1
|
Sams LE, Wörndl M, Bachinger L, Villegas Sierra LE, Mourouzis K, Naumann D, Freyer L, Rizas KD. Periodic repolarization dynamics: Different methods for quantifying low-frequency oscillations of repolarization. J Electrocardiol 2024; 82:11-18. [PMID: 37995553 DOI: 10.1016/j.jelectrocard.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/19/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Periodic repolarization dynamics (PRD) is an electrocardiographic biomarker that quantifies low-frequency (LF) instabilities of repolarization. PRD is a strong predictor of mortality in patients with ischaemic and non-ischaemic cardiomyopathy. Until recently, two methods for calculating PRD have been proposed. The wavelet analysis has been widely tested and quantifies PRD in deg2 units by application of continuous wavelet transformation (PRDwavelet). The phase rectified signal averaging method (PRDPRSA) is an algebraic method, which quantifies PRD in deg. units. The correlation, as well as a conversion formula between the two methods remain unknown. METHOD The first step for quantifying PRD is to calculate the beat-to-beat change in the direction of repolarization, called dT°. PRD is subsequently quantified by means of either wavelet or PRSA-analysis. We simulated 1.000.000 dT°-signals. For each simulated signal we calculated PRD using the wavelet and PRSA-method. We calculated the ratio between PRDwavelet and PRDPRSA for different values of dT° and RR-intervals and applied this ratio in a real-ECG validation cohort of 455 patients after myocardial infarction (MI). We finally calculated the correlation coefficient between real and calculated PRDwavelet. PRDwavelet was dichotomized at the established cut-off value of ≥5.75 deg2. RESULTS The ratio between PRDwavelet and PRDPRSA increased with increasing heart-rate and mean dT°-values (p < 0.001 for both). The correlation coefficient between PRDwavelet and PRDPRSA in the validation cohort was 0.908 (95% CI 0.891-0.923), which significantly (p < 0.001) improved to 0.945 (95% CI 0.935-0.955) after applying the formula considering the ratio between PRDwavelet and PRDPRSA obtained from the simulation cohort. The calculated PRDwavelet correctly classified 98% of the patients as low-risk and 87% of the patients as high-risk and correctly identified 97% of high-risk patients, who died within the follow-up period. CONCLUSION This is the first analytical investigation of the different methods used to calculate PRD using simulated and clinical data. In this article we propose a novel algorithm for converting PRDPRSA to the widely validated PRDwavelet, which could unify the calculation methods and cut-offs for PRD.
Collapse
Affiliation(s)
- Lauren E Sams
- Medizinische Klinik und Poliklinik I, University Hospital Munich, Ludwig-Maximilians University, Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site: Munich Heart Alliance, Munich, Germany
| | - Maximilian Wörndl
- Medizinische Klinik und Poliklinik I, University Hospital Munich, Ludwig-Maximilians University, Munich, Germany
| | - Leonie Bachinger
- Medizinische Klinik und Poliklinik I, University Hospital Munich, Ludwig-Maximilians University, Munich, Germany
| | - Laura E Villegas Sierra
- Medizinische Klinik und Poliklinik I, University Hospital Munich, Ludwig-Maximilians University, Munich, Germany
| | - Konstantinos Mourouzis
- Medizinische Klinik und Poliklinik I, University Hospital Munich, Ludwig-Maximilians University, Munich, Germany
| | - Dominik Naumann
- Medizinische Klinik und Poliklinik I, University Hospital Munich, Ludwig-Maximilians University, Munich, Germany
| | - Luisa Freyer
- Medizinische Klinik und Poliklinik I, University Hospital Munich, Ludwig-Maximilians University, Munich, Germany
| | - Konstantinos D Rizas
- Medizinische Klinik und Poliklinik I, University Hospital Munich, Ludwig-Maximilians University, Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site: Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
2
|
Telemedical cardiac risk assessment by implantable cardiac monitors in patients after myocardial infarction with autonomic dysfunction (SMART-MI-DZHK9): a prospective investigator-initiated, randomised, multicentre, open-label, diagnostic trial. Lancet Digit Health 2022; 4:e105-e116. [DOI: 10.1016/s2589-7500(21)00253-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/12/2021] [Accepted: 10/27/2021] [Indexed: 01/01/2023]
|
3
|
Abstract
Much of biology is rhythmical and comprises oscillators that can couple. These have optimized energy efficiency and have been preserved during evolution. The respiratory and cardiovascular systems contain numerous oscillators, and importantly, they couple. This coupling is dynamic but essential for an efficient transmission of neural information critical for the precise linking of breathing and oxygen delivery while permitting adaptive responses to changes in state. The respiratory pattern generator and the neural network responsible for sympathetic and cardiovagal (parasympathetic) tone generation interact at many levels ensuring that cardiac output and regional blood flow match oxygen delivery to the lungs and tissues efficiently. The most classic manifestations of these interactions are respiratory sinus arrhythmia and the respiratory modulation of sympathetic nerve activity. These interactions derive from shared somatic and cardiopulmonary afferent inputs, reciprocal interactions between brainstem networks and inputs from supra-pontine regions. Disrupted respiratory-cardiovascular coupling can result in disease, where it may further the pathophysiological sequelae and be a harbinger of poor outcomes. This has been well documented by diminished respiratory sinus arrhythmia and altered respiratory sympathetic coupling in animal models and/or patients with myocardial infarction, heart failure, diabetes mellitus, and neurological disorders as stroke, brain trauma, Parkinson disease, or epilepsy. Future research needs to assess the therapeutic potential for ameliorating respiratory-cardiovascular coupling in disease.
