1
|
Stone K, Al Rifai N, Fischesser DM, Dumancic J, Abid S, Willett D, Holland CK, Haworth KJ. Acoustic Droplet Vaporization Efficiency and Oxygen Scavenging in Whole Blood. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:402-413. [PMID: 39567333 DOI: 10.1016/j.ultrasmedbio.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 11/22/2024]
Abstract
OBJECTIVE Acoustic droplet vaporization (ADV) is the liquid-to-gas phase transition of perfluorocarbon (PFC) droplets to microbubbles upon ultrasound insonation. After ADV, gases dissolved in the surrounding fluid diffuse into microbubbles, enabling oxygen scavenging. Characterization of oxygen scavenging and transition efficiency (TE) in whole blood has so far been limited. In this work, oxygen scavenging and perfluorocarbon droplet TE in a saline buffer and whole bovine blood were evaluated using blood-gas analysis and flow cytometry. METHODS Oxygen scavenging from whole blood via ADV was determined using an in vitro flow phantom with droplets comprising a phospholipid shell and either a decafluorobutane (DFB) or a perfluoropentane (PFP) core. Fluorescent droplets were used to determine ADV TE in whole blood via flow cytometry. Finally, a mathematical model predicting oxygen scavenging from whole blood was developed based on the experimental TE values. RESULTS DFB droplets enabled greater oxygen scavenging and higher TE when compared with perfluoropentane droplets in both buffer and whole blood. Increasing the droplet concentration resulted in a greater amount of hemoglobin-bound and dissolved oxygen scavenging from whole blood. ADV of DFB droplets at a concentration of 5 × 10-4 mL/mL yielded a total oxygen reduction of 913 μM. The TE decreased with increasing droplet concentration in both buffer and whole blood. Experimental oxygen scavenging data in whole blood aligned with the predicted values from the mathematical model. CONCLUSION Increased oxygen scavenging and TE were achieved with DFB droplets relative to perfluoropentane droplets.
Collapse
Affiliation(s)
- Kateryna Stone
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Nour Al Rifai
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | | | - John Dumancic
- Department of Physics, University of Cincinnati, Cincinnati, OH, USA
| | - Shameel Abid
- Medical Sciences Program, University of Cincinnati, Cincinnati, OH, USA
| | - David Willett
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Christy K Holland
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Kevin J Haworth
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA; Medical Sciences Program, University of Cincinnati, Cincinnati, OH, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA; Department of Pediatrics Heart Institute, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Ertugrul IA, Puspitarani RADA, Wijntjes B, Vervoorn MT, Ballan EM, van der Kaaij NP, van Goor H, Westenbrink BD, van der Plaats A, Nijhuis F, van Suylen V, Erasmus ME. Ex Situ Left Ventricular Pressure-Volume Loop Analyses for Donor Hearts: Proof of Concept in an Ovine Experimental Model. Transpl Int 2024; 37:12982. [PMID: 39055346 PMCID: PMC11269103 DOI: 10.3389/ti.2024.12982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Ex situ heart perfusion (ESHP) has emerged as an important strategy to preserve donation after brain death (DBD) and donation after circulatory death (DCD) donor hearts. Clinically, both DBD and DCD hearts are successfully preserved using ESHP. Viability assessment is currently based on biochemical values, while a reliable method for graft function assessment in a physiologic working mode is unavailable. As functional assessment during ESHP has demonstrated the highest predictive value of outcome post-transplantation, this is an important area for improvement. In this study, a novel method for ex situ assessment of left ventricular function with pressure-volume loop analyses is evaluated. Ovine hearts were functionally evaluated during normothermic ESHP with the novel pressure-volume loop system. This system provides an afterload and adjustable preload to the left ventricle. By increasing the preload and measuring end-systolic elastance, the system could successfully assess the left ventricular function. End-systolic elastance at 60 min and 120 min was 2.8 ± 1.8 mmHg/mL and 2.7 ± 0.7 mmHg/mL, respectively. In this study we show a novel method for functional graft assessment with ex situ pressure-loop analyses during ESHP. When further validated, this method for pressure-volume assessments, could be used for better graft selection in both DBD and DCD donor hearts.
