1
|
Ohya S, Kito H, Kajikuri J, Yamaguchi Y, Matsui M. Transcriptional Up-Regulation of FBXW7 by K Ca1.1 K + Channel Inhibition through the Nrf2 Signaling Pathway in Human Prostate Cancer LNCaP Cell Spheroid Model. Int J Mol Sci 2024; 25:6019. [PMID: 38892210 PMCID: PMC11172474 DOI: 10.3390/ijms25116019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The tumor suppressor gene F-box and WD repeat domain-containing (FBXW) 7 reduces cancer stemness properties by promoting the protein degradation of pluripotent stem cell markers. We recently demonstrated the transcriptional repression of FBXW7 by the three-dimensional (3D) spheroid formation of several cancer cells. In the present study, we found that the transcriptional activity of FBXW7 was promoted by the inhibition of the Ca2+-activated K+ channel, KCa1.1, in a 3D spheroid model of human prostate cancer LNCaP cells through the Akt-Nrf2 signaling pathway. The transcriptional activity of FBXW7 was reduced by the siRNA-mediated inhibition of the CCAAT-enhancer-binding protein C/EBP δ (CEBPD) after the transfection of miR223 mimics in the LNCaP spheroid model, suggesting the transcriptional regulation of FBXW7 through the Akt-Nrf2-CEBPD-miR223 transcriptional axis in the LNCaP spheroid model. Furthermore, the KCa1.1 inhibition-induced activation of FBXW7 reduced (1) KCa1.1 activity and protein levels in the plasma membrane and (2) the protein level of the cancer stem cell (CSC) markers, c-Myc, which is a molecule degraded by FBXW7, in the LNCaP spheroid model, indicating that KCa1.1 inhibition-induced FBXW7 activation suppressed CSC conversion in KCa1.1-positive cancer cells.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (H.K.); (J.K.); (Y.Y.); (M.M.)
| | | | | | | | | |
Collapse
|
2
|
Khan AF, Karami S, Peidl AS, Waiters KD, Babajide MF, Bawa-Khalfe T. Androgen Receptor in Hormone Receptor-Positive Breast Cancer. Int J Mol Sci 2023; 25:476. [PMID: 38203649 PMCID: PMC10779387 DOI: 10.3390/ijms25010476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Breast cancer subtypes expressing hormone receptors (HR+ BCa) have a good prognosis and respond to first-line endocrine therapy (ET). However, the majority of HR+ BCa patients exhibit intrinsic or acquired ET resistance (ET-R) and rapid onset of incurable metastatic BCa. With the failure of conventional ET, limited targeted therapy exists for ET-R HR+ BCa patients. The androgen receptor (AR) in HR-negative BCa subtypes is emerging as an attractive alternative target for therapy. The AR drives Luminal AR (LAR) triple-negative breast cancer progression, and LAR patients consistently exhibit positive clinical benefits with AR antagonists in clinical trials. In contrast, the function of the AR in HR+ BCa is more conflicting. AR in HR+ BCa correlates with a favorable prognosis, and yet, the AR supports the development of ET-R BCa. While AR antagonists were ineffective, ongoing clinical trials with a selective AR modulator have shown promise for HR+ BCa patients. To understand the incongruent actions of ARs in HR+ BCa, the current review discusses how the structure and post-translational modification impact AR function. Additionally, completed and ongoing clinical trials with FDA-approved AR-targeting agents for BCa are presented. Finally, we identify promising investigational small molecules and chimera drugs for future HR+ BCa therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Tasneem Bawa-Khalfe
- Center for Nuclear Receptors & Cell Signaling, Department of Biology & Biochemistry, University of Houston, 3517 Cullen Blvd, SERC Bldg., Rm 3010, Houston, TX 77204-5056, USA (K.D.W.)
