1
|
Fernández Vallone V, Borzone FR, Martinez LM, Giorello MB, Choi H, Dimase F, Feldman L, Bordenave RH, Chudzinski-Tavassi AM, Batagelj E, Chasseing NA. Spontaneous Osteoclastogenesis, a risk factor for bone metastasis in advanced luminal A-type breast cancer patients. Front Oncol 2023; 13:1073793. [PMID: 36890825 PMCID: PMC9986318 DOI: 10.3389/fonc.2023.1073793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/24/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction Osteolytic bone metastasis in advanced breast cancer stages are a major complication for patient´s quality life and a sign of low survival prognosis. Permissive microenvironments which allow cancer cell secondary homing and later proliferation are fundamental for metastatic processes. The causes and mechanisms behind bone metastasis in breast cancer patients are still an unsolved puzzle. Therefore, in this work we contribute to describe bone marrow pre-metastatic niche in advanced breast cancer patients. Results We show an increase in osteoclasts precursors with a concomitant imbalance towards spontaneous osteoclastogenesis which can be evidenced at bone marrow and peripheral levels. Pro-osteoclastogenic factors RANKL and CCL-2 may contribute to bone resorption signature observed in bone marrow. Meanwhile, expression levels of specific microRNAs in primary breast tumors may already indicate a pro-osteoclastogenic scenario prior to bone metastasis. Discussion The discovery of prognostic biomarkers and novel therapeutic targets linked to bone metastasis initiation and development are a promising perspective for preventive treatments and metastasis management in advanced breast cancer patients.
Collapse
Affiliation(s)
- Valeria Fernández Vallone
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Core Unit Pluripotent Stem Cells and Organoids, Berlin, Germany
| | - Francisco Raúl Borzone
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Leandro Marcelo Martinez
- Department of Medicine, Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY, United States
| | - María Belén Giorello
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Hosoon Choi
- Research Service, Central Texas Veterans Health Care System, Temple, Texas, TX, United States
| | - Federico Dimase
- Servicio de Hematología, Hospital Militar Central, Buenos Aires, Argentina
| | - Leonardo Feldman
- Facultad de Ciencias de la Salud, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPB), Tandil, Buenos Aires, Argentina
| | | | - Ana Marisa Chudzinski-Tavassi
- Laboratory of Development and Innovation/Center of Excellence in New Target Discovery, Instituto Butantan, São Paulo, Brazil
| | - Emilio Batagelj
- Servicio de Oncología, Hospital Militar Central, Buenos Aires, Argentina
| | - Norma Alejandra Chasseing
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
2
|
da Graça Cabreira M, Wang X, Critsinelis A, Setegne M, Lotfi P, Wan YW, Barrios G, Mei Z, Gee AP, Buja LM, Perin E. Environmental oxygen affects ex vivo growth and proliferation of mesenchymal progenitors by modulating mitogen-activated protein kinase and mammalian target of rapamycin signaling. Cytotherapy 2022; 24:1201-1210. [PMID: 36109320 DOI: 10.1016/j.jcyt.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/16/2022] [Accepted: 06/13/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND AIMS Stem and progenitor cells of hematopoietic and mesenchymal lineages reside in the bone marrow under low oxygen (O2) saturation. O2 levels used in ex vivo expansion of multipotent mesenchymal stromal cells (MSCs) affect proliferation, metabolism and differentiation. METHODS Using cell-based assays and transcriptome and proteome data, the authors compared MSC cultures simultaneously grown under a conventional 19.95% O2 atmosphere or at 5% O2. RESULTS In 5% O2, MSCs showed better proliferation and higher self-renewal ability, most probably sustained by enhanced signaling activity of mitogen-activated protein kinase and mammalian target of rapamycin pathways. Non-oxidative glycolysis-based energy metabolism supported growth and proliferation in 5% O2 cultures, whereas MSCs grown under 19.95% O2 also utilized oxidative phosphorylation. Cytoprotection mechanisms used by cells under 5% O2 differed from 19.95% O2 suggesting differences in the triggers of cell stress between these two O2 conditions. CONCLUSIONS Based on the potential benefits for the growth and metabolism of MSCs, the authors propose the use of 5% O2 for MSC culture.
