1
|
Sun B, Kekenes-Huskey PM. Myofilament-associated proteins with intrinsic disorder (MAPIDs) and their resolution by computational modeling. Q Rev Biophys 2023; 56:e2. [PMID: 36628457 PMCID: PMC11070111 DOI: 10.1017/s003358352300001x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cardiac sarcomere is a cellular structure in the heart that enables muscle cells to contract. Dozens of proteins belong to the cardiac sarcomere, which work in tandem to generate force and adapt to demands on cardiac output. Intriguingly, the majority of these proteins have significant intrinsic disorder that contributes to their functions, yet the biophysics of these intrinsically disordered regions (IDRs) have been characterized in limited detail. In this review, we first enumerate these myofilament-associated proteins with intrinsic disorder (MAPIDs) and recent biophysical studies to characterize their IDRs. We secondly summarize the biophysics governing IDR properties and the state-of-the-art in computational tools toward MAPID identification and characterization of their conformation ensembles. We conclude with an overview of future computational approaches toward broadening the understanding of intrinsic disorder in the cardiac sarcomere.
Collapse
Affiliation(s)
- Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | | |
Collapse
|
2
|
Jeon YK, Kwon JW, Jang J, Choi SW, Woo J, Cho SH, Yu BI, Chun YS, Youm JB, Zhang YH, Kim SJ. Lower troponin expression in the right ventricle of rats explains interventricular differences in E-C coupling. J Gen Physiol 2022; 154:212990. [PMID: 35099502 PMCID: PMC8823606 DOI: 10.1085/jgp.202112949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
Despite distinctive functional and anatomic differences, a precise understanding of the cardiac interventricular differences in excitation–contraction (E–C) coupling mechanisms is still lacking. Here, we directly compared rat right and left cardiomyocytes (RVCM and LVCM). Whole-cell patch clamp, the IonOptix system, and fura-2 fluorimetry were used to measure electrical properties (action potential and ionic currents), single-cell contractility, and cytosolic Ca2+ ([Ca2+]i), respectively. Myofilament proteins were analyzed by immunoblotting. RVCM showed significantly shorter action potential duration (APD) and higher density of transient outward K+ current (Ito). However, the triggered [Ca2+]i change (Ca2+ transient) was not different, while the decay rate of the Ca2+ transient was slower in RVCM. Although the relaxation speed was also slower, the sarcomere shortening amplitude (ΔSL) was smaller in RVCM. SERCA activity was ∼60% lower in RVCM, which is partly responsible for the slower decay of the Ca2+ transient. Immunoblot analysis revealed lower expression of the cardiac troponin complex (cTn) in RVCM, implying a smaller Ca2+ buffering capacity (κS), which was proved by in situ analysis. The introduction of these new levels of cTn, Ito, and SERCA into a mathematical model of rat LVCM reproduced the similar Ca2+ transient, slower Ca2+ decay, shorter APD, and smaller ΔSL of RVCM. Taken together, these data show reduced expression of cTn proteins in the RVCM, which provides an explanation for the interventricular difference in the E–C coupling kinetics.
Collapse
Affiliation(s)
- Young Keul Jeon
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Won Kwon
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jihyun Jang
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Surgery, Center for Vascular and Inflammatory Disease, University of Maryland School of Medicine, Baltimore, MD
| | - Seong Woo Choi
- Department of Physiology and Ion Channel Disease Research Center, Dongguk University College of Medicine, Seoul, Republic of Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joohan Woo
- Department of Physiology and Ion Channel Disease Research Center, Dongguk University College of Medicine, Seoul, Republic of Korea
| | - Su Han Cho
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Byeong Il Yu
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yang Sook Chun
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Boum Youm
- Cardiovascular and Metabolic Disease Center, Department of Physiology, College of Medicine, Inje University, Busan, Republic of Korea
| | - Yin Hua Zhang
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Yanbian University Hospital, Yanji, China.,Institute of Cardiovascular Sciences, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Manchester, UK
| | - Sung Joon Kim
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Republic of Korea
| |
Collapse
|