| |
Collapse
|
3
|
Alhammad R. Bioinformatics Analysis of the Prognostic Significance of CAND1 in ERα-Positive Breast Cancer. Diagnostics (Basel) 2022; 12:diagnostics12102327. [PMID: 36292029 PMCID: PMC9600875 DOI: 10.3390/diagnostics12102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 12/04/2022] Open
Abstract
The identification of novel prognostic biomarkers for breast cancer is an unmet clinical need. Cullin-associated and neddylation-dissociated 1 (CAND1) has been implicated in mediating carcinogenesis in prostate and lung cancers. In addition, CAND1 is an established prognostic biomarker for worse prognosis in liver cancer. However, the prognostic significance of CAND1 in breast cancer has not yet been explored. In this study, Breast Cancer Gene-Expression Miner (Bc-GenExMiner) and TIMER2.0 were utilized to explore the mRNA expression of CAND1 in ERα-positive breast cancer patients. The Kaplan–Meier plotter was used to explore the relationship between CAND1 expression and several prognostic indicators. The Gene Set Cancer Analysis (GSCA) web server was then used to explore the pathways of the genes that correlate with CAND1 in ERα-positive breast cancer. Immune infiltration was investigated using Bc-GenExMiner. Our bioinformatics analysis illustrates that breast cancer patients have higher CAND1 compared to normal breast tissue and that ERα-positive breast cancer patients with a high expression of CAND1 have poor overall survival (OS), distant metastasis-free survival (DMFS), and relapse-free survival (RFS) outcomes. Higher CAND1 expression was observed in histologic grade 3 compared to grades 2 and 1. Our results revealed that CAND1 positively correlates with lymph nodes and negatively correlates with the infiltration of immune cells, which is in agreement with published reports. Our findings suggest that CAND1 might mediate invasion and metastasis in ERα-positive breast cancer, possibly through the activation of estrogen and androgen signaling pathways; however, experiments should be carried out to further explore the role of CAND1 in activating the androgen and estrogen signaling pathways. In conclusion, the results suggest that CAND1 could be used as a potential novel biomarker for worse prognosis in ERα-positive breast cancer.
Collapse
Affiliation(s)
- Rashed Alhammad
- Department of Pharmacology, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| |
Collapse
|
4
|
Matsuoka H, Harada K, Sugawara A, Kim D, Inoue M. Expression of p11 and heteromeric TASK channels in mouse adrenal cortical cells and H295R cells. Acta Histochem 2022; 124:151898. [PMID: 35526370 DOI: 10.1016/j.acthis.2022.151898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022]
Abstract
TWIK-related acid-sensitive K+ (TASK) channels are thought to contribute to the resting membrane potential in adrenal cortical (AC) cells. However, the molecular identity of TASK channels in AC cells have not yet been elucidated. Thus, immunocytochemical and molecular biological approaches were employed to investigate the expression and intracellular distribution of TASK1 and TASK3 in mouse AC cells and H295R cells derived from human adrenocortical carcinoma. Immunocytochemical study revealed that immunoreactive materials were mainly located in the cytoplasm for TASK1 and at the cell periphery for TASK3 in mouse AC cells. A similar pattern of localization was observed when GFP-TASK1 and GFP-TASK3 were exogenously expressed in H295R cells. In addition, p11 that is known to suppress the endoplasmic reticulum exit of TASK1 was localized in the cytoplasm in mouse AC and H295R cells, but not in adrenal medullary cells. Proximity ligation assay (PLA) suggested formation of heteromeric TASK1-3 channels that were found predominantly in the cytoplasm and weakly at the cell periphery. A similar distribution was observed following exogenous expression of tandem TASK1-3 channels in H295R cells. When stimulated by angiotensin II, however, tandem TASK1-3 channels were present mainly in the cytoplasm in all H295R cells. In contrast to that in H295R cells, tandem channels were exclusively located at the cell periphery in all non-stimulated and exclusively in the cytoplasm in stimulated PC12 cells, respectively. From these results, we conclude that TASK1 proteins are present mainly in the cytoplasm and minimally at the cell periphery as a heteromeric channel with TASK3, whereas the majority of TASK3 is at the cell periphery as homomeric and heteromeric channels.
