1
|
Oskyrko O, Mi C, Meiri S, Du W. ReptTraits: a comprehensive dataset of ecological traits in reptiles. Sci Data 2024; 11:243. [PMID: 38413613 PMCID: PMC10899194 DOI: 10.1038/s41597-024-03079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/14/2024] [Indexed: 02/29/2024] Open
Abstract
Trait datasets are increasingly being used in studies investigating eco-evolutionary theory and global conservation initiatives. Reptiles are emerging as a key group for studying these questions because their traits are crucial for understanding the ability of animals to cope with environmental changes and their contributions to ecosystem processes. We collected data from earlier databases, and the primary literature to create an up-to-date dataset of reptilian traits, encompassing 40 traits from 12060 species of reptiles (Archelosauria: Crocodylia and Testudines, Rhynchocephalia, and Squamata: Amphisbaenia, Sauria, and Serpentes). The data were gathered from 1288 sources published between 1820 and 2023. The dataset includes morphological, physiological, behavioral, and life history traits, as well as information on the availability of genetic data, IUCN Red List assessments, and population trends.
Collapse
Affiliation(s)
- Oleksandra Oskyrko
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunrong Mi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shai Meiri
- School of Zoology & the Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| | - Weiguo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Ben-Yosef M, Altman Y, Nemni-Lavi E, Papadopoulos NT, Nestel D. Effect of thermal acclimation on the tolerance of the peach fruit fly (Bactrocera zonata: Tephritidae) to heat and cold stress. J Therm Biol 2023; 117:103677. [PMID: 37643512 DOI: 10.1016/j.jtherbio.2023.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
Understanding the thermal biology of insects is of increasing importance for predicting their geographic distribution, particularly in light of current and future global temperature increases. Within the limits set by genetic makeup, thermal tolerance is affected by the physiological conditioning of individuals (e.g., through acclimation). Considering this phenotypic plasticity may add to accurately estimating changes to the distribution of insects under a changing climate. We studied the effect of thermal acclimation on cold and heat tolerance of the peach fruit fly (Bactrocera zonata) - an invasive, polyphagous pest that is currently expanding through Africa and the Middle East. Females and males were acclimated at 20, 25 and 30 °C for up to 19 days following adult emergence. The critical thermal minimum (CTmin) and maximum (CTmax) were subsequently recorded as well adult survival following acute exposure to chilling (0 or -3 °C for 2 h). Additionally, we determined the survival of pupae subjected for 2 h to temperatures ranging from -12 °C to 5 °C. We demonstrate that acclimation at 30 °C resulted in significantly higher CTmax and CTmin values (higher heat resistance and lower cold resistance, respectively). Additionally, adult recovery following exposure to -3 °C was significantly reduced following acclimation at 30 °C, and this effect was significantly higher for females. Pupal mortality increased with the decrease in temperature, reaching LT50 and LT95 values following exposure to -0.32 °C and -6.88 °C, respectively. Finally, we found that the survival of pupae subjected to 0 and 2 °C steadily increased with pupal age. Our findings substantiate a physiological foundation for understanding the current geographic range of B. zonata. We assume that acclimation at 30 °C affected the thermal tolerance of the flies partly through modulating feeding and metabolism. Tolerance to chilling during the pupal stage probably changed according to temperature-sensitive processes occurring during metamorphosis, rendering younger pupae more sensitive to chilling.
Collapse
Affiliation(s)
- Michael Ben-Yosef
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon Letzion, 7528809, Israel.
| | - Yam Altman
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon Letzion, 7528809, Israel
| | - Esther Nemni-Lavi
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon Letzion, 7528809, Israel
| | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - David Nestel
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon Letzion, 7528809, Israel
| |
Collapse
|
3
|
Noer NK, Nielsen KL, Sverrisdóttir E, Kristensen TN, Bahrndorff S. Temporal regulation of temperature tolerances and gene expression in an arctic insect. J Exp Biol 2023; 226:jeb245097. [PMID: 37283090 DOI: 10.1242/jeb.245097] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 05/02/2023] [Indexed: 05/18/2023]
Abstract
Terrestrial arthropods in the Arctic are exposed to highly variable temperatures that frequently reach cold and warm extremes. Yet, ecophysiological studies on arctic insects typically focus on the ability of species to tolerate low temperatures, whereas studies investigating physiological adaptations of species to periodically warm and variable temperatures are few. In this study, we investigated temporal changes in thermal tolerances and the transcriptome in the Greenlandic seed bug Nysius groenlandicus, collected in the field across different times and temperatures in Southern Greenland. We found that plastic changes in heat and cold tolerances occurred rapidly (within hours) and at a daily scale in the field, and that these changes are correlated with diurnal temperature variation. Using RNA sequencing, we provide molecular underpinnings of the rapid adjustments in thermal tolerance across ambient field temperatures and in the laboratory. We show that transcriptional responses are sensitive to daily temperature changes, and days characterized by high temperature variation induced markedly different expression patterns than thermally stable days. Further, genes associated with laboratory-induced heat responses, including expression of heat shock proteins and vitellogenins, were shared across laboratory and field experiments, but induced at time points associated with lower temperatures in the field. Cold stress responses were not manifested at the transcriptomic level.
