1
|
Camberos-Barraza J, Camacho-Zamora A, Bátiz-Beltrán JC, Osuna-Ramos JF, Rábago-Monzón ÁR, Valdez-Flores MA, Angulo-Rojo CE, Guadrón-Llanos AM, Picos-Cárdenas VJ, Calderón-Zamora L, Norzagaray-Valenzuela CD, Cárdenas-Torres FI, De la Herrán-Arita AK. Sleep, Glial Function, and the Endocannabinoid System: Implications for Neuroinflammation and Sleep Disorders. Int J Mol Sci 2024; 25:3160. [PMID: 38542134 PMCID: PMC10970053 DOI: 10.3390/ijms25063160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 11/11/2024] Open
Abstract
The relationship between sleep, glial cells, and the endocannabinoid system represents a multifaceted regulatory network with profound implications for neuroinflammation and cognitive function. The molecular underpinnings of sleep modulation by the endocannabinoid system and its influence on glial cell activity are discussed, shedding light on the reciprocal relationships that govern these processes. Emphasis is placed on understanding the role of glial cells in mediating neuroinflammatory responses and their modulation by sleep patterns. Additionally, this review examines how the endocannabinoid system interfaces with glia-immune signaling to regulate inflammatory cascades within the central nervous system. Notably, the cognitive consequences of disrupted sleep, neuroinflammation, and glial dysfunction are addressed, encompassing implications for neurodegenerative disorders, mood disturbances, and cognitive decline. Insights into the bidirectional modulation of cognitive function by the endocannabinoid system in the context of sleep and glial activity are explored, providing a comprehensive perspective on the potential mechanisms underlying cognitive impairments associated with sleep disturbances. Furthermore, this review examines potential therapeutic avenues targeting the endocannabinoid system to mitigate neuroinflammation, restore glial homeostasis, and normalize sleep patterns. The identification of novel therapeutic targets within this intricate regulatory network holds promise for addressing conditions characterized by disrupted sleep, neuroinflammation, and cognitive dysfunction. This work aims to examine the complexities of neural regulation and identify potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | - Juan F. Osuna-Ramos
- Faculty of Medicine, Autonomous University of Sinaloa, Culiacán 80019, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Singh B, Huang D. The Role of Circadian Rhythms in Stroke: A Narrative Review. Neurochem Res 2024; 49:290-305. [PMID: 37838637 DOI: 10.1007/s11064-023-04040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/12/2023] [Accepted: 09/24/2023] [Indexed: 10/16/2023]
Abstract
Stroke, a debilitating condition often leading to long-term disability, poses a substantial global concern and formidable challenge. The increasing incidence of stroke has drawn the attention of medical researchers and neurologists worldwide. Circadian rhythms have emerged as pivotal factors influencing stroke's onset, pathogenesis, treatment, and outcomes. To gain deeper insights into stroke, it is imperative to explore the intricate connection between circadian rhythms and stroke, spanning from molecular mechanisms to pathophysiological processes. Despite existing studies linking circadian rhythm to stroke onset, there remains a paucity of comprehensive reviews exploring its role in pathogenesis, treatment, and prognosis. This review undertakes a narrative analysis of studies investigating the relationship between circadian variation and stroke onset. It delves into the roles of various physiological factors, including blood pressure, coagulation profiles, blood cells, catecholamines, cortisol, and the timing of antihypertensive medication, which contribute to variations in circadian-related stroke risk. At a molecular level, the review elucidates the involvement of melatonin, circadian genes, and glial cells in the pathophysiology. Furthermore, it provides insights into the diverse factors influencing stroke treatment and outcomes within the context of circadian variation. The review underscores the importance of considering circadian rhythms when determining the timing of stroke interventions, emphasizing the necessity for personalized stroke management strategies that incorporate circadian rhythms. It offers valuable insights into potential molecular targets and highlights areas that require further exploration to enhance our understanding of the underlying pathophysiology. In comparison to the published literature, this manuscript distinguishes itself through its coverage of circadian rhythms' impact on stroke across the entire clinical spectrum. It presents a unique synthesis of epidemiological, clinical, molecular, and cellular evidence, underscoring their collective significance.
