1
|
Joshi U, Jani D, George LB, Highland H. Human erythrocytes' perplexing behaviour: erythrocytic microRNAs. Mol Cell Biochem 2024:10.1007/s11010-024-05075-0. [PMID: 39037663 DOI: 10.1007/s11010-024-05075-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Erythrocytes have the potential role in erythropoiesis and disease diagnosis. Thought to have lacked nucleic acid content, mammalian erythrocytes are nevertheless able to function for 120-140 days, metabolize heme, maintain oxidative stress, and so on. Mysteriously, erythrocytes proved as largest repositories of microRNAs (miRNAs) some of which are selectively retained and function in mature erythrocytes. They have unique expression patterns and have been found to be linked to specific conditions such as sickle cell anaemia, high-altitude hypoxia, chronic mountain sickness, cardiovascular and metabolic conditions as well as host-parasite interactions. They also have been implicated in cell storage-related damage and the regulation of its survival. However, the mechanism by which miRNAs function in the cell remains unclear. Investigations into the molecular mechanism of miRNAs in erythrocytes via extracellular vesicles have provided important clues in research studies on Plasmodium infection. Erythrocytes are also the primary source of circulating miRNAs but, how they affect the plasma/serum miRNAs profiles are still poorly understood. Erythrocyte-derived exosomal miRNAs, can interact with various body cell types, and have easy access to all regions, making them potentially crucial in various pathophysiological conditions. Which can also improve our understanding to identify potential treatment options and discovery related to non-invasive diagnostic markers. This article emphasizes the importance of erythrocytic miRNAs while focusing on the enigmatic behaviour of erythrocytes. It also sheds light on how this knowledge may be applied in the future to enhance the state of erythrocyte translational research from the standpoint of erythrocytic miRNAs.
Collapse
Affiliation(s)
- Urja Joshi
- Department of Biochemistry, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| | - Dhara Jani
- Department of Zoology, Biomedical Technology, Human Genetics and WLC, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Linz-Buoy George
- Department of Zoology, Biomedical Technology, Human Genetics and WLC, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Hyacinth Highland
- Department of Zoology, Biomedical Technology, Human Genetics and WLC, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| |
Collapse
|
2
|
Jin X, Zhang Y, Wang D, Zhang X, Li Y, Wang D, Liang Y, Wang J, Zheng L, Song H, Zhu X, Liang J, Ma J, Gao J, Tong J, Shi L. Metabolite and protein shifts in mature erythrocyte under hypoxia. iScience 2024; 27:109315. [PMID: 38487547 PMCID: PMC10937114 DOI: 10.1016/j.isci.2024.109315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
As the only cell type responsible for oxygen delivery, erythrocytes play a crucial role in supplying oxygen to hypoxic tissues, ensuring their normal functions. Hypoxia commonly occurs under physiological or pathological conditions, and understanding how erythrocytes adapt to hypoxia is fundamental for exploring the mechanisms of hypoxic diseases. Additionally, investigating acute and chronic mountain sickness caused by plateaus, which are naturally hypoxic environments, will aid in the study of hypoxic diseases. In recent years, increasingly developed proteomics and metabolomics technologies have become powerful tools for studying mature enucleated erythrocytes, which has significantly contributed to clarifying how hypoxia affects erythrocytes. The aim of this article is to summarize the composition of the cytoskeleton and cytoplasmic proteins of hypoxia-altered erythrocytes and explore the impact of hypoxia on their essential functions. Furthermore, we discuss the role of microRNAs in the adaptation of erythrocytes to hypoxia, providing new perspectives on hypoxia-related diseases.