Collapse
Affiliation(s)
- Natasja Krog Noer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Kåre Lehmann Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Elsa Sverrisdóttir
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | | | - Simon Bahrndorff
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| |
Collapse
|
4
|
Nyamukondiwa C, Machekano H, Chidawanyika F, Mutamiswa R, Ma G, Ma CS. Geographic dispersion of invasive crop pests: the role of basal, plastic climate stress tolerance and other complementary traits in the tropics. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100878. [PMID: 35093582 DOI: 10.1016/j.cois.2022.100878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Global pest invasions have significantly increased in recent years. These invasions together with climate warming directly impact agriculture. Tropical climates feature extreme weather events, including high temperatures and seasonal droughts. Thus, successful invasive pests in tropics have to adapt to these extreme climate features. The intrinsic factors relevant to tropical invasion of insects have been explored in many studies, but the knowledge is rather dispersed in contemporary literature. Here, we reviewed the potential biophysical characters of successful invasive pests' adaption to tropical environments including [1] inherent high basal stress tolerance and advanced life-history performances [2], phenotypic plasticity [3], rapid evolution to environmental stress, polyphagy, diverse reproductive strategies and high fecundity. We summarised how these traits and their interactive effects enhance pest invasions in the tropics. Comprehensive understanding of how these characters facilitate invasion improves models for predicting ecological consequences of climate change on invasive pest species for improved pest management.
Collapse
Affiliation(s)
- Casper Nyamukondiwa
- Botswana International University of Science and Technology, Palapye, Botswana; Department of Zoology and Entomology, Rhodes University, Makhanda 6140, South Africa.
| | - Honest Machekano
- Botswana International University of Science and Technology, Palapye, Botswana; Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - Frank Chidawanyika
- International Centre of Insect Physiology and Ecology (ICIPE), P.O Box 30772-0 010 0, Nairobi, Kenya; Department of Zoology and Entomology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Reyard Mutamiswa
- Department of Zoology and Entomology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa; Tugwi-Mukosi Multidisciplinary Research Institute, Midlands State University, P. Bag 9055, Gweru, Zimbabwe
| | - Gang Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, China
| | - Chu-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, China.
| |
Collapse
|
5
|
Tarusikirwa VL, Mutamiswa R, English S, Chidawanyika F, Nyamukondiwa C. Thermal plasticity in the invasive south American tomato pinworm Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). J Therm Biol 2020; 90:102598. [PMID: 32479393 DOI: 10.1016/j.jtherbio.2020.102598] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
Abstract
South American tomato pinworm, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is a devastating invasive global insect pest of tomato, Solanum lycopersicum (Solanaceae). In nature, pests face multiple overlapping environmental stressors, which may significantly influence survival. To cope with rapidly changing environments, insects often employ a suite of mechanisms at both acute and chronic time-scales, thereby improving fitness at sub-optimal thermal environments. For T. absoluta, physiological responses to transient thermal variability remain under explored. Moreso, environmental effects and physiological responses may differ across insect life stages and this can have implications for population dynamics. Against this background, we investigated short and long term plastic responses to temperature of T. absoluta larvae (4th instar) and adults (24-48 h old) from field populations. We measured traits of temperature tolerance vis critical thermal limits [critical thermal minima (CTmin) and maxima (CTmax)], heat knockdown time (HKDT), chill coma recovery time (CCRT) and supercooling points (SCP). Our results showed that at the larval stage, Rapid Cold Hardening (RCH) significantly improved CTmin and HKDT but impaired SCP and CCRT. Heat hardening in larvae impaired CTmin, CCRT, SCP, CTmax but not HKDT. In adults, both heat and cold hardening generally impaired CTmin and CTmax, but had no effects on HKDT, SCP and CCRT. Low temperature acclimation significantly improved CTmin and HKDT while marginally compromising CCRT and CTmax, whereas high temperature acclimation had no significant effects on any traits except for HKDT in larvae. Similarly, low and high temperature acclimation had no effects on CTmin, SCPs and CTmax, while high temperature acclimation significantly compromised adult CCRT. Our results show that larvae are more thermally plastic than adults and can shift their thermal tolerance in short and long timescales. The larval plasticity reported here could be advantageous in new envirnments, suggesting an asymmetrical ecological role of larva relative to adults in facilitating T. absoluta invasion.
