1
|
Li Q, Fang F, Yang C, Yu D, Gong Q, Shen X. Whole transcriptome landscape in HAPE under the stress of environment at high altitudes: new insights into the mechanisms of hypobaric hypoxia tolerance. Front Immunol 2024; 15:1444666. [PMID: 39328420 PMCID: PMC11424462 DOI: 10.3389/fimmu.2024.1444666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Background High altitude pulmonary edema (HAPE) is an idiopathic, noncardiogenic form of pulmonary edema that occurs at high altitudes. It is characterized by a severe clinical course and carries a significant mortality risk. Despite its clinical relevance, the molecular mechanisms underlying HAPE are not well understood. Methods We conducted whole-transcriptome RNA sequencing on blood samples from 6 pairs of HAPE patients and healthy controls to identify differentially expressed (DE) mRNAs, miRNAs, circRNAs, lncRNAs, along with alternative splicing (AS) events, gene fusions, and novel transcripts. To explore the regulatory dynamics, we constructed ceRNA networks and analyzed immune cell infiltration patterns, further annotating the biological functions of these transcripts. For empirical validation, we selected five circRNAs from the ceRNA network and conducted RT-qPCR on 50 paired samples. Additionally, we assessed the correlations between circRNA expression levels and clinical data to evaluate their diagnostic potential. Results We observed 2,023 differentially expressed mRNAs (DEmRNAs), 84 DEmiRNAs, 200 DEcircRNAs, and 3,573 DElncRNAs. A total of 139 'A3SS' events, 103 'A5SS' events, 545 'MXE' events, 14 'RI' events, and 1,482 'SE' events were identified in the AS events analysis between the two groups. Two ceRNA networks were constructed. T cells, follicular helper, and Macrophages M1 cells exhibited the strongest positive correlation (R=0.82), while naive B cells and memory B cells demonstrated the strongest negative correlation (R=-0.62). In total, the expression of three circRNAs was significantly different in a larger cohort. Hsa_circ_0058497, hsa_circ_0081006, and hsa_circ_0083220 demonstrated consistent with the RNA sequencing results. These three circRNAs strongly correlate with clinical indicators and exhibit potential as diagnostic biomarkers. Finally, we verified five genes (CXCR4, HSD17B2, ANGPTL4, TIMP3, N4BP3) that were differentially expressed in endothelial cells under normoxia and hypoxia through bioinformatics and RT-qPCR analyses. Conclusion This study elucidates the differential expression of coding and non-coding RNAs (ncRNAs) in HAPE, identifies new transcripts and genes, and enhances our understanding of the transcriptional characteristics of HAPE. Moreover, it highlights the potential role of circRNAs in advancing the diagnosis and treatment of HAPE.
Collapse
Affiliation(s)
- Qiong Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Fujin Fang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Chuanli Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Dong Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Qianhui Gong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
2
|
春花, 白玛康卓. [Establishment and Evaluation of a Mice Model of High-Altitude Cerebral Edema]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:1269-1275. [PMID: 38162056 PMCID: PMC10752796 DOI: 10.12182/20231160604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Indexed: 01/03/2024]
Abstract
Objective To establish an animal model of high-altitude cerebral edema (HACE), to explore the altitude and oxygen partial pressure conditions that can lead to obvious clinical manifestations of HACE, and to lay the foundation for further research of the pathogenic mechanisms and intervention strategies of HACE. Methods Male BALB/c mice of 8 weeks old were randomly assigned to Control and HACE groups. The Control group (n=10) was treated with normobaric and normoxic conditions, while the HACE groups were placed in hypobaric hypoxic (HH) chambers for the durations of 6 h, 12 h, 24 h, 48 h and 72 h, respectively, receiving treatments of simulated HH conditions at the altitudes of 4000 m (n=10 for each group receiving different durations of HH treatment), 5000 m (n=10 for each group receiving different durations of HH treatment), and 6000 m (n=10 for each group receiving different durations of HH treatment). HE staining was performed to observe the morphological changes of the brain tissue and the appropriate simulated altitude conditions were selected accordingly for the construction and evaluation of the best HACE model. The HACE model was evaluated in the following ways, the mouse brain was weighed and the cerebral edema was measured accordingly, Evans blue (EB) was injected to determine the permeability of the blood-brain barrier (BBB), and the cell apoptosis was determined by immunofluorescence staining. Results There were no deaths in the groups treated with the HH conditions of the altitudes of 4000 m and 5000 m, while the mortality in the 6000 m altitude treatment groups was 12.2%. HE staining showed no significant changes in brain morphology or structure in the group receiving HH treatment for the altitude of 4000 m. A small amount of brain cell edema was observed in the groups receiving 48 h and 72 h of HH treatment for the altitude of 5000 m. The groups receiving HH treatment for the altitude of 6000 m demonstrated the most prominent modeling effect. HE staining showed increased volume and swelling of brain cells in all the 6000 m groups, especially in the 24 h, 48 h and 72 h treatment groups. In all the 6000 m groups, cell arrangement disorder, gap enlargement, and nuclear contraction were observed. Evaluation of the modeling effect demonstrated that, in the HACE mice model constructed with the HH conditions for the altitude of 6000 m, cerebral edema and EB permeability increased after 12 h HH treatment and there was no obvious apoptosis in the modeling groups receiving different durations of treatment. Conclusion The HACE model can be established effectively by simulating conditions at the altitude of 6000 m (the atmospheric pressure being 47.19 kPa and the oxygen partial pressure being 9.73 kPa) with a HH chamber.
