches compared to living cells, for instance, because glutaraldehyde itself induces a strong fluorescence. Within this paper we provide documentation about the subtle use of glutaraldehyde on healthy and pathologic red blood cells and how to deal with or circumvent pitfalls.
Collapse
Affiliation(s)
- Asena Abay
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, Saarbrücken, Germany.,Landsteiner Laboratory, Sanquin, Amsterdam, Netherlands
| | - Greta Simionato
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, Saarbrücken, Germany.,Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Revaz Chachanidze
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, Saarbrücken, Germany.,Université Grenoble Alpes, CNRS, Grenoble INP, LRP, Grenoble, France
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Laura Hertz
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, Saarbrücken, Germany.,Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Paola Bianchi
- UOC Ematologia, UOS Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | - Marc Leonetti
- Université Grenoble Alpes, CNRS, Grenoble INP, LRP, Grenoble, France
| | - Giampaolo Minetti
- Laboratory of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Christian Wagner
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, Saarbrücken, Germany.,Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg City, Luxembourg
| | - Lars Kaestner
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, Saarbrücken, Germany.,Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| |
Collapse
|
37
|
Petkova-Kirova P, Hertz L, Danielczok J, Huisjes R, Makhro A, Bogdanova A, Mañú-Pereira MDM, Vives Corrons JL, van Wijk R, Kaestner L. Red Blood Cell Membrane Conductance in Hereditary Haemolytic Anaemias. Front Physiol 2019; 10:386. [PMID: 31040790 PMCID: PMC6477063 DOI: 10.3389/fphys.2019.00386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/21/2019] [Indexed: 11/18/2022] Open
Abstract
Congenital haemolytic anaemias are inherited disorders caused by red blood cell membrane and cytoskeletal protein defects, deviant hemoglobin synthesis and metabolic enzyme deficiencies. In many cases, although the causing mutation might be known, the pathophysiology and the connection between the particular mutation and the symptoms of the disease are not completely understood. Thus effective treatment is lagging behind. As in many cases abnormal red blood cell cation content and cation leaks go along with the disease, by direct electrophysiological measurements of the general conductance of red blood cells, we aimed to assess if changes in the membrane conductance could be a possible cause. We recorded whole-cell currents from 29 patients with different types of congenital haemolytic anaemias: 14 with hereditary spherocytosis due to mutations in α-spectrin, β-spectrin, ankyrin and band 3 protein; 6 patients with hereditary xerocytosis due to mutations in Piezo1; 6 patients with enzymatic disorders (3 patients with glucose-6-phosphate dehydrogenase deficiency, 1 patient with pyruvate kinase deficiency, 1 patient with glutamate-cysteine ligase deficiency and 1 patient with glutathione reductase deficiency), 1 patient with β-thalassemia and 2 patients, carriers of several mutations and a complex genotype. While the patients with β-thalassemia and metabolic enzyme deficiencies showed no changes in their membrane conductance, the patients with hereditary spherocytosis and hereditary xerocytosis showed largely variable results depending on the underlying mutation.
Collapse
Affiliation(s)
| | - Laura Hertz
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany.,Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Jens Danielczok
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Rick Huisjes
- Department of Clinical Chemistry & Haematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Asya Makhro
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, Zurich Center for Integrative Human Physiology (ZIHP), University of Zürich, Zurich, Switzerland
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, Zurich Center for Integrative Human Physiology (ZIHP), University of Zürich, Zurich, Switzerland
| | | | - Joan-Lluis Vives Corrons
- Red Blood Cell Defects and Hematopoietic Disorders Unit, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Richard van Wijk
- Department of Clinical Chemistry & Haematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany.,Experimental Physics, Saarland University, Saarbrücken, Germany
| |
Collapse
|
38
|
Jain A, Jain S, Singh N, Meinia SK, Chowdhury N. Storage of blood samples at or above 33℃ leads to rapid appearance of appreciable systemic bias in platelet and mean corpuscular volume related parameters: an important pre-analytical factor in tropical conditions. Trop Doct 2018; 48:334-339. [PMID: 30153769 DOI: 10.1177/0049475518795757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is scant documentation of the stability of common haematological parameters on storage of blood samples under tropical conditions. K2EDTA samples in multiple vials were taken from 20 healthy blood donors, baseline readings taken, and stored at 33°C and 37°C. Readings from the stored vials were taken after 1, 3 and 6 h. The percent change against the baseline readings at each time point for each storage temperature was calculated. Platelet counts showed an unacceptable shift within 1 h at 37°C and 3 h at 33°C; red cell volume related parameters showed an unacceptable shift within 3 h at 37°C and 6 h at 33°C. Haemoglobin, red blood cell count, white blood cell count and mean corpuscular haemoglobin remained stable for 6 h at both temperatures. The unacceptable change for many parameters on storage at ≥33°C demonstrates the importance of ensuring pre-analytical control in regions experiencing such climatic conditions.