Collapse
Affiliation(s)
- James P Fisher
- Manaaki Manawa-The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Tymoteusz Zera
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Julian F R Paton
- Manaaki Manawa-The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
4
|
Palacios S, Cygankiewicz I, Bayés de Luna A, Pueyo E, Martínez JP. Periodic repolarization dynamics as predictor of risk for sudden cardiac death in chronic heart failure patients. Sci Rep 2021; 11:20546. [PMID: 34654872 PMCID: PMC8519935 DOI: 10.1038/s41598-021-99861-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022] Open
Abstract
The two most common modes of death among chronic heart failure (CHF) patients are sudden cardiac death (SCD) and pump failure death (PFD). Periodic repolarization dynamics (PRD) quantifies low-frequency oscillations in the T wave vector of the electrocardiogram (ECG) and has been postulated to reflect sympathetic modulation of ventricular repolarization. This study aims to evaluate the prognostic value of PRD to predict SCD and PFD in a population of CHF patients. 20-min high-resolution (1000 Hz) ECG recordings from 569 CHF patients were analyzed. Patients were divided into two groups, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {PRD}^+$$\end{document}PRD+ and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {PRD}^-$$\end{document}PRD-, corresponding to PRD values above and below the optimum cutoff point of PRD in the study population. Univariate Cox regression analysis showed that SCD risk in the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {PRD}^+$$\end{document}PRD+ group was double the risk in the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {PRD}^-$$\end{document}PRD- group [hazard ratio (95% CI) 2.001 (1.127–3.554), \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {p}<0.05$$\end{document}p<0.05]. The combination of PRD with other Holter-based ECG indices, such as turbulence slope (TS) and index of average alternans (IAA), improved SCD prediction by identifying groups of patients at high SCD risk. PFD could be predicted by PRD only when combined with TS [hazard ratio 2.758 (1.572–4.838), \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {p}<0.001$$\end{document}p<0.001]. In conclusion, the combination of PRD with IAA and TS can be used to stratify the risk for SCD and PFD, respectively, in CHF patients.
Collapse
Affiliation(s)
- Saúl Palacios
- BSICoS Group, Aragón Institute of Engineering Research, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain.
| | - Iwona Cygankiewicz
- Department of Electrocardiology, Medical University of Lodz, Lodz, Poland
| | - Antoni Bayés de Luna
- Cardiovascular Research Foundation, Cardiovascular ICCC-Program, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Esther Pueyo
- BSICoS Group, Aragón Institute of Engineering Research, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Juan Pablo Martínez
- BSICoS Group, Aragón Institute of Engineering Research, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|
5
|
Hernández-Vicente A, Hernando D, Vicente-Rodríguez G, Bailón R, Garatachea N, Pueyo E. ECG Ventricular Repolarization Dynamics during Exercise: Temporal Profile, Relation to Heart Rate Variability and Effects of Age and Physical Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9497. [PMID: 34574421 PMCID: PMC8469015 DOI: 10.3390/ijerph18189497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022]
Abstract
Periodic repolarization dynamics (PRD) is a novel electrocardiographic marker of cardiac repolarization instability with powerful risk stratification capacity for total mortality and sudden cardiac death. Here, we use a time-frequency analysis approach to continuously quantify PRD at rest and during exercise, assess its dependence on heart rate variability (HRV) and characterize the effects of age (young adults/middle-aged adults/older adults), body mass index (non-overweight/overweight) and cardiorespiratory fitness level (fit/unfit). Sixty-six male volunteers performed an exercise test. RR and dT variabilities (RRV, dTV), as well as the fraction of dT variability unrelated to RR variability, were computed based on time-frequency representations. The instantaneous LF power of dT (PdTV), representing the same concept as PRD, and of its RRV-unrelated component (PdTVuRRV) were quantified. dT angle was found to mostly oscillate in the LF band. Overall, 50-70% of PdTV was linearly unrelated to RRV. The onset of exercise caused a sudden increase in PdTV and PdTVuRRV, which returned to pre-exercise levels during recovery. Clustering analysis identified a group of overweight and unfit individuals with significantly higher PdTV and PdTVuRRV values at rest than the rest of the population. Our findings shed new light on the temporal profile of PRD during exercise, its relationship to HRV and the differences in PRD between subjects according to phenotypic characteristics.