Collapse
Affiliation(s)
- 春花
- 西藏大学医学院 (拉萨 850000)Medical College of Tibet University, Lhasa 850000, China
| | - 白玛康卓
- 西藏大学医学院 (拉萨 850000)Medical College of Tibet University, Lhasa 850000, China
| |
Collapse
|
3
|
Pan Z, Hu Y, Huang Z, Han N, Li Y, Zhuang X, Yin J, Peng H, Gao Q, Zhang W, Huang Y, Cui Y, Bi Y, Xu ZZ, Yang R. Alterations in gut microbiota and metabolites associated with altitude-induced cardiac hypertrophy in rats during hypobaric hypoxia challenge. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2093-2113. [PMID: 35301705 DOI: 10.1007/s11427-021-2056-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/04/2022] [Indexed: 02/08/2023]
Abstract
The gut microbiota is involved in host responses to high altitude. However, the dynamics of intestinal microecology and their association with altitude-related illness are poorly understood. Here, we used a rat model of hypobaric hypoxia challenge to mimic plateau exposure and monitored the gut microbiome, short-chain fatty acids (SCFAs), and bile acids (BAs) over 28 d. We identified weight loss, polycythemia, and pathological cardiac hypertrophy in hypoxic rats, accompanied by a large compositional shift in the gut microbiota, which is mainly driven by the bacterial families of Prevotellaceae, Porphyromonadaceae, and Streptococcaceae. The aberrant gut microbiota was characterized by increased abundance of the Parabacteroides, Alistipes, and Lactococcus genera and a larger Bacteroides to Prevotella ratio. Trans-omics analyses showed that the gut microbiome was significantly correlated with the metabolic abnormalities of SCFAs and BAs in feces, suggesting an interaction network remodeling of the microbiome-metabolome after the hypobaric hypoxia challenge. Interestingly, the transplantation of fecal microbiota significantly increased the diversity of the gut microbiota, partially inhibited the increased abundance of the Bacteroides and Alistipes genera, restored the decrease of plasma propionate, and moderately ameliorated cardiac hypertrophy in hypoxic rats. Our results provide an insight into the longitudinal changes in intestinal microecology during the hypobaric hypoxia challenge. Abnormalities in the gut microbiota and microbial metabolites contribute to the development of high-altitude heart disease in rats.
Collapse
Affiliation(s)
- Zhiyuan Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yichen Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Zongyu Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ni Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Xiaomei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jiye Yin
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Hui Peng
- Tianjin Institute of Environmental & Operational Medicine, Tianjin, 300050, China
| | - Quansheng Gao
- Tianjin Institute of Environmental & Operational Medicine, Tianjin, 300050, China
| | - Wenpeng Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yong Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Zhenjiang Zech Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China. .,Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| |
Collapse
|
4
|
Akkoca Ö, Unlu CE, Tatar I, Sargon MF, Zeybek D, Oguztuzun S. Protective Effect of Aerobic Exercise on the Nasal Mucosa of Rats Against the Histopathologic Changes in Cigarette Smoke Exposure. EAR, NOSE & THROAT JOURNAL 2020; 99:453-459. [PMID: 31996045 DOI: 10.1177/0145561319900758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Smoking is a public health problem that has been proven to have adverse effects on human health. Aerobic exercise has positive effects on the human body, especially on the respiratory system. OBJECTIVE The aim of this experimental animal model study was to determine whether regular aerobic exercise has a protective effect against the harmful effects of cigarette smoke on the nasal mucosa of rats. METHODS A total of 24 male Wistar albino rats were randomly separated into 3 groups of 8: group 1 (cigarette smoking), group 2 (cigarette smoking and exercise), and group 3 (control group). At the end of the experiment period, histopathological (light and electron microscopy) and immunohistochemical (GSTA 1, CYP1A1, and CYP2E1) evaluations were made of the nasal mucosa of the animals. RESULTS Goblet cell loss and basal membrane thickening were significantly lower in group 2 and group 3 compared to group 1. In the electron microscope evaluation, the inflammatory expressions of the goblet cells were observed in a very small area in group 2. In group 1, these were distributed over large areas between the mucosal cells. There was seen to be significant swelling of the mitochondria in group 1 compared to the other groups. No statistically significant difference was determined between the groups with respect to GSTA1, CYP2E1, and CYP1A1 scores (P > .05). CONCLUSION The results of this study showed that regular aerobic exercise has a protective effect against the harmful effects of smoking on the nasal mucosa of rats.