Collapse
Affiliation(s)
- Bivek Singh
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
- Department of Medicine, National Cardiac Centre, Basundhara, Kathmandu, , Bagmati Province, Nepal.
| | - Dongya Huang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Carvalhas-Almeida C, Serra J, Moita J, Cavadas C, Álvaro AR. Understanding neuron-glia crosstalk and biological clocks in insomnia. Neurosci Biobehav Rev 2023; 147:105100. [PMID: 36804265 DOI: 10.1016/j.neubiorev.2023.105100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
According to the World Health Organization, about one-third of the population experiences insomnia symptoms, and about 10-15% suffer from chronic insomnia, the most common sleep disorder. Sleeping difficulties associated with insomnia are often linked to chronic sleep deprivation, which has a negative health impact partly due to disruption in the internal synchronisation of biological clocks. These are regulated by clock genes and modulate most biological processes. Most studies addressing circadian rhythm regulation have focused on the role of neurons, yet glial cells also impact circadian rhythms and sleep regulation. Chronic insomnia and sleep loss have been associated with glial cell activation, exacerbated neuroinflammation, oxidative stress, altered neuronal metabolism and synaptic plasticity, accelerated age-related processes and decreased lifespan. It is, therefore, essential to highlight the importance of glia-neuron interplay on sleep/circadian regulation and overall healthy brain function. Hence, in this review, we aim to address the main neurobiological mechanisms involved in neuron-glia crosstalk, with an emphasis on microglia and astrocytes, in both healthy sleep, chronic sleep deprivation and chronic insomnia.
Collapse
Affiliation(s)
- Catarina Carvalhas-Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | - Joana Serra
- Sleep Medicine Unit, Coimbra Hospital and University Center (CHUC), Coimbra, Portugal
| | - Joaquim Moita
- Sleep Medicine Unit, Coimbra Hospital and University Center (CHUC), Coimbra, Portugal
| | - Cláudia Cavadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Ana Rita Álvaro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
4
|
Blasiak J, Sobczuk P, Pawlowska E, Kaarniranta K. Interplay between aging and other factors of the pathogenesis of age-related macular degeneration. Ageing Res Rev 2022; 81:101735. [PMID: 36113764 DOI: 10.1016/j.arr.2022.101735] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 09/12/2022] [Indexed: 01/31/2023]
Abstract
Age-related macular degeneration (AMD) is a complex eye disease with the retina as the target tissue and aging as per definition the most serious risk factor. However, the retina contains over 60 kinds of cells that form different structures, including the neuroretina and retinal pigment epithelium (RPE) which can age at different rates. Other established or putative AMD risk factors can differentially affect the neuroretina and RPE and can differently interplay with aging of these structures. The occurrence of β-amyloid plaques and increased levels of cholesterol in AMD retinas suggest that AMD may be a syndrome of accelerated brain aging. Therefore, the question about the real meaning of age in AMD is justified. In this review we present and update information on how aging may interplay with some aspects of AMD pathogenesis, such as oxidative stress, amyloid beta formation, circadian rhythm, metabolic aging and cellular senescence. Also, we show how this interplay can be specific for photoreceptors, microglia cells and RPE cells as well as in Bruch's membrane and the choroid. Therefore, the process of aging may differentially affect different retinal structures. As an accurate quantification of biological aging is important for risk stratification and early intervention for age-related diseases, the determination how photoreceptors, microglial and RPE cells age in AMD may be helpful for a precise diagnosis and treatment of this largely untreatable disease.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Piotr Sobczuk
- Emergency Medicine and Disaster Medicine Department, Medical University of Lodz, Pomorska 251, 92-209 Lodz, Poland; Department of Orthopaedics and Traumatology, Polish Mothers' Memorial Hospital - Research Institute, Rzgowska 281, 93-338 Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, KYS, P.O. Box 100, FI-70029 Finland
| |
Collapse
|
5
|
Malik A, Nalluri S, De A, Beligala D, Geusz ME. The Relevance of Circadian Clocks to Stem Cell Differentiation and Cancer Progression. NEUROSCI 2022; 3:146-165. [PMID: 39483369 PMCID: PMC11523739 DOI: 10.3390/neurosci3020012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/22/2022] [Indexed: 11/03/2024] Open
Abstract
The molecular mechanism of circadian clocks depends on transcription-translation feedback loops (TTFLs) that have known effects on key cellular processes. However, the distinct role of circadian TTFLs in mammalian stem cells and other less differentiated cells remains poorly understood. Neural stem cells (NSCs) of the brain generate neurons and glia postnatally but also may become cancer stem cells (CSCs), particularly in astrocytomas. Evidence indicates clock TTFL impairment is needed for tumor growth and progression; although, this issue has been examined primarily in more differentiated cancer cells rather than CSCs. Similarly, few studies have examined circadian rhythms in NSCs. After decades of research, it is now well recognized that tumors consist of CSCs and a range of other cancer cells along with noncancerous stromal cells. The circadian properties of these many contributors to tumor properties and treatment outcome are being widely explored. New molecular tools and ones in development will likely enable greater discrimination of important circadian and non-circadian cells within malignancies at multiple stages of cancer progression and following therapy. Here, we focus on adult NSCs and glioma CSCs to address how cells at different stages of differentiation may harbor unique states of the molecular circadian clock influencing differentiation and cell fate.