Collapse
Affiliation(s)
- Adrián Hernández-Vicente
- Growth, Exercise, NUtrition and Development (GENUD) Research Group, University of Zaragoza, 50009 Zaragoza, Spain; (G.V.-R.); (N.G.)
- Department of Physiatry and Nursing, Faculty of Health and Sport Science (FCSD), University of Zaragoza, 22002 Huesca, Spain
- Red española de Investigación en Ejercicio Físico y Salud en Poblaciones Especiales (EXERNET), 50009 Zaragoza, Spain
| | - David Hernando
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, 50018 Zaragoza, Spain; (D.H.); (R.B.); (E.P.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Germán Vicente-Rodríguez
- Growth, Exercise, NUtrition and Development (GENUD) Research Group, University of Zaragoza, 50009 Zaragoza, Spain; (G.V.-R.); (N.G.)
- Department of Physiatry and Nursing, Faculty of Health and Sport Science (FCSD), University of Zaragoza, 22002 Huesca, Spain
- Red española de Investigación en Ejercicio Físico y Salud en Poblaciones Especiales (EXERNET), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBER-Obn), 28029 Madrid, Spain
- Instituto Agroalimentario de Aragón -IA2- CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Raquel Bailón
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, 50018 Zaragoza, Spain; (D.H.); (R.B.); (E.P.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Nuria Garatachea
- Growth, Exercise, NUtrition and Development (GENUD) Research Group, University of Zaragoza, 50009 Zaragoza, Spain; (G.V.-R.); (N.G.)
- Department of Physiatry and Nursing, Faculty of Health and Sport Science (FCSD), University of Zaragoza, 22002 Huesca, Spain
- Red española de Investigación en Ejercicio Físico y Salud en Poblaciones Especiales (EXERNET), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBER-Obn), 28029 Madrid, Spain
- Instituto Agroalimentario de Aragón -IA2- CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Esther Pueyo
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, 50018 Zaragoza, Spain; (D.H.); (R.B.); (E.P.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
6
|
Taggart P, Billman GE. Editorial: Neurocardiac Oscillation in Repolarization and Cardiac Arrhythmias. Front Physiol 2020; 11:604950. [PMID: 33192621 PMCID: PMC7657381 DOI: 10.3389/fphys.2020.604950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 11/28/2022] Open
Affiliation(s)
- Peter Taggart
- Department of Cardiovascular Sciences, University College London, London, United Kingdom
| | - George E Billman
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
7
|
Milagro J, Hernández-Vicente A, Hernando D, Casajús JA, Garatachea N, Bailón R, Pueyo E. Estimation of the second ventilatory threshold through ventricular repolarization profile analysis. Scand J Med Sci Sports 2020; 31:339-349. [PMID: 33038026 DOI: 10.1111/sms.13849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/13/2020] [Accepted: 09/25/2020] [Indexed: 11/27/2022]
Abstract
Under the hypothesis that sympathetic control of ventricular repolarization may change once the second ventilatory threshold (VT2) has been reached, a novel methodology for non-invasive VT2 estimation based on the analysis of the T wave from the electrocardiogram (ECG) is proposed, and potential underlying physiological mechanisms are suggested. 25 volunteers (33.4 ± 5.2 years) underwent an incremental power cycle ergometer test (25 W/minute). During the test, respiratory gas exchange and multi-lead ECG were acquired. The former was employed to determine VT2, used here as a reference, whereas the latter was used to compute the temporal profiles of an index of ventricular repolarization instability (dT) and its low-frequency (LF) oscillations (LFdT). The sudden increases observed in dT and LFdT profiles above an established heart rate threshold were employed to derive VT2 estimates, referred to as VT2d T and VT2LF d T , respectively. Estimation errors of -4.7 ± 25.2 W were obtained when considering VT2d T . Errors were lower than the one-minute power increment of 25 W in 68% of the subjects and lower than 50 W in 89.5% of them. When using VT2LF d T , estimation error was of 15.3 ± 32.4 W. Most of the subjects shared common characteristic dT and LFdT profiles, which could be reflecting changes in the autonomic control of ventricular repolarization before and after reaching VT2. The analysis of ventricular repolarization dynamics during exercise allows non-invasive ECG-based estimation of VT2, possibly in relation to changes in the autonomic control of ventricular electrical activity when VT2 is reached.