Collapse
Affiliation(s)
- Ashish Jain
- 1 Assistant Professor, Department of Transfusion Medicine and Blood Bank, Himalayan Institute of Medical Sciences, Jolly Grant, Dehradun, Uttarakhand, India
| | - Sanchit Jain
- 2 Junior Resident, Department of Forensic Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Neha Singh
- 3 Associate Professor, Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Sushant Kumar Meinia
- 4 Assistant Professor, Department of Transfusion Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Nilotpal Chowdhury
- 5 Additional Professor, Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| |
Collapse
|
39
|
Lee K, Shirshin E, Rovnyagina N, Yaya F, Boujja Z, Priezzhev A, Wagner C. Dextran adsorption onto red blood cells revisited: single cell quantification by laser tweezers combined with microfluidics. BIOMEDICAL OPTICS EXPRESS 2018; 9:2755-2764. [PMID: 30258688 PMCID: PMC6154185 DOI: 10.1364/boe.9.002755] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/28/2018] [Accepted: 05/06/2018] [Indexed: 05/31/2023]
Abstract
The aggregation of red blood cells (RBC) is of importance for hemorheology, while its mechanism remains debatable. The key question is the role of the adsorption of macromolecules on RBC membranes, which may act as "bridges" between cells. It is especially important that dextran is considered to induce "bridge"-less aggregation due to the depletion forces. We revisit the dextran-RBC interaction on the single cell level using the laser tweezers combined with microfluidic technology and fluorescence microscopy. An immediate sorption of ~104 molecules of 70 kDa dextran per cell was observed. During the incubation of RBC with dextran, a gradual tenfold increase of adsorption was found, accompanied by a moderate change in the RBC deformability. The obtained data demonstrate that dextran sorption and incubation-induced changes of the membrane properties must be considered when studying RBC aggregation in vitro.
Collapse
Affiliation(s)
- Kisung Lee
- Experimental Physics, Saarland University, Saarbrücken, D-66041, Germany
- Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Curremtly with Ulsan National Institute of Science and Technology, Institute for Basic Science, Center for Soft and Living Matter, Ulsan, 44919, South Korea
- Co-first authors with equal contribution
| | - Evgeny Shirshin
- Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Co-first authors with equal contribution
| | - Nataliya Rovnyagina
- Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Francois Yaya
- Experimental Physics, Saarland University, Saarbrücken, D-66041, Germany
- Laboratoire Interdisciplinaire de Physique, UMR 5588 CNRS and University Grenoble–Alpes, Saint Martin d’Hères Cedex, B.P. 87, 38402, France
| | - Zakaria Boujja
- Experimental Physics, Saarland University, Saarbrücken, D-66041, Germany
- LaMCScI, University Mohamed V, Faculty of Sciences, Rabat, Morocco
| | - Alexander Priezzhev
- Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
- International Laser Center, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Christian Wagner
- Experimental Physics, Saarland University, Saarbrücken, D-66041, Germany
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511, Luxembourg
| |
Collapse
|
40
|
Schneider TM, Nagel AM, Zorn M, Wetscherek A, Bendszus M, Ladd ME, Straub S. Quantitative susceptibility mapping and 23 Na imaging-based in vitro characterization of blood clotting kinetics. NMR IN BIOMEDICINE 2018; 31:e3926. [PMID: 29694688 DOI: 10.1002/nbm.3926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/16/2018] [Accepted: 03/04/2018] [Indexed: 06/08/2023]
Abstract
Blood clotting is a fundamental biochemical process in post-hemorrhagic hemostasis. Although the varying appearance of coagulating blood in T1 - and T2 -weighted images is widely used to qualitatively determine bleeding age, the technique permits only a rough discrimination of coagulation stages, and it remains difficult to distinguish acute and chronic hemorrhagic stages because of low T1 - and T2 -weighted signal intensities in both instances. To investigate new biomedical parameters for magnetic resonance imaging-based characterization of blood clotting kinetics, sodium imaging and quantitative susceptibility mapping (QSM) were compared with conventional T1 - and T2 -weighted imaging, as well as with biochemical hemolysis parameters. For this purpose, a blood-filled spherical agar phantom was investigated daily for 14 days, as well as after 24 days at 7 T after initial preparation with fresh blood. T1 - and T2 -weighted sequences, a three-dimensional (3D) gradient echo sequence and a density-adapted 3D radial projection reconstruction pulse sequence for 23 Na imaging were applied. For hemolysis estimations, free hemoglobin and free potassium concentrations were