Collapse
Affiliation(s)
- Astha Malik
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Shreya Nalluri
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Arpan De
- Department of Neurosurgery and Brain Tumor Center, Unit 1004, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA;
| | - Dilshan Beligala
- Department of Molecular Biology and Biotechnology, University of Peradeniya, Peradeniya 20400, Sri Lanka;
| | - Michael E Geusz
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA;
| |
Collapse
|
6
|
Xue X, Zong W, Glausier JR, Kim SM, Shelton MA, Phan BN, Srinivasan C, Pfenning AR, Tseng GC, Lewis DA, Seney ML, Logan RW. Molecular rhythm alterations in prefrontal cortex and nucleus accumbens associated with opioid use disorder. Transl Psychiatry 2022; 12:123. [PMID: 35347109 PMCID: PMC8960783 DOI: 10.1038/s41398-022-01894-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022] Open
Abstract
Severe and persistent disruptions to sleep and circadian rhythms are common in people with opioid use disorder (OUD). Preclinical evidence suggests altered molecular rhythms in the brain modulate opioid reward and relapse. However, whether molecular rhythms are disrupted in the brains of people with OUD remained an open question, critical to understanding the role of circadian rhythms in opioid addiction. Using subjects' times of death as a marker of time of day, we investigated transcriptional rhythms in the brains of subjects with OUD compared to unaffected comparison subjects. We discovered rhythmic transcripts in both the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc), key brain areas involved in OUD, that were largely distinct between OUD and unaffected subjects. Fewer rhythmic transcripts were identified in DLPFC of subjects with OUD compared to unaffected subjects, whereas in the NAc, nearly double the number of rhythmic transcripts was identified in subjects with OUD. In NAc of subjects with OUD, rhythmic transcripts peaked either in the evening or near sunrise, and were associated with an opioid, dopamine, and GABAergic neurotransmission. Associations with altered neurotransmission in NAc were further supported by co-expression network analysis which identified OUD-specific modules enriched for transcripts involved in dopamine, GABA, and glutamatergic synaptic functions. Additionally, rhythmic transcripts in DLPFC and NAc of subjects with OUD were enriched for genomic loci associated with sleep-related GWAS traits, including sleep duration and insomnia. Collectively, our findings connect transcriptional rhythm changes in opioidergic, dopaminergic, GABAergic signaling in the human brain to sleep-related traits in opioid addiction.
Collapse
Affiliation(s)
- Xiangning Xue
- grid.21925.3d0000 0004 1936 9000Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Wei Zong
- grid.21925.3d0000 0004 1936 9000Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Jill R. Glausier
- grid.21925.3d0000 0004 1936 9000Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219 USA
| | - Sam-Moon Kim
- grid.21925.3d0000 0004 1936 9000Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219 USA ,grid.21925.3d0000 0004 1936 9000Center for Adolescent Reward, Rhythms, and Sleep, University of Pittsburgh, Pittsburgh, PA 15219 USA
| | - Micah A. Shelton
- grid.21925.3d0000 0004 1936 9000Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219 USA
| | - BaDoi N. Phan
- grid.147455.60000 0001 2097 0344Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Chaitanya Srinivasan
- grid.147455.60000 0001 2097 0344Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Andreas R. Pfenning
- grid.147455.60000 0001 2097 0344Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA 15213 USA ,grid.147455.60000 0001 2097 0344Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - George C. Tseng
- grid.21925.3d0000 0004 1936 9000Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - David A. Lewis
- grid.21925.3d0000 0004 1936 9000Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219 USA
| | - Marianne L. Seney
- grid.21925.3d0000 0004 1936 9000Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219 USA ,grid.21925.3d0000 0004 1936 9000Center for Adolescent Reward, Rhythms, and Sleep, University of Pittsburgh, Pittsburgh, PA 15219 USA
| | - Ryan W. Logan
- grid.189504.10000 0004 1936 7558Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118 USA ,grid.189504.10000 0004 1936 7558Center for Systems Neuroscience, Boston University, Boston, MA 02118 USA
| |
Collapse
|
7
|
Kumar D, Sharma A, Taliyan R, Urmera MT, Herrera-Calderon O, Heinbockel T, Rahman S, Goyal R. Orchestration of the circadian clock and its association with Alzheimer's disease: Role of endocannabinoid signaling. Ageing Res Rev 2022; 73:101533. [PMID: 34844016 PMCID: PMC8729113 DOI: 10.1016/j.arr.2021.101533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/24/2021] [Accepted: 11/22/2021] [Indexed: 01/03/2023]
Abstract