Collapse
Affiliation(s)
- Xu Jin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yingnan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Ding Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Xiaoru Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yue Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Di Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yipeng Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jingwei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Lingyue Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Haoze Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Xu Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jing Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jinfa Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| |
Collapse
|
3
|
Shao Y, Jiang Y, Yang K, Zhu Y, Liu Y, Zhang P, Lv L, Zhang X, Zhou Y. Apoptotic vesicles derived from human red blood cells promote bone regeneration via carbonic anhydrase 1. Cell Prolif 2024; 57:e13547. [PMID: 37697490 PMCID: PMC10849785 DOI: 10.1111/cpr.13547] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Apoptotic vesicles (apoVs) are nanoscale vesicles derived from billions of apoptotic cells involved in the maintenance of the human body's homeostasis. Previous researches have shown that some apoVs, such as those derived from mesenchymal stem cells, contribute to bone formation. However, those apoVs cannot be extracted from patients in large quantities, and cell expansion is needed before apoV isolation, which limits their clinical translation. Mature RBCs, which have no nuclei or genetic material, are easy to obtain, showing high biological safety as a source of extracellular vesicles (EVs). Previous studies have demonstrated that RBC-derived EVs have multiple biological functions, but it is unknown whether RBCs produce apoVs and what effect these apoVs have on bone regeneration. In this study, we isolated and characterized RBC-derived apoVs (RBC-apoVs) from human venous blood and investigated their role in the osteogenesis of human bone mesenchymal stem cells (hBMSCs). We showed that RBCs could produce RBC-apoVs that expressed both general apoVs markers and RBC markers. RBC-apoVs significantly promoted osteogenesis of hBMSCs and enhanced bone regeneration in rat calvarial defects. Mechanistically, RBC-apoVs regulated osteogenesis by transferring carbonic anhydrase 1 (CA1) into hBMSCs and activating the P38 MAPK pathway. Our results indicated that RBC-apoVs could deliver functional molecules from RBCs to hBMSCs and promote bone regeneration, pointing to possible therapeutic use in bone tissue engineering.
Collapse
Affiliation(s)
- Yuzi Shao
- Department of ProsthodonticsPeking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental MaterialsBeijingChina
| | - Yuhe Jiang
- Department of ProsthodonticsPeking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental MaterialsBeijingChina
| | - Kunkun Yang
- Department of ProsthodonticsPeking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental MaterialsBeijingChina
| | - Yuan Zhu
- Department of ProsthodonticsPeking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental MaterialsBeijingChina
| | - Yunsong Liu
- Department of ProsthodonticsPeking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental MaterialsBeijingChina
| | - Ping Zhang
- Department of ProsthodonticsPeking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental MaterialsBeijingChina
| | - Longwei Lv
- Department of ProsthodonticsPeking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental MaterialsBeijingChina
| | - Xiao Zhang
- Department of ProsthodonticsPeking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental MaterialsBeijingChina
| | - Yongsheng Zhou
- Department of ProsthodonticsPeking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental MaterialsBeijingChina
| |
Collapse
|
4
|
Krumm B, Saugy JJ, Botrè F, Donati F, Faiss R. Indirect biomarkers of blood doping: A systematic review. Drug Test Anal 2024; 16:49-64. [PMID: 37160638 DOI: 10.1002/dta.3514] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023]
Abstract
The detection of blood doping represents a current major issue in sports and an ongoing challenge for antidoping research. Initially focusing on direct detection methods to identify a banned substance or its metabolites, the antidoping effort has been progressively complemented by indirect approaches. The longitudinal and individual monitoring of specific biomarkers aims to identify nonphysiological variations that may be related to doping practices. From this perspective, the identification of markers sensitive to erythropoiesis alteration is key in the screening of blood doping. The current Athlete Biological Passport implemented since 2009 is composed of 14 variables (including two primary markers, i.e., hemoglobin concentration and OFF score) for the hematological module to be used for indirect detection of blood doping. Nevertheless, research has continually proposed and investigated new markers sensitive to an alteration of the erythropoietic cascade and specific to blood doping. If multiple early markers have been identified (at the transcriptomic level) or developed directly in a diagnostics' kit (at a proteomic level), other target variables at the end of the erythropoietic process (linked with the red blood cell functions) may strengthen the hematological module in the future. Therefore, this review aims to provide a global systematic overview of the biomarkers considered to date in the indirect investigation of blood doping.