measured photometrically and with the direct ion-selective electrode method, respectively, in separate heparinized whole-blood samples along the same timeline. Initial mean susceptibility was low (0.154 ± 0.020 ppm) and increased steadily during the course of coagulation to reach up to 0.570 ± 0.165 ppm. The highest total sodium (NaT) values (1.02 ± 0.06 arbitrary units) in the clot were observed initially, dropped to 0.69 ± 0.13 arbitrary units after one day and increased again to initial values. Compartmentalized sodium (NaS) showed a similar signal evolution, and the NaS/NaT ratio steadily increased over clot evolution. QSM depicts clot evolution in vitro as a process associated with hemoglobin accumulation and transformation, and enables the differentiation of the acute and chronic coagulation stages. Sodium imaging visualizes clotting independent of susceptibility and seems to correspond to clot integrity. A combination of QSM and sodium imaging may enhance the characterization of hemorrhage.
Collapse
Affiliation(s)
- Till M Schneider
- Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Markus Zorn
- Department of Medical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Andreas Wetscherek
- Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Sina Straub
- Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
41
|
Huisjes R, Bogdanova A, van Solinge WW, Schiffelers RM, Kaestner L, van Wijk R. Squeezing for Life - Properties of Red Blood Cell Deformability. Front Physiol 2018; 9:656. [PMID: 29910743 PMCID: PMC5992676 DOI: 10.3389/fphys.2018.00656] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/14/2018] [Indexed: 12/25/2022] Open
Abstract
Deformability is an essential feature of blood cells (RBCs) that enables them to travel through even the smallest capillaries of the human body. Deformability is a function of (i) structural elements of cytoskeletal proteins, (ii) processes controlling intracellular ion and water handling and (iii) membrane surface-to-volume ratio. All these factors may be altered in various forms of hereditary hemolytic anemia, such as sickle cell disease, thalassemia, hereditary spherocytosis and hereditary xerocytosis. Although mutations are known as the primary causes of these congenital anemias, little is known about the resulting secondary processes that affect RBC deformability (such as secondary changes in RBC hydration, membrane protein phosphorylation, and RBC vesiculation). These secondary processes could, however, play an important role in the premature removal of the aberrant RBCs by the spleen. Altered RBC deformability could contribute to disease pathophysiology in various disorders of the RBC. Here we review the current knowledge on RBC deformability in different forms of hereditary hemolytic anemia and describe secondary mechanisms involved in RBC deformability.
Collapse
Affiliation(s)
- Rick Huisjes
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zürich, Switzerland
| | - Wouter W van Solinge
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Raymond M Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Saarbrücken, Germany.,Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Richard van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
42
|
Danielczok JG, Terriac E, Hertz L, Petkova-Kirova P, Lautenschläger F, Laschke MW, Kaestner L. Red Blood Cell Passage of Small Capillaries Is Associated with Transient Ca 2+-mediated Adaptations. Front Physiol 2017; 8:979. [PMID: 29259557 PMCID: PMC5723316 DOI: 10.3389/fphys.2017.00979] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022] Open
Abstract
When red blood cells (RBCs) pass constrictions or small capillaries they need to pass apertures falling well below their own cross section size. We used different means of mechanical stimulations (hypoosmotic swelling, local mechanical stimulation, passing through microfluidic constrictions) to observe cellular responses of human RBCs in terms of intracellular Ca2+-signaling by confocal microscopy of Fluo-4 loaded RBCs. We were able to confirm our in vitro results in a mouse dorsal skinfold chamber model showing a transiently increased intracellular Ca2+ when RBCs were passing through small capillaries in vivo. Furthermore, we performed the above-mentioned in vitro experiments as well as measurements of RBCs filterability under various pharmacological manipulations (GsMTx-4, TRAM-34) to explore the molecular mechanism of the Ca2+-signaling. Based on these experiments we conclude that mechanical stimulation of RBCs activates mechano-sensitive channels most likely Piezo1. This channel activity allows Ca2+ to enter the cell, leading to a transient activation of the Gardos-channel associated with K+, Cl-, and water loss, i.e., with a transient volume adaptation facilitating the passage of the RBCs through the constriction.