Collapse
Affiliation(s)
- I. A. Ertugrul
- Department of Cardiothoracic Surgery, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - R. A. D. A. Puspitarani
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | | | - M. T. Vervoorn
- Department of Cardiothoracic Surgery, University Medical Centre Utrecht, Utrecht, Netherlands
| | - E. M. Ballan
- Department of Cardiothoracic Surgery, University Medical Centre Utrecht, Utrecht, Netherlands
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
- Netherlands Heart Institute, Utrecht, Netherlands
| | - N. P. van der Kaaij
- Department of Cardiothoracic Surgery, University Medical Centre Utrecht, Utrecht, Netherlands
| | - H. van Goor
- Department of Medical Biology and Pathology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - B. D. Westenbrink
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | | | | | - V. van Suylen
- Department of Cardiothoracic Surgery, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - M. E. Erasmus
- Department of Cardiothoracic Surgery, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
3
|
Fischesser DM, Bo B, Benton RP, Su H, Jahanpanah N, Haworth KJ. Controlling Reperfusion Injury With Controlled Reperfusion: Historical Perspectives and New Paradigms. J Cardiovasc Pharmacol Ther 2021; 26:504-523. [PMID: 34534022 DOI: 10.1177/10742484211046674] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiac reperfusion injury is a well-established outcome following treatment of acute myocardial infarction and other types of ischemic heart conditions. Numerous cardioprotection protocols and therapies have been pursued with success in pre-clinical models. Unfortunately, there has been lack of successful large-scale clinical translation, perhaps in part due to the multiple pathways that reperfusion can contribute to cell death. The search continues for new cardioprotection protocols based on what has been learned from past results. One class of cardioprotection protocols that remain under active investigation is that of controlled reperfusion. This class consists of those approaches that modify, in a controlled manner, the content of the reperfusate or the mechanical properties of the reperfusate (e.g., pressure and flow). This review article first provides a basic overview of the primary pathways to cell death that have the potential to be addressed by various forms of controlled reperfusion, including no-reflow phenomenon, ion imbalances (particularly calcium overload), and oxidative stress. Descriptions of various controlled reperfusion approaches are described, along with summaries of both mechanistic and outcome-oriented studies at the pre-clinical and clinical phases. This review will constrain itself to approaches that modify endogenously-occurring blood components. These approaches include ischemic postconditioning, gentle reperfusion, controlled hypoxic reperfusion, controlled hyperoxic reperfusion, controlled acidotic reperfusion, and controlled ionic reperfusion. This review concludes with a discussion of the limitations of past approaches and how they point to potential directions of investigation for the future.
Collapse
Affiliation(s)
- Demetria M Fischesser
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Bin Bo
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Rachel P Benton
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Haili Su
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Newsha Jahanpanah
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Kevin J Haworth
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
4
|
Anguela-Calvet L, Moreno-Gonzalez G, Sbraga F, Gonzalez-Costello J, Tsui S, Oliver-Juan E. Heart Donation From Donors After Controlled Circulatory Death. Transplantation 2021; 105:1482-1491. [PMID: 33208694 DOI: 10.1097/tp.0000000000003545] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The gold-standard therapy for advanced-stage heart failure is cardiac transplantation. Since the first heart transplant in 1967, the majority of hearts transplanted came from brain death donors. Nevertheless, in recent years, the option of donation after circulatory death (DCD) is gaining importance to increase donor pool. Currently, heart-transplant programs using controlled donation after circulatory death (cDCD) have been implemented in the United Kingdom, Belgium, Australia, United States of America, and, recently, in Spain. In this article, we performed a concise review of the literature in heart cDCD; we summarize the pathophysiology involved in ischemia and reperfusion injury during this process, the different techniques of heart retrieval in cDCD donors, and the strategies that can be used to minimize the damage during retrieval and until transplantation. Heart transplant using DCD hearts is in continuous improvement and must be implemented in experienced cardiac transplant centers.