Collapse
Affiliation(s)
- Hidetada Matsuoka
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan
| | - Keita Harada
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan
| | - Akira Sugawara
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medical Science, Sendai 980-8575, Japan
| | - Donghee Kim
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064-3095, USA
| | - Masumi Inoue
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan.
| |
Collapse
|
5
|
Lustofin S, Kaminska A, Brzoskwinia M, Pardyak L, Pawlicki P, Szpregiel I, Bilinska B, Hejmej A. Follicle-stimulating hormone regulates Notch signalling in the seminiferous epithelium of continuously and seasonally breeding rodents. Reprod Fertil Dev 2022; 34:560-575. [PMID: 35143740 DOI: 10.1071/rd21237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022] Open
Abstract
CONTEXT Juxtacrine (contact-dependent) communication between the cells of seminiferous epithelium mediated by Notch signalling is of importance for the proper course of spermatogenesis in mammals. AIMS The present study was designed to evaluate the role of follicle-stimulating hormone (FSH) in the regulation of Notch signalling in rodent seminiferous epithelium. METHODS We explored the effects (1) of pharmacological inhibition of the hypothalamus-pituitary-gonadal (HPG) axis and FSH replacement in pubertal rats, and (2) of photoinhibition of HPG axis followed by FSH substitution in seasonally breeding rodents, bank voles, on Notch pathway activity. Experiments on isolated rat Sertoli cells exposed to FSH were also performed. Gene and protein expressions of Notch pathway components were analysed using RT-qPCR, western blot and immunohistochemistry/immunofluorescence. KEY RESULTS Distribution patterns of Notch pathway proteins in bank vole and rat seminiferous epithelium were comparable; however, levels of activated Notch1 and Notch3, hairy/enhancer of split 1 (HES1) and hairy/enhancer of split-related with YRPW motif 1 (HEY1) in bank voles were dependent on the length of the photoperiod. In response to FSH similar changes in these proteins were found in both species, indicating that FSH is a negative regulator of Notch pathway activity in seminiferous epithelium. CONCLUSIONS Our results support a common mechanism of FSH action on Notch pathway during onset and recrudescence of spermatogenesis in rodents. IMPLICATIONS Interaction between FSH signalling and Notch pathway in Sertoli cells may be involved in spermatogenic activity changes of the testes occurring during puberty or photoperiod shift in continuously and seasonally breeding rodents, respectively.
Collapse
Affiliation(s)
- Sylwia Lustofin
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Alicja Kaminska
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Malgorzata Brzoskwinia
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Laura Pardyak
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, 30-248 Krakow, Poland
| | - Piotr Pawlicki
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, 30-248 Krakow, Poland
| | - Izabela Szpregiel
- Department of Animal Physiology and Endocrinology, Faculty of Animal Science, University of Agriculture in Krakow, 30-059 Krakow, Poland
| | - Barbara Bilinska
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Anna Hejmej
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| |
Collapse
|
6
|
Ohya S, Kajikuri J, Endo K, Kito H, Matsui M. K Ca1.1 K + Channel Inhibition Overcomes Resistance to Antiandrogens and Doxorubicin in a Human Prostate Cancer LNCaP Spheroid Model. Int J Mol Sci 2021; 22:13553. [PMID: 34948357 PMCID: PMC8706449 DOI: 10.3390/ijms222413553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022] Open
Abstract
Several types of K+ channels play crucial roles in tumorigenicity, stemness, invasiveness, and drug resistance in cancer. Spheroid formation of human prostate cancer (PC) LNCaP cells with ultra-low attachment surface cultureware induced the up-regulation of cancer stem cell markers, such as NANOG, and decreased the protein degradation of the Ca2+-activated K+ channel KCa1.1 by down-regulating the E3 ubiquitin ligase, FBXW7, compared with LNCaP monolayers. Accordingly, KCa1.1 activator-induced hyperpolarizing responses were larger in isolated cells from LNCaP spheroids. The pharmacological inhibition of KCa1.1 overcame the resistance of LNCaP spheroids to antiandrogens and doxorubicin (DOX). The protein expression of androgen receptors (AR) was significantly decreased by LNCaP spheroid formation and reversed by KCa1.1 inhibition. The pharmacological and genetic inhibition of MDM2, which may be related to AR protein degradation in PC stem cells, revealed that MDM2 was responsible for the acquisition of antiandrogen resistance in LNCaP spheroids, which was overcome by KCa1.1 inhibition. Furthermore, a member of the multidrug resistance-associated protein subfamily of ABC transporters, MRP5 was responsible for the acquisition of DOX resistance in LNCaP spheroids, which was also overcome by KCa1.1 inhibition. Collectively, the present results suggest the potential of KCa1.1 in LNCaP spheroids, which mimic PC stem cells, as a therapeutic target for overcoming antiandrogen- and DOX-resistance in PC cells.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (J.K.); (K.E.); (H.K.); (M.M.)