Collapse
Affiliation(s)
- Jens G Danielczok
- Institute for Molecular Cell Biology, Saarland University, Homburg, Germany
| | - Emmanuel Terriac
- Experimental Physics, Saarland University, Saarbrücken, Germany.,Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Laura Hertz
- Institute for Molecular Cell Biology, Saarland University, Homburg, Germany
| | | | - Franziska Lautenschläger
- Experimental Physics, Saarland University, Saarbrücken, Germany.,Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Lars Kaestner
- Experimental Physics, Saarland University, Saarbrücken, Germany.,Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| |
Collapse
|
43
|
Wiegmann L, de Zélicourt DA, Speer O, Muller A, Goede JS, Seifert B, Kurtcuoglu V. Influence of Standard Laboratory Procedures on Measures of Erythrocyte Damage. Front Physiol 2017; 8:731. [PMID: 29042854 PMCID: PMC5632557 DOI: 10.3389/fphys.2017.00731] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/08/2017] [Indexed: 01/24/2023] Open
Abstract
The ability to characterize the mechanical properties of erythrocytes is important in clinical and research contexts: to diagnose and monitor hematologic disorders, as well as to optimize the design of cardiovascular implants and blood circulating devices with respect to blood damage. However, investigation of red blood cell (RBC) properties generally involves preparatory and processing steps. Even though these impose mechanical stresses on cells, little is known about their impact on the final measurement results. In this study, we investigated the effect of centrifuging, vortexing, pipetting, and high pressures on several markers of mechanical blood damage and RBC membrane properties. Using human venous blood, we analyzed erythrocyte damage by measuring free hemoglobin, phosphatidylserine exposure by flow cytometry, RBC deformability by ektacytometry and the parameters of a complete blood count. We observed increased levels of free hemoglobin for all tested procedures. The release of hemoglobin into plasma depended significantly on the level of stress. Elevated pressures and centrifuging also altered mean cell volume (MCV) and mean corpuscular hemoglobin (MCH), suggesting changes in erythrocyte population, and membrane properties. Our results show that the effects of blood handling can significantly influence erythrocyte damage metrics. Careful quantification of this influence as well as other unwanted secondary effects should thus be included in experimental protocols and accounted for in clinical laboratories.
Collapse
Affiliation(s)
- Lena Wiegmann
- The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Diane A de Zélicourt
- The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research, Kidney.CH, Zurich, Switzerland
| | - Oliver Speer
- Division of Haematology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Alissa Muller
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Jeroen S Goede
- Department of Haematology, Kantonsspital Winterthur, Winterthur, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Burkhardt Seifert
- Department of Biostatistics, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Vartan Kurtcuoglu
- The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research, Kidney.CH, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
44
|
Hertz L, Huisjes R, Llaudet-Planas E, Petkova-Kirova P, Makhro A, Danielczok JG, Egee S, Del Mar Mañú-Pereira M, van Wijk R, Vives Corrons JL, Bogdanova A, Kaestner L. Is Increased Intracellular Calcium in Red Blood Cells a Common Component in the Molecular Mechanism Causing Anemia? Front Physiol 2017; 8:673. [PMID: 28932200 PMCID: PMC5592231 DOI: 10.3389/fphys.2017.00673] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/23/2017] [Indexed: 12/31/2022] Open
Abstract
For many hereditary disorders, although the underlying genetic mutation may be known, the molecular mechanism leading to hemolytic anemia is still unclear and needs further investigation. Previous studies revealed an increased intracellular Ca2+ in red blood cells (RBCs) from patients with sickle cell disease, thalassemia, or Gardos channelopathy. Therefore we analyzed RBCs' Ca2+ content from 35 patients with different types of anemia (16 patients with hereditary spherocytosis, 11 patients with hereditary xerocytosis, 5 patients with enzymopathies, and 3 patients with hemolytic anemia of unknown cause). Intracellular Ca2+ in RBCs was measured by fluorescence microscopy using the fluorescent Ca2+ indicator Fluo-4 and subsequent single cell analysis. We found that in RBCs from patients with hereditary spherocytosis and hereditary xerocytosis the intracellular Ca2+ levels were significantly increased compared to healthy control samples. For enzymopathies and hemolytic anemia of unknown cause the intracellular Ca2+ levels in RBCs were not significantly different. These results lead us to the hypothesis that increased Ca2+ levels in RBCs are a shared component in the mechanism causing an accelerated clearance of RBCs from the blood stream in channelopathies such as hereditary xerocytosis and in diseases involving defects of cytoskeletal components like hereditary spherocytosis. Future drug developments should benefit from targeting Ca2+ entry mediating molecular players leading to better therapies for patients.