Circadian rhythms are 24-hour natural rhythms regulated by the suprachiasmatic nucleus, also known as the "master clock". The retino-hypothalamic tract entrains suprachiasmatic nucleus with photic information to synchronise endogenous circadian rhythms with the Earth's light-dark cycle. However, despite the robustness of circadian rhythms, an unhealthy lifestyle and chronic photic disturbances cause circadian rhythm disruption in the suprachiasmatic nucleus's TTFL loops via affecting glutamate and γ-aminobutyric acid-mediated neurotransmission in the suprachiasmatic nucleus. Recently, considerable evidence has been shown correlating CRd with the incidence of Alzheimer's disease. The present review aims to identify the existence and signalling of endocannabinoids in CRd induced Alzheimer's disease through retino-hypothalamic tract- suprachiasmatic nucleus-cortex. Immunohistochemistry has confirmed the expression of cannabinoid receptor 1 in the suprachiasmatic nucleus to modulate the circadian phases of the master clock. Literature also suggests that cannabinoids may alter activity of suprachiasmatic nucleus by influencing the activity of their major neurotransmitter γ-aminobutyric acid or by interacting indirectly with the suprachiasmatic nucleus's two other major inputs i.e., the geniculo-hypothalamic tract-mediated release of neuropeptide Y and serotonergic inputs from the dorsal raphe nuclei. Besides, the expression of cannabinoid receptor 2 ameliorates cognitive deficits via reduction of tauopathy and microglial activation. In conclusion, endocannabinoids may be identified as a putative target for correcting CRd and decelerating Alzheimer's disease.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Neuropharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P. 173229, India.
| | - Ashish Sharma
- School of Medicine, Washington University, St. Louis, USA.
| | - Rajeev Taliyan
- Neuropharmacology Laboratory, Department of Pharmacy, Birla Institute of Technology Science, Pilani, Rajasthan 333301, India.
| | - Maiko T Urmera
- Institute on Aging and Centre for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Oscar Herrera-Calderon
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima, Peru.
| | - Thomas Heinbockel
- Howard University College of Medicine, District of Columbia, WA, USA.
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy South Dakota State University, Brookings, SD, USA.
| | - Rohit Goyal
- Department of Neuropharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P. 173229, India.
| |
Collapse
|
8
|
Kumar D, Sharma A, Taliyan R, Urmera MT, Herrera-Calderon O, Heinbockel T, Rahman S, Goyal R. Orchestration of the circadian clock and its association with Alzheimer's disease: Role of endocannabinoid signaling. Ageing Res Rev 2022. [DOI: https://doi.org/10.1016/j.arr.2021.101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Nakanishi H, Ni J, Nonaka S, Hayashi Y. Microglial circadian clock regulation of microglial structural complexity, dendritic spine density and inflammatory response. Neurochem Int 2020; 142:104905. [PMID: 33217515 DOI: 10.1016/j.neuint.2020.104905] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 02/08/2023]
Abstract
Cortical microglia exhibit a ramified shape during sleep, while they have a hyper-ramified shape during wakefulness, which is characterized by their longer processes with increased branching points. The microglial molecular circadian clock regulates expressions of both cathepsin S (CatS) and P2Y12 receptors in the brain with a peak at zeitgeber time 14 (2 h after beginning of the dark phase). We postulated that these two microglia-specific molecules contribute to diurnal alterations of microglial shapes and neuronal activities in the cerebral cortex. During wakefulness, CatS secreted from cortical microglia may be involved in P2Y12 receptor-dependent process extension. Secreted CatS subsequently degrades the perineuronal nets, initiating the downscaling of both spine density and synaptic strength of cortical neurons toward the beginning of sleep. The downscaling of both spine density and synaptic strength of cortical neurons during sleep could improve signal-to-noise, which would benefit memory consolidation, or allow for new learning to occur during subsequent waking. Furthermore, disruption of CatS induces the sleep disturbance and impaired social interaction in mice. Moreover, the microglial clock system disruption may also play a role in the early pathogenesis of Alzheimer's disease. The reduced expression of BMAL1 in cortical microglia caused by oligomeric amyloid β may induce the increased presence of inflammatory phenotype through a reduction in RORα, which in turn reduced IκBα and enhanced NF-κB activation. These observations suggest that the microglial clock system disruption contribute to pathogeneses of sleep disturbance, impaired social interaction and cognitive impairment. Therefore, the growing understanding of the microglial circadian molecular clock might aid in the development of novel pharmacological interventions against both neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, 731-0153, Japan.