| | | | | | | | | |
Collapse
|
7
|
Ohya S, Kajikuri J, Endo K, Kito H, Elboray EE, Suzuki T. Ca 2+ -activated K + channel K Ca 1.1 as a therapeutic target to overcome chemoresistance in three-dimensional sarcoma spheroid models. Cancer Sci 2021; 112:3769-3783. [PMID: 34181803 PMCID: PMC8409426 DOI: 10.1111/cas.15046] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/05/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
The large‐conductance Ca2+‐activated K+ channel KCa1.1 plays a pivotal role in tumor development and progression in several solid cancers. The three‐dimensional (3D) in vitro cell culture system is a powerful tool for cancer spheroid formation, and mimics in vivo solid tumor resistance to chemotherapy in the tumor microenvironment (TME). KCa1.1 is functionally expressed in osteosarcoma and chondrosarcoma cell lines. KCa1.1 activator‐induced hyperpolarizing responses were significantly larger in human osteosarcoma MG‐63 cells isolated from 3D spheroid models compared with in those from adherent 2D monolayer cells. The present study investigated the mechanisms underlying the upregulation of KCa1.1 and its role in chemoresistance using a 3D spheroid model. KCa1.1 protein expression levels were significantly elevated in the lipid‐raft‐enriched compartments of MG‐63 spheroids without changes in its transcriptional level. 3D spheroid formation downregulated the expression of the ubiquitin E3 ligase FBXW7, which is an essential contributor to KCa1.1 protein degradation in breast cancer. The siRNA‐mediated inhibition of FBXW7 in MG‐63 cells from 2D monolayers upregulated KCa1.1 protein expression. Furthermore, a treatment with a potent and selective KCa1.1 inhibitor overcame the chemoresistance of the MG‐63 and human chondrosarcoma SW‐1353 spheroid models to paclitaxel, doxorubicin, and cisplatin. Among several multidrug resistance ATP‐binding cassette transporters, the expression of the multidrug resistance‐associated protein MRP1 was upregulated in both spheroids and restored by the inhibition of KCa1.1. Therefore, the pharmacological inhibition of KCa1.1 may be an attractive new strategy for acquiring resistance to chemotherapeutic drugs in the TME of KCa1.1‐positive sarcomas.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Junko Kajikuri
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kyoko Endo
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hiroaki Kito
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Elghareeb E Elboray
- Department of Complex Molecular Chemistry, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan.,Faculty of Science, South Valley University, Qena, Egypt
| | - Takayoshi Suzuki
- Department of Complex Molecular Chemistry, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| |
Collapse
|
8
|
Brumec M, Sobočan M, Takač I, Arko D. Clinical Implications of Androgen-Positive Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:1642. [PMID: 33915941 PMCID: PMC8037213 DOI: 10.3390/cancers13071642] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
This review summarizes the recent findings of a vast array of studies conducted on androgen receptor-positive triple-negative breast cancer (AR-positive TNBC) to provide a better understanding of this specific breast cancer subgroup. AR expression is correlated with higher age, lower histological grade, lower proliferation index Ki-67, spiculated masses, and calcifications on mammography. Studies investigating the correlation between AR expression and lymph node metastasis are highly discordant. In addition, results regarding prognosis are highly contradictory. AR antagonists are a promising novel therapeutic approach in AR-positive TNBC. However, AR signaling pathways should be more investigated in order to understand the influence of AR expression on TNBC more thoroughly.