Collapse
Affiliation(s)
- Vimbai L Tarusikirwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, P. Bag 16, Palapye, Botswana
| | - Reyard Mutamiswa
- Department of Zoology and Entomology, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Frank Chidawanyika
- Department of Zoology and Entomology, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, P. Bag 16, Palapye, Botswana.
| |
Collapse
|
6
|
Castellanos NL, Bueno AF, Haddi K, Silveira EC, Rodrigues HS, Hirose E, Smagghe G, Oliveira EE. The Fitness and Economic Benefits of Rearing the Parasitoid Telenomus podisi Under Fluctuating Temperature Regime. NEOTROPICAL ENTOMOLOGY 2019; 48:934-948. [PMID: 31728908 DOI: 10.1007/s13744-019-00717-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/03/2019] [Indexed: 05/26/2023]
Abstract
Successful biological control requires detailed knowledge about the mass rearing conditions of the control agents in order to ensure higher quality of field-released insects. Thus, we investigated whether rearing fluctuating thermal condition would affect the fitness and costs of the parasitoid wasp Telenomus podisi Ashmead (a biocontrol agent used for controlling the Neotropical brown stink bug Euschistus heros (Fabricius)) when compared with parasitoid reared at constant temperature condition, which is commonly used in insect facilities. Parasitoids were reared under either constant (continuous exposure at 25 ± 2°C) or fluctuating temperature conditions (i.e., 30 ± 2°C during day and 20 ± 2°C at night) during four consecutive generations. Our results indicated that tested fluctuating temperature is more suitable for rearing of T. podisi as such temperature condition not only resulted in fitness benefits (e.g., shorter developmental time, longer female longevity, higher fecundity/fertility) but also reduced (approximately 23.5%) the estimated costs for producing the parasitoids. Furthermore, rearing T. podisi under fluctuating temperatures improved tolerance to low constant temperatures (i.e., 20°C) without changing the tolerance to constant high temperatures (30°C) in the fourth generation. Surprisingly, even parasitoids that developed under fluctuating thermal conditions performed better than those reared at constant temperature of 25°C. Collectively, our findings suggest that T. podisi reared under fluctuating thermal condition can tolerate better fluctuating temperatures that normally occur both during long periods of transport and in agricultural ecosystems, which will increase the quality and productivity of mass-reared T. podisi for inundative releases.
Collapse
Affiliation(s)
- N L Castellanos
- Depto de Entomologia, Univ Federal de Viçosa, Viçosa, MG, Brasil
- Dept of Plants and Crops, Faculty of Bioscience Engineering, Ghent Univ, Ghent, Belgium
| | | | - K Haddi
- Depto de Entomologia, Univ Federal de Viçosa, Viçosa, MG, Brasil
- Depto de Entomologia, Univ Federal de Lavras, Lavras, MG, Brazil
| | - E C Silveira
- Depto de Entomologia, Univ Federal de Viçosa, Viçosa, MG, Brasil
| | - H S Rodrigues
- Depto de Entomologia, Univ Federal de Viçosa, Viçosa, MG, Brasil
| | - E Hirose
- EMBRAPA Soja, Londrina, PR, Brasil
| | - G Smagghe
- Dept of Plants and Crops, Faculty of Bioscience Engineering, Ghent Univ, Ghent, Belgium
| | - E E Oliveira
- Depto de Entomologia, Univ Federal de Viçosa, Viçosa, MG, Brasil.
| |
Collapse
|
7
|
Thermal regime effects on the resting metabolic rate of rattlesnakes depend on temperature range. J Therm Biol 2019; 83:199-205. [PMID: 31331520 DOI: 10.1016/j.jtherbio.2019.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 11/20/2022]
Abstract
While ectothermic organisms often experience considerable circadian variation in body temperature under natural conditions, the study of the effects of temperature on metabolic rates are traditionally based on subjecting animals to constant temperature regimes. Whether data resulting from constant-temperature experiments accurately predicts temperature effects under more natural fluctuating temperature regimes remains uncertain. To address such possibility, we measured the resting metabolic rates of the South American rattlesnakes (Crotalus durissus) under constant and circadian fluctuating thermal regimes in a range of temperatures. Metabolic rates measured at constant 20 °C and 25 °C did not differ from the rates measured at fluctuating regimes with corresponding mean temperatures. However, the difference between thermal regimes increased with temperature, with the metabolic rate measured at constant 30 °C being greater than that measured at the fluctuating thermal regime with corresponding mean temperature. Therefore, our results indicate that thermal regime effects on rattlesnakes' metabolism is dependent on temperature range. Broadly, our results highlight the importance of considering multi-factorial attributes of temperature variation in the exam of its effects over functional traits. Such approach provides a more solid support for inferences about temperature effects on the life history, ecology and conservation of ectothermic organisms.
