1
|
Ma H, Huang H, Li C, Li S, Gan J, Lian C, Ling Y. The antidepressive mechanism of Longya Lilium combined with Fluoxetine in mice with depression-like behaviors. NPJ Syst Biol Appl 2024; 10:5. [PMID: 38218856 PMCID: PMC10787738 DOI: 10.1038/s41540-024-00329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Traditional Chinese medicine is one of the most commonly used complementary and alternative medicine therapies for depression. Integrated Chinese-western therapies have been extensively applied in numerous diseases due to their superior efficiency in individual treatment. We used the meta-analysis, network pharmacology, and bioinformatics studies to identify the putative role of Longya Lilium combined with Fluoxetine in depression. Depression-like behaviors were mimicked in mice after exposure to the chronic unpredictable mild stress (CUMS). The underlying potential mechanism of this combination therapy was further explored based on in vitro and in vivo experiments to analyze the expression of COX-2, PGE2, and IL-22, activation of microglial cells, and neuron viability and apoptosis in the hippocampus. The antidepressant effect was noted for the combination of Longya Lilium with Fluoxetine in mice compared to a single treatment. COX-2 was mainly expressed in hippocampal CA1 areas. Longya Lilium combined with Fluoxetine reduced the expression of COX-2 and thus alleviated depression-like behavior and neuroinflammation in mice. A decrease of COX-2 curtailed BV-2 microglial cell activation, inflammation, and neuron apoptosis by blunting the PGE2/IL-22 axis. Therefore, a combination of Longya Lilium with Fluoxetine inactivates the COX-2/PGE2/IL-22 axis, consequently relieving the neuroinflammatory response and the resultant depression.
Collapse
Affiliation(s)
- Huina Ma
- Department of Health, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Hehua Huang
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Chenyu Li
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Shasha Li
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Juefang Gan
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Chunrong Lian
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Yanwu Ling
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China.
| |
Collapse
|
2
|
Tiwari S, Gupta P, Singh A, Chaturvedi S, Wahajuddin M, Mishra A, Singh S. 4-Phenylbutyrate Mitigates the Motor Impairment and Dopaminergic Neuronal Death During Parkinson's Disease Pathology via Targeting VDAC1 Mediated Mitochondrial Function and Astrocytes Activation. Neurochem Res 2022; 47:3385-3401. [PMID: 35922743 DOI: 10.1007/s11064-022-03691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/15/2022] [Accepted: 07/12/2022] [Indexed: 10/16/2022]
Abstract
Parkinson's disease (PD) is a progressive motor neurodegenerative disorder significantly associated with protein aggregation related neurodegenerative mechanisms. In view of no disease modifying drugs, the present study was targeted to investigate the therapeutic effects of pharmacological agent 4-phenylbutyric acid (4PBA) in PD pathology. 4PBA is an FDA approved monocarboxylic acid with inhibitory activity towards histone deacetylase and clinically treats urea cycle disorder. First, we observed the significant protective effects of 4PBA on PD specific neuromuscular coordination, level of tyrosine hydroxylase, α-synuclein level and neurotransmitter dopamine in both substantia nigra and striatal regions of the experimental rat model of PD. Further results revealed that treatment with 4PBA drug exhibited significant protection against disease related oxidative stress and augmented nitrite levels. The disease pathology-related depletion in mitochondrial membrane potential and augmented level of calcium as well as mitochondrion membrane located VDAC1 protein level and cytochrome-c translocation were also significantly attenuated with 4PBA administration. Inhibited neuronal apoptosis and restored neuronal morphology were also observed with 4PBA treatment as measured by level of pro-apoptotic proteins t-Bid, Bax and cleaved caspase-3 along with cresyl violet staining in both substantia nigra and striatal regions. Lastly, PD-linked astrocyte activation was significantly inhibited with 4PBA treatment. Altogether, our findings suggest that 4PBA exerts broad-spectrum neuroprotective effects in PD animal model.
Collapse
Affiliation(s)
- Shubhangini Tiwari
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Parul Gupta
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Abhishek Singh
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Swati Chaturvedi
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - M Wahajuddin
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, 342011, India
| | - Sarika Singh
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India. .,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
3
|
GFAP-Positive Progenitor Cell Production is Concentrated in Specific Encephalic Regions in Young Adult Mice. Neurosci Bull 2018; 34:769-778. [PMID: 29663175 DOI: 10.1007/s12264-018-0228-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/05/2018] [Indexed: 12/14/2022] Open
Abstract
Previous genetic fate-mapping studies have indicated that embryonic glial fibrillary acidic protein-positive (GFAP+) cells are multifunctional progenitor/neural stem cells that can produce astrocytes as well as neurons and oligodendrocytes throughout the adult mouse central nervous system (CNS). However, emerging evidence from recent studies indicates that GFAP+ cells adopt different cell fates and generate different cell types in different regions. Moreover, the fate of GFAP+ cells in the young adult mouse CNS is not well understood. In the present study, hGFAP-Cre/R26R transgenic mice were used to investigate the lineage of embryonic GFAP+ cells in the young adult mouse CNS. At postnatal day 21, we found that GFAP+ cells mainly generated NeuN+ neurons in the cerebral cortex (both ventral and dorsal), hippocampus, and cerebellum. Strangely, these cells were negative for the Purkinje cell marker calbindin in the cerebellum and the neuronal marker NeuN in the thalamus. Thus, contrary to previous studies, our genetic fate-mapping revealed that the cell fate of embryonic GFAP+ cells at the young adult stage is significantly different from that at the adult stage.
Collapse
|