Collapse
Affiliation(s)
- Laura Anguela-Calvet
- Intensive Care Department, Hospital Universitari de Bellvitge, Barcelona, Spain
- Transplant Procurement Unit, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Gabriel Moreno-Gonzalez
- Intensive Care Department, Hospital Universitari de Bellvitge, Barcelona, Spain
- Transplant Procurement Unit, Hospital Universitari de Bellvitge, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Fabrizio Sbraga
- Cardiac Surgery Department, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Jose Gonzalez-Costello
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Advance Heart Failure and Cardiac Transplantation Unit, Cardiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Steven Tsui
- Cardiothoracic Surgery Department, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Eva Oliver-Juan
- Intensive Care Department, Hospital Universitari de Bellvitge, Barcelona, Spain
- Transplant Procurement Unit, Hospital Universitari de Bellvitge, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
5
|
Arnold M, Segiser A, Graf S, Méndez-Carmona N, Sanz MN, Wyss RK, Kalbermatter N, Keller N, Carrel T, Longnus S. Pre-ischemic Lactate Levels Affect Post-ischemic Recovery in an Isolated Rat Heart Model of Donation After Circulatory Death (DCD). Front Cardiovasc Med 2021; 8:669205. [PMID: 34195235 PMCID: PMC8236508 DOI: 10.3389/fcvm.2021.669205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/12/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction: Donation after circulatory death (DCD) could substantially improve donor heart availability. In DCD, the heart is not only exposed to a period of warm ischemia, but also to a damaging pre-ischemic phase. We hypothesized that the DCD-relevant pre-ischemic lactate levels negatively affect the post-ischemic functional and mitochondrial recovery in an isolated rat heart model of DCD. Methods: Isolated, working rat hearts underwent 28.5′ of global ischemia and 60′ of reperfusion. Prior to ischemia, hearts were perfused with one of three pre-ischemic lactate levels: no lactate (0 Lac), physiologic lactate (0.5 mM; 0.5 Lac), or DCD-relevant lactate (1 mM; 1 Lac). In a fourth group, an inhibitor of the mitochondrial calcium uniporter was added in reperfusion to 1 Lac hearts (1 Lac + Ru360). Results: During reperfusion, left ventricular work (heart rate-developed pressure product) was significantly greater in 0.5 Lac hearts compared to 0 Lac or 1 Lac. In 1 vs. 0.5 Lac hearts, in parallel with a decreased function, cellular and mitochondrial damage was greater, tissue calcium content tended to increase, while oxidative stress damage tended to decrease. The addition of Ru360 to 1 Lac hearts partially abrogated the negative effects of the DCD-relevant pre-ischemic lactate levels (greater post-ischemic left ventricular work and less cytochrome c release in 1 Lac+Ru360 vs. 1 Lac). Conclusion: DCD-relevant levels of pre-ischemic lactate (1 mM) reduce contractile, cellular, and mitochondrial recovery during reperfusion compared to physiologic lactate levels. Inhibition of mitochondrial calcium uptake during early reperfusion improves the post-ischemic recovery of 1 Lac hearts, indicating calcium overload as a potential therapeutic reperfusion target for DCD hearts.
Collapse
Affiliation(s)
- Maria Arnold
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Adrian Segiser
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Selianne Graf
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Natalia Méndez-Carmona
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Maria N Sanz
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Rahel K Wyss
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Nina Kalbermatter
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Nino Keller
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Thierry Carrel
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Sarah Longnus
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Arnold M, Méndez-Carmona N, Wyss RK, Joachimbauer A, Casoni D, Carrel T, Longnus S. Comparison of Experimental Rat Models in Donation After Circulatory Death (DCD): in-situ vs. ex-situ Ischemia. Front Cardiovasc Med 2021; 7:596883. [PMID: 33521061 PMCID: PMC7838125 DOI: 10.3389/fcvm.2020.596883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Introduction: Donation after circulatory death (DCD) could substantially improve donor heart availability. However, warm ischemia prior to procurement is of particular concern for cardiac graft quality. We describe a rat model of DCD with in-situ ischemia in order to characterize the physiologic changes during the withdrawal period before graft procurement, to determine effects of cardioplegic graft storage, and to evaluate the post-ischemic cardiac recovery in comparison with an established ex-situ ischemia model. Methods: Following general anesthesia in male, Wistar rats (404 ± 24 g, n = 25), withdrawal of life-sustaining therapy was simulated by diaphragm transection. Hearts underwent no ischemia or 27 min in-situ ischemia and were explanted. Ex situ, hearts were subjected to a cardioplegic flush and 15 min cold storage or not, and 60 min reperfusion. Cardiac recovery was determined and compared to published results of an entirely ex-situ ischemia model (n = 18). Results: In donors, hearts were subjected to hypoxia and hemodynamic changes, as well as increased levels of circulating catecholamines and free fatty acids prior to circulatory arrest. Post-ischemic contractile recovery was significantly lower in the in-situ ischemia model compared to the ex-situ model, and the addition of cardioplegic storage improved developed pressure-heart rate product, but not cardiac output. Conclusion: The in-situ model provides insight into conditions to which the heart is exposed before procurement. Compared to an entirely ex-situ ischemia model, hearts of the in-situ model demonstrated a lower post-ischemic functional recovery, potentially due to systemic changes prior to ischemia, which are partially abrogated by cardioplegic graft storage.