Collapse
|
8
|
Verheyen J, Stoks R. Temperature variation makes an ectotherm more sensitive to global warming unless thermal evolution occurs. J Anim Ecol 2019; 88:624-636. [DOI: 10.1111/1365-2656.12946] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Julie Verheyen
- Evolutionary Stress Ecology and EcotoxicologyUniversity of Leuven Leuven Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and EcotoxicologyUniversity of Leuven Leuven Belgium
| |
Collapse
|
9
|
Cavieres G, Bogdanovich JM, Toledo P, Bozinovic F. Fluctuating thermal environments and time-dependent effects on fruit fly egg-hatching performance. Ecol Evol 2018; 8:7014-7021. [PMID: 30073063 PMCID: PMC6065328 DOI: 10.1002/ece3.4220] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 12/24/2022] Open
Abstract
Organismal performance in a changing environment is dependent on temporal patterns and duration of exposure to thermal variability. We experimentally assessed the time-dependent effects of thermal variability (i.e., patterns of thermal exposure) on the hatching performance of Drosophila melanogaster. Flies were collected in central Chile and maintained for four generations in laboratory conditions. Fourth generation eggs were acclimated to different thermal fluctuation cycles until hatching occurred. Our results show that the frequency of extreme thermal events has a significant effect on hatching success. Eggs exposed to 24 hr cycles of thermal fluctuation had a higher proportion of eggs that hatched than those acclimated to shorter (6 and 12 hr) and longer cycles (48 hr). Furthermore, eggs subjected to frequent thermal fluctuations hatched earlier than those acclimated to less frequent thermal fluctuations. Overall, we show that, egg-to-adult viability is dependent on the pattern of thermal fluctuations experienced during ontogeny; thus, the pattern of thermal fluctuation experienced by flies has a significant and until now unappreciated impact on fitness.
Collapse
Affiliation(s)
- Grisel Cavieres
- Departamento de EcologíaCenter of Applied Ecology and Sustainability (CAPES‐UC) Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
- CCT‐Mendoza CONICETGrupo de Investigaciones de la BiodiversidadCONICETInstituto Argentino de Investigaciones de Zonas ÁridasMendozaArgentina
| | - José M. Bogdanovich
- Departamento de EcologíaCenter of Applied Ecology and Sustainability (CAPES‐UC) Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
- Centro de Investigación e Innovación para el Cambio ClimáticoUniversidad Santo TomásSantiagoChile
| | - Paloma Toledo
- Departamento de EcologíaCenter of Applied Ecology and Sustainability (CAPES‐UC) Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| | - Francisco Bozinovic
- Departamento de EcologíaCenter of Applied Ecology and Sustainability (CAPES‐UC) Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
10
|
Rolandi C, Schilman PE. The costs of living in a thermal fluctuating environment for the tropical haematophagous bug, Rhodnius prolixus. J Therm Biol 2018; 74:92-99. [PMID: 29801656 DOI: 10.1016/j.jtherbio.2018.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/21/2018] [Accepted: 03/18/2018] [Indexed: 11/25/2022]
Abstract
Environmental temperature is an abiotic factor with great influence on biological processes of living beings. Jensen's inequality states that for non-lineal processes, such as most biological phenomena, the effects of thermal fluctuations cannot be predicted from mean constant temperatures. We studied the effect of daily temperature fluctuation (DTF) on Rhodnius prolixus, a model organism in insect physiology, and an important vector of Chagas disease. We measured development time from egg to adult, fecundity, fertility, body mass reduction rate (indirect measurement of nutrient consumption rates) and survival after a single blood meal. Insects were reared at constant temperature (24 °C), or with a DTF (17-32 °C; mean = 24 °C). Taking into account Jensen's inequality as well as the species tropical distribution, we predict that living in a variable thermal environment will have higher costs than inhabiting a stable one. Development time and fertility were not affected by DTF. However, fecundity was lower in females reared at DTF than at constant temperature, and males had higher body mass reduction rate and lower survival in the DTF regime, suggesting higher costs associated to fluctuating thermal environments. At a population and epidemiological level, higher energetic costs would imply an increase in nutrient consumption rate, biting frequency, and, consequently increasing disease transmission from infected insects. On the contrary, lower fecundity could be associated with a decrease in population growth. This knowledge will not only provide basic information to the field of insect ecophysiology, but also could be a useful background to develop population and disease transmission models.
Collapse
Affiliation(s)
- Carmen Rolandi
- Laboratorio de Eco-fisiología de Insectos, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Argentina; Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-UBA, Argentina
| | - Pablo E Schilman
- Laboratorio de Eco-fisiología de Insectos, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Argentina; Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-UBA, Argentina.
| |
Collapse
|