Collapse
Affiliation(s)
| | - Xiaohong Wang
- Department of Dermatology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Mekedlawit Setegne
- Chemistry-Biology Interface Predoctoral Training Program, Stanford University, Stanford, California, USA
| | - Parisa Lotfi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - Ying-Wooi Wan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - Gabriela Barrios
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, Texas, USA
| | - Zhuyong Mei
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, Texas, USA
| | - Adrian P Gee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, Texas, USA
| | - Louis Maximilian Buja
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Emerson Perin
- Center for Clinical Research, Texas Heart Institute, Houston, Texas, USA
| |
Collapse
|
3
|
Şafak AS, Avşar Abdik E, Abdik H, Taşlı PN, Şahin F. A Novel Approach to Septal Perforation Repair: Septal Cartilage Cells Induce Chondrogenesis of hASCs In Vitro. Appl Biochem Biotechnol 2019; 188:942-951. [PMID: 30740625 DOI: 10.1007/s12010-019-02964-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/30/2019] [Indexed: 12/17/2022]
Abstract
The aim of this study was to investigate the effect of medium harvested from septal cartilage cells on chondrogenic differentiation of adipose stem cells (hASCs) and to compare/contrast its properties to those of a commonly used standard medium formulation in terms of induction and maintenance of chondrogenic hASCs. Differentiation was carried out under three different conditions: septal cartilage medium-SCM, chondrogenic differentiation medium-CM, and 50:50 mixture of CM/SCM. Mesenchymal stem cells (MSCs) markers were determined by flow cytometry. The cytotoxic and apoptotic effects were determined by MTS and Annexin V assay, respectively. The differentiation status of the cells was confirmed by Alcian blue staining, and quantitative real-time flow cytometry showed that hASCs were positive for MSCs, negative for hematopoietic stem cells and endothelial cell surface markers. According to MTS analysis, the first condition was not toxic at any concentration tested. Annexin V assay revealed that the application of different concentrations of SCM did not result in any cell death. The Alcian blue and gene expression analyses showed that the cells in the SCM group underwent the highest cartilage cell formation. The observed increase in chondrogenesis may offer better treatment options for the cartilage defects seen in nasal septum perforation.
Collapse
Affiliation(s)
- Ayşe Sezim Şafak
- Faculty of Engineering and Architecture, Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Ezgi Avşar Abdik
- Faculty of Engineering and Architecture, Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Hüseyin Abdik
- Faculty of Engineering and Architecture, Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Pakize Neslihan Taşlı
- Faculty of Engineering and Architecture, Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Fikrettin Şahin
- Faculty of Engineering and Architecture, Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
4
|
Walraven M, Hinz B. Therapeutic approaches to control tissue repair and fibrosis: Extracellular matrix as a game changer. Matrix Biol 2018; 71-72:205-224. [PMID: 29499355 DOI: 10.1016/j.matbio.2018.02.020] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 02/08/2023]
|
5
|
Leptin increases mitochondrial OPA1 via GSK3-mediated OMA1 ubiquitination to enhance therapeutic effects of mesenchymal stem cell transplantation. Cell Death Dis 2018; 9:556. [PMID: 29748581 PMCID: PMC5945599 DOI: 10.1038/s41419-018-0579-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 03/16/2018] [Accepted: 03/30/2018] [Indexed: 01/15/2023]
Abstract