Collapse
Affiliation(s)
- Maria Arnold
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Natalia Méndez-Carmona
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Rahel K Wyss
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Anna Joachimbauer
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Daniela Casoni
- Experimental Surgery Facility (ESF), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Thierry Carrel
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sarah Longnus
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Mechanical Postconditioning Promotes Glucose Metabolism and AMPK Activity in Parallel with Improved Post-Ischemic Recovery in an Isolated Rat Heart Model of Donation after Circulatory Death. Int J Mol Sci 2020; 21:ijms21030964. [PMID: 32024002 PMCID: PMC7039237 DOI: 10.3390/ijms21030964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/25/2022] Open
Abstract
Donation after circulatory death (DCD) could improve donor heart availability; however, warm ischemia-reperfusion injury raises concerns about graft quality. Mechanical postconditioning (MPC) may limit injury, but mechanisms remain incompletely characterized. Therefore, we investigated the roles of glucose metabolism and key signaling molecules in MPC using an isolated rat heart model of DCD. Hearts underwent 20 min perfusion, 30 min global ischemia, and 60 minu reperfusion with or without MPC (two cycles: 30 s reperfusion—30 s ischemia). Despite identical perfusion conditions, MPC either significantly decreased (low recovery = LoR; 32 ± 5%; p < 0.05), or increased (high recovery = HiR; 59 ± 7%; p < 0.05) the recovery of left ventricular work compared with no MPC (47 ± 9%). Glucose uptake and glycolysis were increased in HiR vs. LoR hearts (p < 0.05), but glucose oxidation was unchanged. Furthermore, in HiR vs. LoR hearts, phosphorylation of raptor, a downstream target of AMPK, increased (p < 0.05), cytochrome c release (p < 0.05) decreased, and TNFα content tended to decrease. Increased glucose uptake and glycolysis, lower mitochondrial damage, and a trend towards decreased pro-inflammatory cytokines occurred specifically in HiR vs. LoR MPC hearts, which may result from greater AMPK activation. Thus, we identify endogenous cellular mechanisms that occur specifically with cardioprotective MPC, which could be elicited in the development of effective reperfusion strategies for DCD cardiac grafts.
Collapse
|
8
|
Differential effects of ischemia/reperfusion on endothelial function and contractility in donation after circulatory death. J Heart Lung Transplant 2019; 38:767-777. [DOI: 10.1016/j.healun.2019.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/21/2019] [Accepted: 03/08/2019] [Indexed: 01/18/2023] Open
|
9
|
Determination of Optimal Coronary Flow for the Preservation of "Donation after Circulatory Death" in Murine Heart Model. ASAIO J 2019; 64:225-231. [PMID: 28746080 DOI: 10.1097/mat.0000000000000630] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Donation after circulatory death donors (DCD) have the potential to increase the number of heart transplants. The DCD hearts undergo an extended period of warm ischemia, which mandates the use of machine perfusion preservation if they are to be successfully recovered for transplantation. Because the minimum coronary artery flow needed to meet the basal oxygen demand (DCRIT) of a DCD heart during machine perfusion preservation is critical and yet unknown, we studied this in a DCD rat heart model. Adult male rats were anesthetized, intubated, heparinized, and paralyzed with vecuronium. The DCD hearts (n = 9) were recovered 30 minutes after circulatory death whereas non-DCD control hearts (n = 12) were recovered without circulatory death. Hearts were perfused through the aorta with an oxygenated Belzer Modified Machine Perfusion Solution (A3-Bridge to Life Ltd. Columbia, SC) at 15°C or 22°C starting at a flow index of 300 ml/100 g/min and decreasing by 40 ml/100 g/min every 10 minutes. Inflow (aortic) and outflow (inferior vena cava) perfusate samples were collected serially to assess the myocardial oxygen consumption index (MVO2) and O2 extraction ratio. The DCRIT is the minimum coronary flow below which the MVO2 becomes flow dependent. The MVO2, DCRIT, and oxygen extraction ratios were higher in DCD hearts compared with control hearts. The DCRIT for DCD hearts was achieved only at 15°C and was significantly higher (131.6 ± 7 ml/100 g/min) compared with control hearts (107.7 ± 8.4 ml/100 gm/min). The DCD hearts sustain warm ischemic damage and manifest higher metabolic needs during machine perfusion. Establishing adequate coronary perfusion is critical to preserving organ function for potential heart transplantation.