Collapse
Affiliation(s)
- Laura Hertz
- Research Centre for Molecular Imaging and Screening, Medical School, Saarland UniversityHomburg, Germany
| | - Rick Huisjes
- Department of Clinical Chemistry and Haematology, University Medical Center UtrechtUtrecht, Netherlands
| | - Esther Llaudet-Planas
- Red Blood Cell Defects and Hematopoietic Disorders Unit, Josep Carreras Leukaemia Research InstituteBarcelona, Spain
| | - Polina Petkova-Kirova
- Research Centre for Molecular Imaging and Screening, Medical School, Saarland UniversityHomburg, Germany
| | - Asya Makhro
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), University of ZurichZurich, Switzerland
| | - Jens G Danielczok
- Research Centre for Molecular Imaging and Screening, Medical School, Saarland UniversityHomburg, Germany
| | - Stephane Egee
- Centre National de la Recherche Scientifique, UMR 8227 Comparative Erythrocyte's PhysiologyRoscoff, France.,Université Pierre et Marie Curie, Sorbonne UniversitésRoscoff, France.,Laboratoire d'Excellence GR-ExRoscoff, France
| | - Maria Del Mar Mañú-Pereira
- Red Blood Cell Defects and Hematopoietic Disorders Unit, Josep Carreras Leukaemia Research InstituteBarcelona, Spain
| | - Richard van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center UtrechtUtrecht, Netherlands
| | - Joan-Lluis Vives Corrons
- Red Blood Cell Defects and Hematopoietic Disorders Unit, Josep Carreras Leukaemia Research InstituteBarcelona, Spain
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), University of ZurichZurich, Switzerland
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland UniversityHomburg, Germany.,Experimental Physics, Saarland UniversitySaarbruecken, Germany
| |
Collapse
|
45
|
Fermo E, Bogdanova A, Petkova-Kirova P, Zaninoni A, Marcello AP, Makhro A, Hänggi P, Hertz L, Danielczok J, Vercellati C, Mirra N, Zanella A, Cortelezzi A, Barcellini W, Kaestner L, Bianchi P. 'Gardos Channelopathy': a variant of hereditary Stomatocytosis with complex molecular regulation. Sci Rep 2017; 7:1744. [PMID: 28496185 PMCID: PMC5431847 DOI: 10.1038/s41598-017-01591-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/31/2017] [Indexed: 11/17/2022] Open
Abstract
The Gardos channel is a Ca2+ sensitive, K+ selective channel present in several tissues including RBCs, where it is involved in cell volume regulation. Recently, mutations at two different aminoacid residues in KCNN4 have been reported in patients with hereditary xerocytosis. We identified by whole exome sequencing a new family with two members affected by chronic hemolytic anemia carrying mutation R352H in the KCNN4 gene. No additional mutations in genes encoding for RBCs cytoskeletal, membrane or channel proteins were detected. We performed functional studies on patients’ RBCs to evaluate the effects of R352H mutation on the cellular properties and eventually on the clinical phenotype. Gardos channel hyperactivation was demonstrated in circulating erythrocytes and erythroblasts differentiated ex-vivo from peripheral CD34+ cells. Pathological alterations in the function of multiple ion transport systems were observed, suggesting the presence of compensatory effects ultimately preventing cellular dehydration in patient’s RBCs; moreover, flow cytometry and confocal fluorescence live-cell imaging showed Ca2+ overload in the RBCs of both patients and hypersensitivity of Ca2+ uptake by RBCs to swelling. Altogether these findings suggest that the ‘Gardos channelopathy’ is a complex pathology, to some extent different from the common hereditary xerocytosis.