Collapse
Affiliation(s)
- Javier Milagro
- Biomedical Signal Interpretation and Computational Simulation Group, Aragón Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain.,CIBER in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - Adrián Hernández-Vicente
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Faculty of Health and Sport Sciences, University of Zaragoza, Zaragoza, Spain.,Faculty of Health and Sport Science (FCSD), Department of Physiatry and Nursing, University of Zaragoza, Huesca, Spain
| | - David Hernando
- Biomedical Signal Interpretation and Computational Simulation Group, Aragón Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain.,CIBER in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - José A Casajús
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Faculty of Health and Sport Sciences, University of Zaragoza, Zaragoza, Spain.,Faculty of Health Sciences (FCS), Department of Physiatry and Nursing, University of Zaragoza, Zaragoza, Spain.,Agro-alimentary Institute of Aragón -IA2- (CITA-University of Zaragoza), Zaragoza, Spain.,CIBER in Physiopathology of Obesity and Nutrition (CIBER-Obn), Madrid, Spain
| | - Nuria Garatachea
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Faculty of Health and Sport Sciences, University of Zaragoza, Zaragoza, Spain.,Faculty of Health and Sport Science (FCSD), Department of Physiatry and Nursing, University of Zaragoza, Huesca, Spain.,Agro-alimentary Institute of Aragón -IA2- (CITA-University of Zaragoza), Zaragoza, Spain.,CIBER in Physiopathology of Obesity and Nutrition (CIBER-Obn), Madrid, Spain.,Consejo Superior de Deportes, Madrid, Spain
| | - Raquel Bailón
- Biomedical Signal Interpretation and Computational Simulation Group, Aragón Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain.,CIBER in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - Esther Pueyo
- Biomedical Signal Interpretation and Computational Simulation Group, Aragón Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain.,CIBER in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| |
Collapse
|
8
|
Duijvenboden SV, Porter B, Pueyo E, Sampedro-Puente DA, Fernandez-Bes J, Sidhu B, Gould J, Orini M, Bishop MJ, Hanson B, Lambiase P, Razavi R, Rinaldi CA, Gill JS, Taggart P. Complex Interaction Between Low-Frequency APD Oscillations and Beat-to-Beat APD Variability in Humans Is Governed by the Sympathetic Nervous System. Front Physiol 2020; 10:1582. [PMID: 32038279 PMCID: PMC6987475 DOI: 10.3389/fphys.2019.01582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/17/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Recent clinical, experimental and modeling studies link oscillations of ventricular repolarization in the low frequency (LF) (approx. 0.1 Hz) to arrhythmogenesis. Sympathetic provocation has been shown to enhance both LF oscillations of action potential duration (APD) and beat-to-beat variability (BVR) in humans. We hypothesized that beta-adrenergic blockade would reduce LF oscillations of APD and BVR of APD in humans and that the two processes might be linked. METHODS AND RESULTS Twelve patients with normal ventricles were studied during routine electrophysiological procedures. Activation-recovery intervals (ARI) as a conventional surrogate for APD were recorded from 10 left and 10 right ventricular endocardial sites before and after acute beta-adrenergic adrenergic blockade. Cycle length was maintained constant with right ventricular pacing. Oscillatory behavior of ARI was quantified by spectral analysis and BVR as the short-term variability. Beta-adrenergic blockade reduced LF ARI oscillations (8.6 ± 4.5 ms2 vs. 5.5 ± 3.5 ms2, p = 0.027). A significant correlation was present between the initial control values and reduction seen following beta-adrenergic blockade in LF ARI (r s = 0.62, p = 0.037) such that when initial values are high the effect is greater. A similar relationship was also seen in the beat-to beat variability of ARI (r s = 0.74, p = 0.008). There was a significant correlation between the beta-adrenergic blockade induced reduction in LF power of ARI and the witnessed reduction of beat-to-beat variability of ARI (r s = 0.74, p = 0.01). These clinical results accord with recent computational modeling studies which provide mechanistic insight into the interactions of LF oscillations and beat-to-beat variability of APD at the cellular level. CONCLUSION Beta-adrenergic blockade reduces LF oscillatory behavior of APD (ARI) in humans in vivo. Our results support the importance of LF oscillations in modulating the response of BVR to beta-adrenergic blockers, suggesting that LF oscillations may play role in modulating beta-adrenergic mechanisms underlying BVR.