Accumulating evidence revealed that mesenchymal stem cells (MSCs) confer cardioprotection against myocardial infarction (MI). However, the poor survival and engraftment rate of the transplanted cells limited their therapeutic efficacy in the heart. The enhanced leptin production associated with hypoxia preconditioning contributed to the improved MSCs survival. Mitochondrial integrity determines the cellular fate. Thus, we aimed to investigate whether leptin can enhance mitochondrial integrity of human MSCs (hMSCs) to protect against various stress. In vivo, transplantation of leptin-overexpressing hMSCs into the infarcted heart resulted in improved cell viability, leading to enhanced angiogenesis and cardiac function. In vitro, pretreatment of hMSCs with recombinant leptin (hMSCs-Leppre) displayed improved cell survival against severe ischemic condition (glucose and serum deprivation under hypoxia), which was associated with increased mitochondrial fusion. Subsequently, Optic atrophy 1 (OPA1), a mitochondrial inner membrane protein that regulates fusion and cristae structure, was significantly elevated in the hMSCs-Leppre group, and the protection of leptin was abrogated by targeting OPA1 with a selective siRNA. Furthermore, OMA1, a mitochondrial protease that cleaves OPA1, decreased in a leptin-dependent manner. Pretreatment of cells with an inhibitor of the proteasome (MG132), prevented leptin-induced OMA1 degradation, implicating the ubiquitination/proteasome system as a part of the protective leptin pathway. In addition, GSK3 inhibitor (SB216763) was also involved in the degradation of OMA1. In conclusion, in the hostile microenvironment caused by MI, (a) leptin can maintain the mitochondrial integrity and prolong the survival of hMSCs; (b) leptin-mediated mitochondrial integrity requires phosphorylation of GSK3 as a prerequisite for ubiquitination-depended degradation of OMA1 and attenuation of long-OPA1 cleavage. Thus, leptin targeting the GSK3/OMA1/OPA1 signaling pathway can optimize hMSCs therapy for cardiovascular diseases such as MI.
Collapse
|
6
|
Bhatwadekar AD, Beli E, Diao Y, Chen J, Luo Q, Alex A, Caballero S, Dominguez JM, Salazar TE, Busik JV, Segal MS, Grant MB. Conditional Deletion of Bmal1 Accentuates Microvascular and Macrovascular Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1426-1435. [PMID: 28432873 PMCID: PMC5455061 DOI: 10.1016/j.ajpath.2017.02.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 12/30/2022]
Abstract
The brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein (BMAL)-1 constitutes a major transcriptional regulator of the circadian clock. Here, we explored the impact of conditional deletion of Bmal1 in endothelium and hematopoietic cells in murine models of microvascular and macrovascular injury. We used two models of Bmal1fx/fx;Tek-Cre mice, a retinal ischemia/reperfusion model and a neointimal hyperplasia model of the femoral artery. Eyes were enumerated for acellular capillaries and were stained for oxidative damage markers using nitrotyrosine immunohistochemistry. LSK (lineage-negative, stem cell antigen-1-positive, c-Kit-positive) cells were quantified and proliferation assessed. Hematopoiesis is influenced by innervation to the bone marrow, which we assessed using IHC analysis. The number of acellular capillaries increased threefold, and nitrotyrosine staining increased 1.5-fold, in the retinas of Bmal1fx/fx;Tek-Cre mice. The number of LSK cells from the Bmal1fx/fx;Tek-Cre mice decreased by 1.5-fold and was accompanied by a profound decrease in proliferative potential. Bmal1fx/fx;Tek-Cre mice also exhibited evidence of bone marrow denervation, demonstrating a loss of neurofilament-200 staining. Injured femoral arteries showed a 20% increase in neointimal hyperplasia compared with similarly injured wild-type controls. Our study highlights the importance of the circadian clock in maintaining vascular homeostasis and demonstrates that specific deletion of BMAL1 in endothelial and hematopoietic cells results in phenotypic features similar to those of diabetes.
Collapse
Affiliation(s)
- Ashay D Bhatwadekar
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana.
| | - Eleni Beli
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yanpeng Diao
- Department of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jonathan Chen
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Qianyi Luo
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Alpha Alex
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sergio Caballero
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida
| | - James M Dominguez
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Tatiana E Salazar
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Mark S Segal
- Department of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Maria B Grant
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|