Collapse
|
10
|
Sanz MN, Farine E, Niederberger P, Méndez-Carmona N, Wyss RK, Arnold M, Gulac P, Fiedler GM, Gressette M, Garnier A, Carrel TP, Tevaearai Stahel HT, Longnus SL. Cardioprotective reperfusion strategies differentially affect mitochondria: Studies in an isolated rat heart model of donation after circulatory death (DCD). Am J Transplant 2019; 19:331-344. [PMID: 30019521 DOI: 10.1111/ajt.15024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 06/22/2018] [Accepted: 07/05/2018] [Indexed: 01/25/2023]
Abstract
Donation after circulatory death (DCD) holds great promise for improving cardiac graft availability; however, concerns persist regarding injury following warm ischemia, after donor circulatory arrest, and subsequent reperfusion. Application of preischemic treatments is limited for ethical reasons; thus, cardioprotective strategies applied at graft procurement (reperfusion) are of particular importance in optimizing graft quality. Given the key role of mitochondria in cardiac ischemia-reperfusion injury, we hypothesize that 3 reperfusion strategies-mild hypothermia, mechanical postconditioning, and hypoxia, when briefly applied at reperfusion onset-provoke mitochondrial changes that may underlie their cardioprotective effects. Using an isolated, working rat heart model of DCD, we demonstrate that all 3 strategies improve oxygen-consumption-cardiac-work coupling and increase tissue adenosine triphosphate content, in parallel with increased functional recovery. These reperfusion strategies, however, differentially affect mitochondria; mild hypothermia also increases phosphocreatine content, while mechanical postconditioning stimulates mitochondrial complex I activity and reduces cytochrome c release (marker of mitochondrial damage), whereas hypoxia upregulates the expression of peroxisome proliferator-activated receptor-gamma coactivator (regulator of mitochondrial biogenesis). Characterization of the role of mitochondria in cardioprotective reperfusion strategies should aid in the identification of new, mitochondrial-based therapeutic targets and the development of effective reperfusion strategies that could ultimately facilitate DCD heart transplantation.
Collapse
Affiliation(s)
- Maria N Sanz
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Emilie Farine
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Petra Niederberger
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Natalia Méndez-Carmona
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Rahel K Wyss
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Maria Arnold
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Patrik Gulac
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | - Georg M Fiedler
- Center of Laboratory Medicine, University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Mélanie Gressette
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Anne Garnier
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Thierry P Carrel
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Hendrik T Tevaearai Stahel
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Sarah L Longnus
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Wyss RK, Méndez-Carmona N, Sanz MN, Arnold M, Segiser A, Fiedler GM, Carrel TP, Djafarzadeh S, Tevaearai Stahel HT, Longnus SL. Mitochondrial integrity during early reperfusion in an isolated rat heart model of donation after circulatory death-consequences of ischemic duration. J Heart Lung Transplant 2018; 38:647-657. [PMID: 30655178 DOI: 10.1016/j.healun.2018.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/13/2018] [Accepted: 12/18/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cardioprotection and graft evaluation after ischemia-reperfusion (IR) are essential in facilitating heart transplantation with donation after circulatory death. Given the key role of mitochondria in IR, we aimed to investigate the tolerance of cardiac mitochondria to warm, global ischemia and to determine the predictive value of early reperfusion mitochondria-related parameters for post-ischemic cardiac recovery. METHODS Isolated, working rat hearts underwent 0, 21, 24, 27, 30, or 33 minutes of warm, global ischemia, followed by 60 minutes of reperfusion. Functional recovery (developed pressure × heart rate) was determined at 60 minutes of reperfusion, whereas mitochondrial integrity was measured at 10 minutes of reperfusion. RESULTS Functional recovery at 60 minutes of reperfusion decreased with ≥ 27 minutes of ischemia vs no ischemia (n = 7-8/group; p < 0.01). Cytochrome c, succinate release, and mitochondrial Ca2+ content