Collapse
Affiliation(s)
- Elisa Fermo
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Anna Bogdanova
- Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Polina Petkova-Kirova
- Research Center for Molecular Imaging and Screening, Medical School, Institute for Molecular Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Anna Zaninoni
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Anna Paola Marcello
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Asya Makhro
- Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Pascal Hänggi
- Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Laura Hertz
- Research Center for Molecular Imaging and Screening, Medical School, Institute for Molecular Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Jens Danielczok
- Research Center for Molecular Imaging and Screening, Medical School, Institute for Molecular Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Cristina Vercellati
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Nadia Mirra
- UOC Pronto soccorso, Pediatria ambulatoriale e DH/MAC. Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Alberto Zanella
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Agostino Cortelezzi
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.,Universita' degli Studi di Milano, Milano, Italy
| | - Wilma Barcellini
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Lars Kaestner
- Experimental Physics, Saarland University, Saarbruecken, Germany.,Theoretical Medicine and Biosciences, Saarland University, Homburg/Saar, Germany
| | - Paola Bianchi
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.
| |
Collapse
|
46
|
Gérard D, Fattet AJ, Brakta C, Phulpin A, Steschenko D, Lesesve JF, Perrin J. Evaluation of OSMOCELLS, a new semi-automatic device for osmotic fragility assessment. Int J Lab Hematol 2017; 39:521-527. [PMID: 28480998 DOI: 10.1111/ijlh.12683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/13/2017] [Indexed: 11/27/2022]
Abstract
INTRODUCTION The osmotic fragility (OF) test was a central test for the diagnosis of hereditary red blood cell (RBC) disorders (mostly hereditary spherocytosis (HS), but thalassaemia as well). Nowadays although the traditional multitubes method has lost a prominent place, many laboratories still perform such a laboured test, despite the lack of standardization. In fact, the evaluation of OF may offer an inexpensive screening for RBC disorders. We present a new semi-automatic device, allowing the continuous recording of OF, by an updated dialysis method. METHODS Repeatability, stability over time, influence of the anticoagulant were evaluated among a population of healthy blood donors. The test was then performed among patients presenting inherited RBC disorders (HS or haemoglobinopathies) where OF is typically altered. RESULTS Repeatability was excellent; the parameters were greatly influenced by the nature of the anticoagulant and interestingly appeared stable for 48 h. Patients with RBC disorders displayed the expected profile in regard with their disease: patients with HS all presented an increased OF while patients with haemoglobinopathy displayed resistant profiles. CONCLUSION The device offers a substantial improvement in terms of standardization and consistency of the results and may offer a considerable gain for general laboratories.
Collapse
Affiliation(s)
- D Gérard
- CHRU Nancy, Service d'hématologie biologique Vandoeuvre les Nancy, Nancy, France
| | - A-J Fattet
- CHRU Nancy, Service d'hématologie biologique Vandoeuvre les Nancy, Nancy, France.,INSERM U 1116, Vandoeuvre les Nancy, Nancy, France
| | - C Brakta
- CHRU Nancy, Service d'hématologie biologique Vandoeuvre les Nancy, Nancy, France.,INSERM U 1116, Vandoeuvre les Nancy, Nancy, France
| | - A Phulpin
- CHRU Nancy, Service d'oncohématologie pédiatrique, Vandoeuvre les Nancy, Nancy, France
| | - D Steschenko
- CHRU Nancy, Service d'oncohématologie pédiatrique, Vandoeuvre les Nancy, Nancy, France
| | - J-F Lesesve
- CHRU Nancy, Service d'hématologie biologique Vandoeuvre les Nancy, Nancy, France
| | - J Perrin
- CHRU Nancy, Service d'hématologie biologique Vandoeuvre les Nancy, Nancy, France.,INSERM U 1116, Vandoeuvre les Nancy, Nancy, France
| |
Collapse
|
47
|