Collapse
Affiliation(s)
| | - Bradley Porter
- School of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
| | - Esther Pueyo
- BSICOS Group, I3A, IIS Aragón, University of Zaragoza, Zaragoza, Spain
- CIBER-BBN, Madrid, Spain
| | | | | | - Baldeep Sidhu
- School of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
| | - Justin Gould
- School of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
| | - Michele Orini
- Department of Clinical Pharmacology, Queen Mary University of London, London, United Kingdom
| | - Martin J. Bishop
- School of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
| | - Ben Hanson
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Pier Lambiase
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Reza Razavi
- School of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
| | | | | | - Peter Taggart
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| |
Collapse
|
9
|
Sampedro-Puente DA, Fernandez-Bes J, Szentandrássy N, Nánási P, Taggart P, Pueyo E. Time Course of Low-Frequency Oscillatory Behavior in Human Ventricular Repolarization Following Enhanced Sympathetic Activity and Relation to Arrhythmogenesis. Front Physiol 2020; 10:1547. [PMID: 32009971 PMCID: PMC6971219 DOI: 10.3389/fphys.2019.01547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/09/2019] [Indexed: 11/21/2022] Open
Abstract
Background and Objectives: Recent studies in humans and dogs have shown that ventricular repolarization exhibits a low-frequency (LF) oscillatory pattern following enhanced sympathetic activity, which has been related to arrhythmic risk. The appearance of LF oscillations in ventricular repolarization is, however, not immediate, but it may take up to some minutes. This study seeks to characterize the time course of the action potential (AP) duration (APD) oscillatory behavior in response to sympathetic provocations, unveil its underlying mechanisms and establish a potential link to arrhythmogenesis under disease conditions. Materials and Methods: A representative set of human ventricular computational models coupling cellular electrophysiology, calcium dynamics, β-adrenergic signaling, and mechanics was built. Sympathetic provocation was modeled via phasic changes in β-adrenergic stimulation (β-AS) and mechanical stretch at Mayer wave frequencies within the 0.03–0.15 Hz band. Results: Our results show that there are large inter-individual differences in the time lapse for the development of LF oscillations in APD following sympathetic provocation, with some cells requiring just a few seconds and other cells needing more than 3 min. Whereas, the oscillatory response to phasic mechanical stretch is almost immediate, the response to β-AS is much more prolonged, in line with experimentally reported evidences, thus being this component the one driving the slow development of APD oscillations following enhanced sympathetic activity. If β-adrenoceptors are priorly stimulated, the time for APD oscillations to become apparent is remarkably reduced, with the oscillation time lapse being an exponential function of the pre-stimulation level. The major mechanism underlying the delay in APD oscillations appearance is related to the slow IKs phosphorylation kinetics, with its relevance being modulated by the IKs conductance of each individual cell. Cells presenting short oscillation time lapses are commonly associated with large APD oscillation magnitudes, which facilitate the occurrence of pro-arrhythmic events under disease conditions involving calcium overload and reduced repolarization reserve. Conclusions: The time course of LF oscillatory behavior of APD in response to increased sympathetic activity presents high inter-individual variability, which is associated with different expression and PKA phosphorylation kinetics of the IKs current. Short time lapses in the development of APD oscillations are associated with large oscillatory magnitudes and pro-arrhythmic risk under disease conditions.
Collapse
Affiliation(s)
| | | | - Norbert Szentandrássy
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Péter Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Peter Taggart
- Department of Cardiovascular Sciences, University College London, London, United Kingdom
| | - Esther Pueyo
- BSICOS Group, I3A, IIS Aragón, University of Zaragoza, Zaragoza, Spain.,Center for Biomedical Research in the Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|
10
|
Palacios S, Caiani EG, Landreani F, Martínez JP, Pueyo E. Long-Term Microgravity Exposure Increases ECG Repolarization Instability Manifested by Low-Frequency Oscillations of T-Wave Vector. Front Physiol 2019; 10:1510. [PMID: 31920714 PMCID: PMC6928004 DOI: 10.3389/fphys.2019.01510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/29/2019] [Indexed: 11/13/2022] Open
Abstract
Ventricular arrhythmias and sudden cardiac death during long-term space missions are a major concern for space agencies. Long-duration spaceflight and its ground-based analog head-down bed rest (HDBR) have been reported to markedly alter autonomic and cardiac functioning, particularly affecting ventricular repolarization of the electrocardiogram (ECG). In this study, novel methods are developed, departing from previously published methodologies, to quantify the index of Periodic Repolarization Dynamics (PRD), an arrhythmic risk marker that characterizes sympathetically-mediated low-frequency oscillations in the T-wave vector. PRD is evaluated in ECGs from 42 volunteers at rest and during an orthostatic tilt table test recorded before and after 60-day –6° HDBR. Our results indicate that tilt test, on top of enhancing sympathetic regulation of heart rate, notably increases PRD, both before and after HDBR, thus supporting previous evidence on PRD being an indicator of sympathetic modulation of ventricular repolarization. Importantly, long-term microgravity exposure is shown to lead to significant increases in PRD, both when evaluated at rest and, even more notably, in response to tilt test. The extent of microgravity-induced changes in PRD has been associated with arrhythmic risk in prior studies. An exercise-based, but not a nutrition-based, countermeasure is able to partially reverse microgravity-induced effects on PRD. In conclusion, long-term exposure to microgravity conditions leads to elevated low-frequency oscillations of ventricular repolarization, which are potentiated following sympathetic stimulation and are related to increased risk for repolarization instabilities and arrhythmias. Tested countermeasures are only partially effective in counteracting microgravity effects.