Collapse
Affiliation(s)
- Maša Brumec
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia; (M.B.); (I.T.); (D.A.)
| | - Monika Sobočan
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia; (M.B.); (I.T.); (D.A.)
- Department of Pharmacology, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Divison of Gynecology and Perinatology, University Medical Centre Maribor, 2000 Maribor, Slovenia
| | - Iztok Takač
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia; (M.B.); (I.T.); (D.A.)
- Divison of Gynecology and Perinatology, University Medical Centre Maribor, 2000 Maribor, Slovenia
| | - Darja Arko
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia; (M.B.); (I.T.); (D.A.)
- Divison of Gynecology and Perinatology, University Medical Centre Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
9
|
Michmerhuizen AR, Spratt DE, Pierce LJ, Speers CW. ARe we there yet? Understanding androgen receptor signaling in breast cancer. NPJ Breast Cancer 2020; 6:47. [PMID: 33062889 PMCID: PMC7519666 DOI: 10.1038/s41523-020-00190-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022] Open
Abstract
The role of androgen receptor (AR) activation and expression is well understood in prostate cancer. In breast cancer, expression and activation of AR is increasingly recognized for its role in cancer development and its importance in promoting cell growth in the presence or absence of estrogen. As both prostate and breast cancers often share a reliance on nuclear hormone signaling, there is increasing appreciation of the overlap between activated cellular pathways in these cancers in response to androgen signaling. Targeting of the androgen receptor as a monotherapy or in combination with other conventional therapies has proven to be an effective clinical strategy for the treatment of patients with prostate cancer, and these therapeutic strategies are increasingly being investigated in breast cancer. This overlap suggests that targeting androgens and AR signaling in other cancer types may also be effective. This manuscript will review the role of AR in various cellular processes that promote tumorigenesis and metastasis, first in prostate cancer and then in breast cancer, as well as discuss ongoing efforts to target AR for the more effective treatment and prevention of cancer, especially breast cancer.
Collapse
Affiliation(s)
- Anna R Michmerhuizen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI USA
| | - Lori J Pierce
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI USA
| | - Corey W Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
10
|
Capatina AL, Lagos D, Brackenbury WJ. Targeting Ion Channels for Cancer Treatment: Current Progress and Future Challenges. Rev Physiol Biochem Pharmacol 2020; 183:1-43. [PMID: 32865696 DOI: 10.1007/112_2020_46] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ion channels are key regulators of cancer cell pathophysiology. They contribute to a variety of processes such as maintenance of cellular osmolarity and membrane potential, motility (via interactions with the cytoskeleton), invasion, signal transduction, transcriptional activity and cell cycle progression, leading to tumour progression and metastasis. Ion channels thus represent promising targets for cancer therapy. Ion channels are attractive targets because many of them are expressed at the plasma membrane and a broad range of existing inhibitors are already in clinical use for other indications. However, many of the ion channels identified in cancer cells are also active in healthy normal cells, so there is a risk that certain blockers may have off-target effects on normal physiological function. This review describes recent research advances into ion channel inhibitors as anticancer therapeutics. A growing body of evidence suggests that a range of existing and novel Na+, K+, Ca2+ and Cl- channel inhibitors may be effective for suppressing cancer cell proliferation, migration and invasion, as well as enhancing apoptosis, leading to suppression of tumour growth and metastasis, either alone or in combination with standard-of-care therapies. The majority of evidence to date is based on preclinical in vitro and in vivo studies, although there are several examples of ion channel-targeting strategies now reaching early phase clinical trials. Given the strong links between ion channel function and regulation of tumour growth, metastasis and chemotherapy resistance, it is likely that further work in this area will facilitate the development of new therapeutic approaches which will reach the clinic in the future.