Temperature-dependent haemolytic propensity of CPDA-1 stored red blood cells vs whole blood - Red cell fragility as donor signature on blood units. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2017; 15:447-455. [PMID: 28488959 DOI: 10.2450/2017.0332-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/16/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND To preserve cellular integrity and avoid bacterial growth, storage and transfer of blood and blood products follow strict guidelines in terms of temperature control. We evaluated the impact of ineligible warming of whole blood donations on the quality of blood components. MATERIALS AND METHODS One-hundred and twenty units of whole blood (WB) from eligible blood donors were collected in CPDA-1 and stored at 4±2 °C. During shipment to the blood processing centre, a gradual warming up to 17 °C was recorded within a period of less than eight hours. The warmed units were processed to packed red blood cells (PRBCs) or stored as WB units at 4±2 °C. In-bag haemolysis, osmotic fragility (mean corpuscular fragility, MCF) and bacterial growth were assessed in blood and blood components throughout the storage period. RESULTS Normal basal and early storage levels of haemolysis were recorded in both PRBC and WB units. Thereafter, PRBCs exhibited higher average in-bag haemolysis and MCF index compared to the WB units throughout the storage. Moreover, 14.3 and 52.4% of the PRBC units exceeded the upper permissible limit of 0.8% haemolysis at the middle (1.220±0.269%) or late (1.754±0.866%) storage period, respectively. MCF index was similar in all PRBCs at the middle of storage but significantly lower in the non-haemolysed compared to the haemolysed units of PRBCs on the last days. The fragility of stored RBCs was proportional to the donor-related values of day 2 samples (r=0.861, p<10-32). In the qualified PRBCs, MCF was correlated with haemolysis at every time point of the storage period (r=0.332, p<0.050). Bacterial growth was detected by blood culture in two units of PRBCs. DISCUSSION Transient, gradient warming of whole blood from 4 to 17 °C led to increased incidence of in-bag haemolysis in PRBC but not in WB units. Haemolysis is a multi-parametric phenotype of stored blood, and MCF is a donor-related and highly dynamic measure that can, in part, predict the storage lesion.
Collapse
|
48
|
Thevis M, Kuuranne T, Geyer H, Schänzer W. Annual banned-substance review: analytical approaches in human sports drug testing. Drug Test Anal 2017; 9:6-29. [DOI: 10.1002/dta.2139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 11/21/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Am Sportpark Müngersdorf 6 50933 Cologne Germany
- European Monitoring Center for Emerging Doping Agents; Cologne Germany
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses; University Center of Legal Medicine; Genève and Lausanne, Centre Hospitalier Universitaire Vaudois and University of Lausanne Epalinges Switzerland
| | - Hans Geyer
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Am Sportpark Müngersdorf 6 50933 Cologne Germany
- European Monitoring Center for Emerging Doping Agents; Cologne Germany
| | - Wilhelm Schänzer
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Am Sportpark Müngersdorf 6 50933 Cologne Germany
| |
Collapse
|
49
|
Makhro A, Kaestner L, Bogdanova A. NMDA Receptor Activity in Circulating Red Blood Cells: Methods of Detection. Methods Mol Biol 2017; 1677:265-282. [PMID: 28986879 DOI: 10.1007/978-1-4939-7321-7_15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Abundance and activity of N-methyl-D-aspartate (NMDA) in circulating red blood cells contributes to the maintenance of intracellular Ca2+ in these cells and, by doing that, controls red cell volume, membrane stability, and O2 carrying capacity. Detection of the NMDA receptor activity in red blood cells is challenging as the number of its copies is low and shows substantial cell-to-cell heterogeneity. Receptor abundance is reliably assessed using the radiolabeled antagonist ([3H]MK-801) binding technique. Uptake of Ca2+ following the NMDA receptor activation is detected in cells loaded with Ca2+-sensitive fluorescent dye Fluo-4 AM. Both microfluorescence live-cell imaging and flow cytometry may be used for fluorescence intensity detection. Automated patch clamp is currently used for recording of electric currents triggered by the stimulation of the NMDA receptor. These currents are mediated by the Ca2+-sensitive K+ (Gardos) channels that open upon Ca2+ uptake via the active NMDA receptor. Furthermore, K+ flux through the Gardos channels induced by the NMDA receptor stimulation in red blood cells may be detected using unidirectional K+(86Rb+) influx.
Collapse
Affiliation(s)
- Asya Makhro
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
- Dynamics of Fluids, Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland.
- The Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.
| |
Collapse
|