Collapse
Affiliation(s)
- Saúl Palacios
- BSICoS Group, Aragón Institute of Engineering Research, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Enrico G Caiani
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Federica Landreani
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Juan Pablo Martínez
- BSICoS Group, Aragón Institute of Engineering Research, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| | - Esther Pueyo
- BSICoS Group, Aragón Institute of Engineering Research, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| |
Collapse
|
11
|
Bauer A, Klemm M, Rizas KD, Hamm W, von Stülpnagel L, Dommasch M, Steger A, Lubinski A, Flevari P, Harden M, Friede T, Kääb S, Merkely B, Sticherling C, Willems R, Huikuri H, Malik M, Schmidt G, Zabel M. Prediction of mortality benefit based on periodic repolarisation dynamics in patients undergoing prophylactic implantation of a defibrillator: a prospective, controlled, multicentre cohort study. Lancet 2019; 394:1344-1351. [PMID: 31488371 DOI: 10.1016/s0140-6736(19)31996-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND A small proportion of patients undergoing primary prophylactic implantation of implantable cardioverter defibrillators (ICDs) experiences malignant arrhythmias. We postulated that periodic repolarisation dynamics, a novel marker of sympathetic-activity-associated repolarisation instability, could be used to identify electrically vulnerable patients who would benefit from prophylactic implantation of ICDs by way of a reduction in mortality. METHODS We did a prespecified substudy of EUropean Comparative Effectiveness Research to Assess the Use of Primary ProphylacTic Implantable Cardioverter Defibrillators (EU-CERT-ICD), a prospective, investigator-initiated, non-randomised, controlled cohort study done at 44 centres in 15 EU countries. Patients aged 18 years or older with ischaemic or non-ischaemic cardiomyopathy and reduced left ventricular ejection fraction (≤35%) were eligible for inclusion if they met guideline-based criteria for primary prophylactic implantation of ICDs. Periodic repolarisation dynamics from 24-h Holter recordings were assessed blindly in patients the day before ICD implantation or on the day of study enrolment in patients who were conservatively managed. The primary endpoint was all-cause mortality. Propensity scoring and multivariable models were used to assess the interaction between periodic repolarisation dynamics and the treatment effect of ICDs on mortality. FINDINGS Between May 12, 2014, and Sept 7, 2018, 1371 patients were enrolled in our study. 968 of these patients underwent ICD implantation, and 403 were treated conservatively. During follow-up (median 2·7 years [IQR 2·0-3·3] in the ICD group and 1·2 years [0·8-2·7] in the control group), 138 (14%) patients died in the ICD group and 64 (16%) patients died in the control group. We noted a 43% reduction in mortality in the ICD group compared with the control group (adjusted hazard ratio [HR] 0·57 [95% CI 0·41-0·79]; p=0·0008). Periodic repolarisation dynamics significantly predicted the treatment effect of ICDs on mortality (adjusted p=0·0307). The mortality benefits associated with ICD implantation were greater in patients with periodic repolarisation dynamics of 7·5 deg or higher (n=199; adjusted HR 0·25 [95% CI 0·13-0·47] for the ICD group vs the control group; p<0·0001) than in those with periodic repolarisation dynamics less than 7·5 deg (n=1166; adjusted HR 0·69 [95% CI 0·47-1·00]; p=0·0492; pinteraction=0·0056). The number needed to treat was 18·3 (95% CI 10·6-4895·3) in patients with periodic repolarisation dynamics less than 7·5 deg and 3·1 (2·6-4·8) in those with periodic repolarisation dynamics of 7·5 deg or higher. INTERPRETATION Periodic repolarisation dynamics predict mortality reductions associated with prophylactic implantation of ICDs in contemporarily treated patients with ischaemic or non-ischaemic cardiomyopathy. Periodic repolarisation dynamics could help to guide treatment decisions about prophylactic ICD implantation. FUNDING The European Community's 7th Framework Programme.
Collapse
Affiliation(s)
- Axel Bauer
- Medizinische Klinik und Poliklinik I, Munich University Clinic, Munich, Germany; University Hospital for Internal Medicine III, Medical University Innsbruck, Innsbruck, Austria; German Center for Cardiovascular Research partner site, Munich Heart Alliance, Munich, Germany.