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Saori Nonaka
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, 731-0153, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| |
Collapse
|
10
|
Martínez-Tapia RJ, Chavarría A, Navarro L. Differences in Diurnal Variation of Immune Responses in Microglia and Macrophages: Review and Perspectives. Cell Mol Neurobiol 2020; 40:301-309. [PMID: 31549296 DOI: 10.1007/s10571-019-00736-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/07/2019] [Indexed: 12/18/2022]
Abstract
Biological rhythms, especially those that last close to 24 h, better known as circadian rhythms, are highly regulated phenomena, maintained throughout evolution in various organisms which allow organisms to predict, prepare for, and adapt to environmental changes. One of these phenomena that exhibit biological rhythms is the immune response to external agents. Immune cells (neutrophils, lymphocytes, macrophages, among others), as well as their mediators such as cytokines and chemokines, undergo variations in tissue and blood concentrations during the day. These rhythms are still being elucidated in microglia, the resident macrophages of the central nervous system, but since these cells share a common origin with peripheral macrophages, they are expected to behave similarly. In this review, we will discuss the possible differences in the responses between peripheral macrophages and microglia, their relationship with the circadian clock, and whether these rhythms can influence therapeutic choices.
Collapse
Affiliation(s)
- Ricardo J Martínez-Tapia
- Neuroendocrinology Laboratory, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City, Coyacán, Mexico
- Programa de Doctorado en Ciencias Biomédicas, División de Estudios de Posgrado, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anahí Chavarría
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luz Navarro
- Neuroendocrinology Laboratory, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City, Coyacán, Mexico.
| |
Collapse
|
11
|
Arafa K, Emara M. Insights About Circadian Clock and Molecular Pathogenesis in Gliomas. Front Oncol 2020; 10:199. [PMID: 32195174 PMCID: PMC7061216 DOI: 10.3389/fonc.2020.00199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/05/2020] [Indexed: 12/15/2022] Open
Abstract
The circadian clock is an endogenous time-keeping system that has been discovered across kingdoms of life. It controls and coordinates metabolism, physiology, and behavior to adapt to variations within the day and the seasonal environmental cycles driven by earth rotation. In mammals, although circadian rhythm is controlled by a set of core clock genes that are present in both in suprachiasmatic nucleus (SCN) of the hypothalamus and peripheral tissues, the generation and control of the circadian rhythm at the cellular, tissue, and organism levels occurs in a hierarchal fashion. The SCN is central pacemaker comprising the principal circadian clock that synchronizes peripheral circadian clocks to their appropriate phase. Different epidemiological studies have shown that disruption of normal circadian rhythm is implicated in increasing the risk of developing cancers. In addition, deregulated expression of clock genes has been demonstrated in various types of cancer. These findings indicate a close association between circadian clock and cancer development and progression. Here, we review different evidences of this association in relation to molecular pathogenesis in gliomas.
Collapse
Affiliation(s)
| | - Marwan Emara
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Cairo, Egypt
| |
Collapse
|
12
|
Qi XR, Kamphuis W, Shan L. Astrocyte Changes in the Prefrontal Cortex From Aged Non-suicidal Depressed Patients. Front Cell Neurosci 2019; 13:503. [PMID: 31798416 PMCID: PMC6874137 DOI: 10.3389/fncel.2019.00503] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/24/2019] [Indexed: 11/13/2022] Open
Abstract
Glia alterations in the anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC) have been postulated to play an important role in the pathophysiology of psychiatric disorders. Astroglia is the most abundant type of glial cells in the central nervous system. The expression levels of astrocyte markers (glial fibrillary acidic protein (GFAP), synemin-α, synemin-β, vimentin, nestin) in isolated gray matter from postmortem ACC and DLPFC were determined to investigate the possible involvement of astrocytes in depression. Donors were aged non-suicidal subjects with bipolar disorder (BPD) or major depressive disorder (MDD), and matched controls. GFAP mRNA levels were significantly increased in the ACC of BPD patients. However, GFAP immunohistochemistry showed that the area fraction of GFAP immunoreactive astrocytes was decreased in the ACC of BPD patients, while there were no changes in the cell density and integrated optical density (IOD), indicating that there might be a reduction of GFAP-positive astrocyte processes and remodeling of the astrocyte network in BPD. Furthermore, in controls, DLPFC GFAP mRNA levels were significantly lower with a time of death at daytime (08:01–20:00 h) compared to nighttime (20:01–08:00 h). In depression, such a diurnal pattern was not present. These findings in BPD and MDD subjects warrant further studies given the crucial roles of astrocytes in the central nervous system.