Collapse
Affiliation(s)
| | - Dimitris Lagos
- Hull York Medical School, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - William J Brackenbury
- Department of Biology, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
11
|
Mohr CJ, Schroth W, Mürdter TE, Gross D, Maier S, Stegen B, Dragoi A, Steudel FA, Stehling S, Hoppe R, Madden S, Ruth P, Huber SM, Brauch H, Lukowski R. Subunits of BK channels promote breast cancer development and modulate responses to endocrine treatment in preclinical models. Br J Pharmacol 2020; 179:2906-2924. [PMID: 32468618 DOI: 10.1111/bph.15147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 03/20/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Pore-forming α subunits of the voltage- and Ca2+ -activated K+ channel with large conductance (BKα) promote malignant phenotypes of breast tumour cells. Auxiliary subunits such as the leucine-rich repeat containing 26 (LRRC26) protein, also termed BKγ1, may be required to permit activation of BK currents at a depolarized resting membrane potential that frequently occur in non-excitable tumour cells. EXPERIMENTAL APPROACH Anti-tumour effects of BKα loss were investigated in breast tumour-bearing MMTV-PyMT transgenic BKα knockout (KO) mice, primary MMTV-PyMT cell cultures, and in a syngeneic transplantation model of breast cancer derived from these cells. The therapeutic relevance of BK channels in the context of endocrine treatment was assessed in human breast cancer cell lines expressing either low (MCF-7) or high (MDA-MB-453) levels of BKα and BKγ1, as well as in BKα-negative MDA-MB-157. KEY RESULTS BKα promoted breast cancer onset and overall survival in preclinical models. Conversely, lack of BKα and/or knockdown of BKγ1 attenuated proliferation of murine and human breast cancer cells in vitro. At low concentrations, tamoxifen and its major active metabolites stimulated proliferation of BKα/γ1-positive breast cancer cells, independent of the genomic signalling controlled by the oestrogen receptor. Finally, tamoxifen increased the relative survival time of BKα KO but not of wild-type tumour cell recipient mice. CONCLUSION AND IMPLICATIONS Breast cancer initiation, progression, and tamoxifen sensitivity depend on functional BK channels thereby providing a rationale for the future exploration of the oncogenic actions of BK channels in clinical outcomes with anti-oestrogen therapy.
Collapse
Affiliation(s)
- Corinna J Mohr
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany.,Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Germany
| | - Werner Schroth
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Germany
| | - Thomas E Mürdter
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Germany
| | - Dominic Gross
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Selina Maier
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany.,Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Germany
| | - Benjamin Stegen
- Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Alice Dragoi
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Friederike A Steudel
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Severine Stehling
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Germany
| | - Stephen Madden
- RCSI Division of Population Health Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,iFIT-Cluster of Excellence, University of Tuebingen, Tuebingen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
12
|
Ohya S, Kito H, Kajikuri J. [Ca 2+-activated K + channels as cancer therapeutic targets]. Nihon Yakurigaku Zasshi 2019; 154:108-113. [PMID: 31527359 DOI: 10.1254/fpj.154.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Similar to calcium (Ca2+) and chloride (Cl-) ion channels/transporters, potassium (K+) channels have been recognized as a crucial cancer treatment target. Recent studies have provided convincing evidences of positive correlation between elevated expression levels of Ca2+-activated K+ (KCa) channels and cancer proliferation, metastasis, and poor patient prognosis. In cancer cells, KCa1.1 and KCa3.1 KCa channels are co-localized with Ca2+-permeable Orai/TRP channels to provide a positive-feedback loop for Ca2+ entry. They are responsible for the promotion of cell growth and metastasis in the different types of cancer, and are therefore potential therapeutic targets and biomarkers for cancer. We determined the epigenetic and post-transcriptional dysregulation of KCa3.1 by class I histone deacetylase inhibitors in breast and prostate cancer cells. We further determined the transcriptional repression and protein degradation of KCa1.1 by vitamin D receptor agonists and androgen receptor antagonists, which are expected as potential therapeutic drugs for triple-negative breast cancer. The anti-inflammatory cytokine, interleukin-10 (IL-10) is an immunosuppressive factor involved in tumorigenesis, and plays a crucial role in escape from tumor immune surveillance. We determined KCa3.1 activators are a possible therapeutic option to suppress the tumor-promoting activities of IL-10. These results may provide new insights into cancer treatment focused on Ca2+-activated K+ channels.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University