| | - Mathias Klemm
- Medizinische Klinik und Poliklinik I, Munich University Clinic, Munich, Germany; German Center for Cardiovascular Research partner site, Munich Heart Alliance, Munich, Germany
| | - Konstantinos D Rizas
- Medizinische Klinik und Poliklinik I, Munich University Clinic, Munich, Germany; German Center for Cardiovascular Research partner site, Munich Heart Alliance, Munich, Germany
| | - Wolfgang Hamm
- Medizinische Klinik und Poliklinik I, Munich University Clinic, Munich, Germany; German Center for Cardiovascular Research partner site, Munich Heart Alliance, Munich, Germany
| | - Lukas von Stülpnagel
- Medizinische Klinik und Poliklinik I, Munich University Clinic, Munich, Germany; German Center for Cardiovascular Research partner site, Munich Heart Alliance, Munich, Germany; Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany
| | - Michael Dommasch
- German Center for Cardiovascular Research partner site, Munich Heart Alliance, Munich, Germany; Klinikum rechts der Isar, Medizinische Klinik und Poliklinik I, Technical University of Munich, Munich, Germany
| | - Alexander Steger
- German Center for Cardiovascular Research partner site, Munich Heart Alliance, Munich, Germany; Klinikum rechts der Isar, Medizinische Klinik und Poliklinik I, Technical University of Munich, Munich, Germany
| | - Andrezej Lubinski
- Department of Cardiology, Medical University of Lodz Hospital, Lodz, Poland
| | - Panagiota Flevari
- Second Department of Cardiology, Attikon University Hospital, Athens, Greece
| | - Markus Harden
- Department of Medical Statistics, Heart Center University Medical Center Göttingen, Göttingen, Germany; German Center for Cardiovascular Research partner site Göttingen, Göttingen, Germany
| | - Tim Friede
- Department of Medical Statistics, Heart Center University Medical Center Göttingen, Göttingen, Germany; German Center for Cardiovascular Research partner site Göttingen, Göttingen, Germany
| | - Stefan Kääb
- Medizinische Klinik und Poliklinik I, Munich University Clinic, Munich, Germany; German Center for Cardiovascular Research partner site, Munich Heart Alliance, Munich, Germany
| | - Bela Merkely
- Department of Cardiology, Semmelweis University Heart Center, Budapest, Hungary
| | | | - Rik Willems
- University Hospitals of Leuven, Leuven, Belgium
| | - Heikki Huikuri
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Marek Malik
- Heart and Lung Institute, Imperial College London, London, UK
| | - Georg Schmidt
- German Center for Cardiovascular Research partner site, Munich Heart Alliance, Munich, Germany; Klinikum rechts der Isar, Medizinische Klinik und Poliklinik I, Technical University of Munich, Munich, Germany
| | - Markus Zabel
- Department of Cardiology and Pneumology, Heart Center University Medical Center Göttingen, Göttingen, Germany; German Center for Cardiovascular Research partner site Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Sprenkeler DJ, Beekman JDM, Bossu A, Dunnink A, Vos MA. Pro-Arrhythmic Ventricular Remodeling Is Associated With Increased Respiratory and Low-Frequency Oscillations of Monophasic Action Potential Duration in the Chronic Atrioventricular Block Dog Model. Front Physiol 2019; 10:1095. [PMID: 31507455 PMCID: PMC6716537 DOI: 10.3389/fphys.2019.01095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/08/2019] [Indexed: 11/13/2022] Open
Abstract
In addition to beat-to-beat fluctuations, action potential duration (APD) oscillates at (1) a respiratory frequency and (2) a low frequency (LF) (<0.1 Hz), probably caused by bursts of sympathetic nervous system discharge. This study investigates whether ventricular remodeling in the chronic AV block (CAVB) dog alters these oscillations of APD and whether this has consequences for arrhythmogenesis. We performed a retrospective analysis of 39 dog experiments in sinus rhythm (SR), acute AV block (AAVB), and after 2 weeks of chronic AV block. Spectral analysis of left ventricular monophasic action potential duration (LV MAPD) was done to quantify respiratory frequency (RF) power and LF power. Dofetilide (0.025 mg/kg in 5 min) was infused to test for inducibility of Torsade de Pointes (TdP) arrhythmias. RF power was significantly increased at CAVB compared to AAVB and SR (log[RF] of -1.13 ± 1.62 at CAVB vs. log[RF] of -2.82 ± 1.24 and -3.29 ± 1.29 at SR and AAVB, respectively, p < 0.001). LF power was already significantly increased at AAVB and increased even further at CAVB (-3.91 ± 0.70 at SR vs. -2.52 ± 0.85 at AAVB and -1.14 ± 1.62 at CAVB, p < 0.001). In addition, LF power was significantly larger in inducible CAVB dogs (log[LF] -0.6 ± 1.54 in inducible dogs vs. -2.56 ± 0.43 in non-inducible dogs, p < 0.001). In conclusion, ventricular remodeling in the CAVB dog results in augmentation of respiratory and low-frequency (LF) oscillations of LV MAPD. Furthermore, TdP-inducible CAVB dogs show increased LF power.