Collapse
Affiliation(s)
- Xin-Rui Qi
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Willem Kamphuis
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Ling Shan
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| |
Collapse
|
13
|
NPR1 and Redox Rhythmx: Connections, between Circadian Clock and Plant Immunity. Int J Mol Sci 2019; 20:ijms20051211. [PMID: 30857376 PMCID: PMC6429127 DOI: 10.3390/ijms20051211] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 01/08/2023] Open
Abstract
The circadian clock in plants synchronizes biological processes that display cyclic 24-h oscillation based on metabolic and physiological reactions. This clock is a precise timekeeping system, that helps anticipate diurnal changes; e.g., expression levels of clock-related genes move in synchrony with changes in pathogen infection and help prepare appropriate defense responses in advance. Salicylic acid (SA) is a plant hormone and immune signal involved in systemic acquired resistance (SAR)-mediated defense responses. SA signaling induces cellular redox changes, and degradation and rhythmic nuclear translocation of the non-expresser of PR genes 1 (NPR1) protein. Recent studies demonstrate the ability of the circadian clock to predict various potential attackers, and of redox signaling to determine appropriate defense against pathogen infection. Interaction of the circadian clock with redox rhythm promotes the balance between immunity and growth. We review here a variety of recent evidence for the intricate relationship between circadian clock and plant immune response, with a focus on the roles of redox rhythm and NPR1 in the circadian clock and plant immunity.
Collapse
|
14
|
Krzeptowski W, Walkowicz L, Płonczyńska A, Górska-Andrzejak J. Different Levels of Expression of the Clock Protein PER and the Glial Marker REPO in Ensheathing and Astrocyte-Like Glia of the Distal Medulla of Drosophila Optic Lobe. Front Physiol 2018; 9:361. [PMID: 29695973 PMCID: PMC5904279 DOI: 10.3389/fphys.2018.00361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/23/2018] [Indexed: 12/31/2022] Open
Abstract
Circadian plasticity of the visual system of Drosophila melanogaster depends on functioning of both the neuronal and glial oscillators. The clock function of the former is already quite well-recognized. The latter, however, is much less known and documented. In this study we focus on the glial oscillators that reside in the distal part of the second visual neuropil, medulla (dMnGl), in vicinity of the PIGMENT-DISPERSING FACTOR (PDF) releasing terminals of the circadian clock ventral Lateral Neurons (LNvs). We reveal the heterogeneity of the dMnGl, which express the clock protein PERIOD (PER) and the pan-glial marker REVERSED POLARITY (REPO) at higher (P1) or lower (P2) levels. We show that the cells with stronger expression of PER display also stronger expression of REPO, and that the number of REPO-P1 cells is bigger during the day than during the night. Using a combination of genetic markers and immunofluorescent labeling with anti PER and REPO Abs, we have established that the P1 and P2 cells can be associated with two different types of the dMnGl, the ensheathing (EnGl), and the astrocyte-like glia (ALGl). Surprisingly, the EnGl belong to the P1 cells, whereas the ALGl, previously reported to play the main role in the circadian rhythms, display the characteristics of the P2 cells (express very low level of PER and low level of REPO). Next to the EnGl and ALGl we have also observed another type of cells in the distal medulla that express PER and REPO, although at very low levels. Based on their morphology we have identified them as the T1 interneurons. Our study reveals the complexity of the distal medulla circadian network, which appears to consist of different types of glial and neuronal peripheral clocks, displaying molecular oscillations of higher (EnGl) and lower (ALGl and T1) amplitudes.
Collapse
Affiliation(s)
- Wojciech Krzeptowski
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Lucyna Walkowicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Alicja Płonczyńska
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Jolanta Górska-Andrzejak
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| |
Collapse
|