increased with ≥ 27 minutes of ischemia vs no ischemia (p < 0.05). Ischemia at ≥ 21 minutes decreased mitochondrial coupling, adenosine 5'-triphosphate content, mitochondrial Ca2+ retention capacity, and increased oxidative damage vs no ischemia (p < 0.05). Reactive oxygen species (ROS) from reverse electron transfer increased with 21 and 27 minutes of ischemia vs no ischemia and 33 minutes of ischemia (p < 0.05), whereas ROS from forward electron transfer increased only with 33 minutes of ischemia vs no ischemia (p < 0.05). Mitochondrial coupling and adenosine 5'-triphosphate content correlated positively and cytochrome c, succinate, oxidative damage, and mitochondrial Ca2+ content correlated negatively with cardiac functional recovery (p < 0.05). CONCLUSIONS Mitochondrial dysfunction occurs with shorter periods of ischemia than cardiac dysfunction. Mitochondrial coupling, ROS emission from reverse electron transfer, and calcium retention are particularly sensitive to early reperfusion injury, reflecting potential targets for cardioprotection. Indicators of mitochondrial integrity may be of aid in evaluating suitability of donation after circulatory death grafts for transplantation.
Collapse
Affiliation(s)
- Rahel K Wyss
- Department of Cardiovascular Surgery, Inselspital, University Hospital Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Natalia Méndez-Carmona
- Department of Cardiovascular Surgery, Inselspital, University Hospital Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Maria-Nieves Sanz
- Department of Cardiovascular Surgery, Inselspital, University Hospital Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Maria Arnold
- Department of Cardiovascular Surgery, Inselspital, University Hospital Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Adrian Segiser
- Department of Cardiovascular Surgery, Inselspital, University Hospital Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Georg M Fiedler
- Center of Laboratory Medicine, University Institute of Clinical Chemistry, Bern, Switzerland
| | - Thierry P Carrel
- Department of Cardiovascular Surgery, Inselspital, University Hospital Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Siamak Djafarzadeh
- Department for BioMedical Research, University of Bern, Bern, Switzerland; Department of Intensive Care Medicine, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Hendrik T Tevaearai Stahel
- Department of Cardiovascular Surgery, Inselspital, University Hospital Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland.
| | - Sarah L Longnus
- Department of Cardiovascular Surgery, Inselspital, University Hospital Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Farine E, Egle MU, Boone AC, Christensen S, Carrel TP, Tevaearai Stahel HT, Longnus SL. Development of a cardiac loading device to monitor cardiac function during ex vivo graft perfusion. PLoS One 2018; 13:e0195721. [PMID: 29702648 PMCID: PMC5922540 DOI: 10.1371/journal.pone.0195721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/28/2018] [Indexed: 11/18/2022] Open
Abstract
Background Ex vivo heart perfusion systems, allowing continuous perfusion of the coronary vasculature, have recently been introduced to limit ischemic time of donor hearts prior to transplantation. Hearts are, however, perfused in an unloaded manner (via the aorta) and therefore, cardiac contractile function cannot be reliably evaluated. Objectives We aim to develop a ventricular loading device that enables monitoring of myocardial function in an ex vivo perfusion system. In this initial study, was to develop a prototype for rat experimentation. Methods We designed a device consisting of a ventricular balloon and a reservoir balloon, connected through an electronic check valve, which opens and closes in coordination with changes in ventricular pressure. All balloons were produced in our laboratory and their properties, particularly pressure-volume relationships, were characterized. We developed a mock ventricle in vitro test system to evaluate the device, which was ultimately tested in ex vivo perfused rat hearts. Results Balloon production was consistent and balloon properties were maintained over time and with use on the device. Results from in vitro and ex vivo experiments show that the device functions appropriately; hemodynamic function can be measured and compares well to measurements made in an isolated, working (loaded) rat heart preparation. Conclusions Our cardiac loading device appears to reliably allow measurement of several left ventricular hemodynamic parameters and provides the opportunity to control ventricular load.