Collapse
Affiliation(s)
- David Jaap Sprenkeler
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jet D M Beekman
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Alexandre Bossu
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Albert Dunnink
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marc A Vos
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
13
|
Sampedro-Puente DA, Fernandez-Bes J, Porter B, van Duijvenboden S, Taggart P, Pueyo E. Mechanisms Underlying Interactions Between Low-Frequency Oscillations and Beat-to-Beat Variability of Celullar Ventricular Repolarization in Response to Sympathetic Stimulation: Implications for Arrhythmogenesis. Front Physiol 2019; 10:916. [PMID: 31427979 PMCID: PMC6687852 DOI: 10.3389/fphys.2019.00916] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Background and Objectives: Enhanced beat-to-beat variability of ventricular repolarization (BVR) has been linked to arrhythmias and sudden cardiac death. Recent experimental studies on human left ventricular epicardial electrograms have shown that BVR closely interacts with low-frequency (LF) oscillations of activation recovery interval during sympathetic provocation. In this work human ventricular computational cell models are developed to reproduce the experimentally observed interactions between BVR and its LF oscillations, to assess underlying mechanisms and to establish a relationship with arrhythmic risk. Materials and Methods: A set of human ventricular action potential (AP) models covering a range of experimental electrophysiological characteristics was constructed. These models incorporated stochasticity in major ionic currents as well as descriptions of β-adrenergic stimulation and mechanical effects to investigate the AP response to enhanced sympathetic activity. Statistical methods based on Automatic Relevance Determination and Canonical Correlation Analysis were developed to unravel individual and common factors contributing to BVR and LF patterning of APD in response to sympathetic provocation. Results: Simulated results reproduced experimental evidences on the interactions between BVR and LF oscillations of AP duration (APD), with replication of the high inter-individual variability observed in both phenomena. ICaL, IKr and IK1 currents were identified as common ionic modulators of the inter-individual differences in BVR and LF oscillatory behavior and were shown to be crucial in determining susceptibility to arrhythmogenic events. Conclusions: The calibrated family of human ventricular cell models proposed in this study allows reproducing experimentally reported interactions between BVR and LF oscillations of APD. Ionic factors involving ICaL, IKr and IK1 currents are found to underlie correlated increments in both phenomena in response to sympathetic provocation. A link to arrhythmogenesis is established for concomitantly elevated levels of BVR and its LF oscillations.
Collapse
Affiliation(s)
| | | | - Bradley Porter
- Department of Imaging Sciences and Biomedical Engineering, Kings College London, London, United Kingdom
| | | | - Peter Taggart
- Department of Cardiovascular Sciences, University College London, London, United Kingdom
| | - Esther Pueyo
- BSICOS Group, I3A, IIS Aragón, University of Zaragoza, Zaragoza, Spain.,CIBER-BBN, Madrid, Spain
| |
Collapse
|
14
|
El-Hamad F, Javorka M, Czippelova B, Krohova J, Turianikova Z, Porta A, Baumert M. Repolarization variability independent of heart rate during sympathetic activation elicited by head-up tilt. Med Biol Eng Comput 2019; 57:1753-1762. [PMID: 31187400 DOI: 10.1007/s11517-019-01998-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 05/22/2019] [Indexed: 12/22/2022]
Abstract
The fraction of repolarization variability independent of RR interval variability is of clinical interest. It has been linked to direct autonomic nervous system (ANS) regulation of the ventricles in healthy subjects and seems to reflect the instability of the ventricular repolarization process in heart disease. In this study, we sought to identify repolarization measures that best reflect the sympathetic influences on the ventricles independent of the RR interval. ECG was recorded in 46 young subjects during supine and then following 45 degrees head-up tilt. RR intervals and five repolarization features (QTend, QTpeak, RTend, RTpeak, and TpTe) were extracted from the ECG recordings. Repolarization variability was separated into RR-dependent and RR-independent variability using parametric spectral analysis. Results show that LF power of TpTe is independent of RR in both supine and tilt, while the LF power of QTend and RTend independent of RR and respiration increases following tilt. We conclude that TpTe is independent of RR and is highly affected by respiration. QTend and RTend LF power might reflect the sympathetic influences on the ventricles elicited by tilt. Graphical abstract.
Collapse
Affiliation(s)
- Fatima El-Hamad
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Michal Javorka
- Department of Physiology and Biomedical Center BioMed Martin, Jessenius Faculty of Medicine, Comenius University, Mala Hora 4C, 036 01, Martin, Slovakia
| | - Barbora Czippelova
- Department of Physiology and Biomedical Center BioMed Martin, Jessenius Faculty of Medicine, Comenius University, Mala Hora 4C, 036 01, Martin, Slovakia
| | - Jana Krohova
- Department of Physiology and Biomedical Center BioMed Martin, Jessenius Faculty of Medicine, Comenius University, Mala Hora 4C, 036 01, Martin, Slovakia
| | - Zuzana Turianikova
- Department of Physiology and Biomedical Center BioMed Martin, Jessenius Faculty of Medicine, Comenius University, Mala Hora 4C, 036 01, Martin, Slovakia
| | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Mathias Baumert
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|