Collapse
Affiliation(s)
- Özlem Akkoca
- University of Health Sciences, Ankara Training and Research Hospital, Ankara, Turkey
| | - Ceren Ersoz Unlu
- University of Health Sciences, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Ilkan Tatar
- Department of Anatomy, Hacettepe University School of Medicine, Ankara, Turkey
| | | | - Dilara Zeybek
- Department of Histology and Embryology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Serpil Oguztuzun
- Department of Biology, Kirikkale University School of Medicine, Kirikkale, Turkey
| |
Collapse
|
5
|
Cai W, Liu Z, Li G, Xiao P, Lv Q, Gong Y, Fan H, Hou S, Ding H. The effects of a graded increase in chronic hypoxia exposure duration on healthy rats at high-altitude. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1975-1991. [PMID: 31934020 PMCID: PMC6949644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 03/27/2019] [Indexed: 06/10/2023]
Abstract
To investigate the effects of chronic hypoxia exposure at high altitude on the formation of pulmonary edema in rats, we randomized rats into normoxic control groups and hypoxic 24, 48, and 72-hour exposure groups. In the hypoxic exposure group, the arterial blood gas, wet-dry weight ratio (W/D), lung tissue permeability index (LPI), bronchoalveolar lavage fluid (BALF) and plasma levels of the inflammatory factors were measured after continuous, chronic hypoxic exposure for a corresponding time, and the pathological changes in the lung tissue and the expression of tight junction-associated protein occludin were observed. We found that the contents of arterial blood gas, W/D, LPI, BALF and plasma IL-6, TNF-α, and IL-10 in the hypoxic exposure group were significantly different from the contents of arterial blood gas in the normoxic control group. H&E staining showed tissue effusion, a marked thickening of the pulmonary septum, interstitial inflammatory cells, and erythrocytic infiltration. Compared with the normoxic control group, the pulmonary edema score was significantly increased in the hypoxic 48-hour group. Toluidine blue staining showed that the mast cell count and degranulation rate were significantly increased in the hypoxic 48-hour and 72-hour groups, but massone staining showed no significant pulmonary interstitial fibrosis in the 4 groups. Occludin expression was significantly higher in the normoxic control group than it was in the hypoxic exposure group. These results indicated that different chronic hypoxic exposure durations at the plateau all caused high-altitude pulmonary edema in rats, but there was no significant difference in some indicators among the groups.
Collapse
Affiliation(s)
- Wei Cai
- Logistics University of Chinese People’s Armed Police ForcesTianjin, China
- School of Disaster Medical Research, Tianjin UniversityTianjin, China
- Chinese People’s Armed Police Force (PAP) Medical CenterTianjin, China
| | - Ziquan Liu
- School of Disaster Medical Research, Tianjin UniversityTianjin, China
| | - Guangzong Li
- Chinese People’s Armed Police Force (PAP) Medical CenterTianjin, China
| | - Peixin Xiao
- Hubei Provincial Corps Hospital, Chinese People’s Armed Police ForcesWuhan, China
| | - Qi Lv
- School of Disaster Medical Research, Tianjin UniversityTianjin, China
| | - Yanhua Gong
- School of Disaster Medical Research, Tianjin UniversityTianjin, China
| | - Haojun Fan
- School of Disaster Medical Research, Tianjin UniversityTianjin, China
| | - Shike Hou
- School of Disaster Medical Research, Tianjin UniversityTianjin, China
| | - Hui Ding
- School of Disaster Medical Research, Tianjin UniversityTianjin, China
| |
Collapse
|