| | - Hiroaki Kito
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University
| | - Junko Kajikuri
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University
| |
Collapse
|
13
|
Haworth AS, Brackenbury WJ. Emerging roles for multifunctional ion channel auxiliary subunits in cancer. Cell Calcium 2019; 80:125-140. [PMID: 31071485 PMCID: PMC6553682 DOI: 10.1016/j.ceca.2019.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023]
Abstract
Several superfamilies of plasma membrane channels which regulate transmembrane ion flux have also been shown to regulate a multitude of cellular processes, including proliferation and migration. Ion channels are typically multimeric complexes consisting of conducting subunits and auxiliary, non-conducting subunits. Auxiliary subunits modulate the function of conducting subunits and have putative non-conducting roles, further expanding the repertoire of cellular processes governed by ion channel complexes to processes such as transcellular adhesion and gene transcription. Given this expansive influence of ion channels on cellular behaviour it is perhaps no surprise that aberrant ion channel expression is a common occurrence in cancer. This review will focus on the conducting and non-conducting roles of the auxiliary subunits of various Ca2+, K+, Na+ and Cl- channels and the burgeoning evidence linking such auxiliary subunits to cancer. Several subunits are upregulated (e.g. Cavβ, Cavγ) and downregulated (e.g. Kvβ) in cancer, while other subunits have been functionally implicated as oncogenes (e.g. Navβ1, Cavα2δ1) and tumour suppressor genes (e.g. CLCA2, KCNE2, BKγ1) based on in vivo studies. The strengthening link between ion channel auxiliary subunits and cancer has exposed these subunits as potential biomarkers and therapeutic targets. However further mechanistic understanding is required into how these subunits contribute to tumour progression before their therapeutic potential can be fully realised.
Collapse
Affiliation(s)
- Alexander S Haworth
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - William J Brackenbury
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
14
|
Bleach R, McIlroy M. The Divergent Function of Androgen Receptor in Breast Cancer; Analysis of Steroid Mediators and Tumor Intracrinology. Front Endocrinol (Lausanne) 2018; 9:594. [PMID: 30416486 PMCID: PMC6213369 DOI: 10.3389/fendo.2018.00594] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/19/2018] [Indexed: 12/16/2022] Open
Abstract
Androgen receptor (AR) is the most widely expressed steroid receptor protein in normal breast tissue and is detectable in approximately 90% of primary breast cancers and 75% of metastatic lesions. However, the role of AR in breast cancer development and progression is mired in controversy with evidence suggesting it can either inhibit or promote breast tumorigenesis. Studies have shown it to antagonize estrogen receptor alpha (ERα) DNA binding, thereby preventing pro-proliferative gene transcription; whilst others have demonstrated AR to take on the mantle of a pseudo ERα particularly in the setting of triple negative breast cancer. Evidence for a potentiating role of AR in the development of endocrine resistant breast cancer has also been mounting with reports associating high AR expression with poor response to endocrine treatment. The resurgence of interest into the function of AR in breast cancer has resulted in various emergent clinical trials evaluating anti-AR therapy and selective androgen receptor modulators in the treatment of advanced breast cancer. Trials have reported varied response rates dependent upon subtype with overall clinical benefit rates of ~19-29% for anti-androgen monotherapy, suggesting that with enhanced patient stratification AR could prove efficacious as a breast cancer therapy. Androgens and AR have been reported to facilitate tumor stemness in some cancers; a process which may be mediated through genomic or non-genomic actions of the AR, with the latter mechanism being relatively unexplored in breast cancer. Steroidogenic ligands of the AR are produced in females by the gonads and as sex-steroid precursors secreted from the adrenal glands. These androgens provide an abundant reservoir from which all estrogens are subsequently synthesized and their levels are undiminished in the event of standard hormonal therapeutic intervention in breast cancer. Steroid levels are known to be altered by lifestyle factors such as diet and exercise; understanding their potential role in dictating the function of AR in breast cancer development could therefore have wide-ranging effects in prevention and treatment of this disease. This review will outline the endogenous biochemical drivers of both genomic and non-genomic AR activation and how these may be modulated by current hormonal therapies.
Collapse
Affiliation(s)
| | - Marie McIlroy
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|