Collapse
Affiliation(s)
- Emilie Farine
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Manuel U. Egle
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Alice C. Boone
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Sandro Christensen
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Thierry P. Carrel
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| | | | - Sarah L. Longnus
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
13
|
Jungi S, Fu X, Segiser A, Busch M, Most P, Fiedler M, Carrel T, Tevaearai Stahel H, Longnus SL, Most H. Enhanced Cardiac S100A1 Expression Improves Recovery from Global Ischemia-Reperfusion Injury. J Cardiovasc Transl Res 2018; 11:236-245. [PMID: 29392537 DOI: 10.1007/s12265-018-9788-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
Abstract
Gene-targeted therapy with the inotropic Ca2 + -sensor protein S100A1 rescues contractile function in post-ischemic heart failure and is being developed towards clinical trials. Its proven beneficial effect on cardiac metabolism and mitochondrial function suggests a cardioprotective effect of S100A1 in myocardial ischemia-reperfusion injury (IRI). Fivefold cardiomyocyte-specific S100A1 overexpressing, isolated rat hearts perfused in working mode were subjected to 28 min ischemia (37 °C) followed by 60 min reperfusion. S100A1 overexpressing hearts showed superior hemodynamic recover: Left ventricular pressure recovered to 57 ± 7.3% of baseline compared to 51 ± 4.6% in control (p = 0.025), this effect mirrored in LV work and dP/dt(max). Troponin T and lactate dehydrogenase was decreased in the S100A1 group, as well as FoxO pro-apoptotic transcription factor, indicating less tissue necrosis, whereas phosphocreatine content was higher after reperfusion. This is the first report of a cardioprotective effect of S100A1 overexpression in a global IRI model.
Collapse
Affiliation(s)
- S Jungi
- Department of Cardiovascular Surgery, Inselspital University Hospital, University of Bern, 3010, Bern, Switzerland
| | - X Fu
- Department of Cardiovascular Surgery, Inselspital University Hospital, University of Bern, 3010, Bern, Switzerland
| | - A Segiser
- Department of Cardiovascular Surgery, Inselspital University Hospital, University of Bern, 3010, Bern, Switzerland
| | - M Busch
- Section for Molecular and Translational Cardiology, Department of Cardiology, Pneumology and Angiology, Karl-Ruprechts University of Heidelberg, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - P Most
- Section for Molecular and Translational Cardiology, Department of Cardiology, Pneumology and Angiology, Karl-Ruprechts University of Heidelberg, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - M Fiedler
- Center for Laboratory Medicine, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - T Carrel
- Department of Cardiovascular Surgery, Inselspital University Hospital, University of Bern, 3010, Bern, Switzerland
| | - H Tevaearai Stahel
- Department of Cardiovascular Surgery, Inselspital University Hospital, University of Bern, 3010, Bern, Switzerland
| | - S L Longnus
- Department of Cardiovascular Surgery, Inselspital University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Henriette Most
- Department of Cardiovascular Surgery, Inselspital University Hospital, University of Bern, 3010, Bern, Switzerland.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Despite continued expansion in the use of extended-criteria donor hearts following donation after brain death, there remains an unacceptable discrepancy between the supply of suitable donor hearts and the demand from increasing recipient numbers on transplant wait lists. Until recently, the additional approach of utilizing organs following donation after circulatory death (DCD) had not been possible for clinical heart transplantation in the modern era. This review describes relevant advances in translational research and provides an update on the favourable adoption of this donation pathway for clinical heart transplantation. RECENT FINDINGS The use of an ex-situ transportable cardiac perfusion platform together with modified cardioplegia, supplemented with postconditioning agents, has allowed three centres to report successful transplantation of distantly procured human DCD hearts. This has been achieved by utilizing either a method of direct procurement and ex-situ perfusion on the device or through an initial in-situ reanimation with extracorporeal normothermic regional perfusion prior to ex-situ perfusion. SUMMARY DCD heart transplantation is feasible with excellent early outcomes. In the face of continued and significant donor organ shortage and inevitable wait list attrition, the rejection of suitable DCD hearts, in jurisdictions permitting this donation pathway, is increasingly difficult to justify.
Collapse
|