Collapse
Affiliation(s)
- Bastien Krumm
- REDs, Research & Expertise in AntiDoping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Jonas J Saugy
- REDs, Research & Expertise in AntiDoping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Francesco Botrè
- REDs, Research & Expertise in AntiDoping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Francesco Donati
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Raphael Faiss
- REDs, Research & Expertise in AntiDoping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Hassanpour M, Salybekov AA. Whispers in the Blood: Leveraging MicroRNAs for Unveiling Autologous Blood Doping in Athletes. Int J Mol Sci 2023; 25:249. [PMID: 38203416 PMCID: PMC10779309 DOI: 10.3390/ijms25010249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
The prevalence of autologous blood transfusions (ABTs) presents a formidable challenge in maintaining fair competition in sports, as it significantly enhances hemoglobin mass and oxygen capacity. In recognizing ABT as a prohibited form of doping, the World Anti-Doping Agency (WADA) mandates stringent detection methodologies. While current methods effectively identify homologous erythrocyte transfusions, a critical gap persists in detecting autologous transfusions. The gold standard practice of longitudinally monitoring hematological markers exhibits promise but is encumbered by limitations. Despite its potential, instances of blood doping often go undetected due to the absence of definitive verification processes. Moreover, some cases remain unpenalized due to conservative athlete-sanctioning approaches. This gap underscores the imperative need for a more reliable and comprehensive detection method capable of unequivocally differentiating autologous transfusions, addressing the challenges faced in accurately identifying such prohibited practices. The development of an advanced detection methodology is crucial to uphold the integrity of anti-doping measures, effectively identifying and penalizing instances of autologous blood transfusion. This, in turn, safeguards the fairness and equality essential to competitive sports. Our review tackles this critical gap by harnessing the potential of microRNAs in ABT doping detection. We aim to summarize alterations in the total microRNA profiles of erythrocyte concentrates during storage and explore the viability of observing these changes post-transfusion. This innovative approach opens avenues for anti-doping technologies and commercialization, positioning it as a cornerstone in the ongoing fight against doping in sports and beyond. The significance of developing a robust detection method cannot be overstated, as it ensures the credibility of anti-doping efforts and promotes a level playing field for all athletes.
Collapse
|
6
|
Zhang L, Liu X, Wei Q, Zou L, Zhou L, Yu Y, Wang D. Arginine attenuates chronic mountain sickness in rats via microRNA-144-5p. Mamm Genome 2023; 34:76-89. [PMID: 36763178 DOI: 10.1007/s00335-023-09980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Hypobaric hypoxia is an environmental stress leading to high-altitude pulmonary hypertension. While high-altitude pulmonary hypertension has been linked to high hematocrit findings (chronic mountain sickness; CMS). The present study is designed to investigate the effect of arginine (ARG) on hypobaric hypoxia-induced CMS of rats. Hypobaric hypoxia resulted in lower body weight, decreased appetite, increased pulmonary artery pressure, and deteriorated lung tissue damage in rats. Red blood cells (RBC), hemoglobin, hematocrit, mean corpuscular volume, and mean corpuscular hemoglobin values and blood viscosity were increased in rats, which were alleviated by ARG. microRNA (miRNA) microarray analysis was used to filter differentially expressed miRNAs after ARG in rats. miR-144-5p was reduced under hypobaric hypoxia and upregulated by ARG. miR-144-5p silencing aggravated the erythrocytosis and hyperviscosity in rats, and also accentuated tissue damage and excessive accumulation of RBC. The role of miR-144-5p in rats with CMS was achieved by blocking erythropoietin (EPO)/erythropoietin receptor (EPOR). In conclusion, ARG alleviated CMS symptoms in rodents exposed to hypobaric hypoxia by decreasing EPO/EPOR via miR-144-5p.
Collapse
Affiliation(s)
- Leiying Zhang
- Chinese PLA Medical School, Beijing, 100039, People's Republic of China
- Department of Blood Transfusion, The First Medical Center of Chinese, PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100039, People's Republic of China
| | - Xiaomin Liu
- Chinese PLA Medical School, Beijing, 100039, People's Republic of China
- Department of Blood Transfusion, The First Medical Center of Chinese, PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100039, People's Republic of China
| | - Qingxia Wei
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Liyang Zou
- Chinese PLA Medical School, Beijing, 100039, People's Republic of China
- Department of Blood Transfusion, The First Medical Center of Chinese, PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100039, People's Republic of China
| | - Lingling Zhou
- Chinese PLA Medical School, Beijing, 100039, People's Republic of China
- Department of Blood Transfusion, The First Medical Center of Chinese, PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100039, People's Republic of China
| | - Yang Yu
- Chinese PLA Medical School, Beijing, 100039, People's Republic of China.
- Department of Blood Transfusion, The First Medical Center of Chinese, PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100039, People's Republic of China.
| | - Deqing Wang
- Chinese PLA Medical School, Beijing, 100039, People's Republic of China.
- Department of Blood Transfusion, The First Medical Center of Chinese, PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100039, People's Republic of China.
| |
Collapse
|
7
|
Wang X, Liu J, Wang Q, Chen Q. The transcriptomic and epigenetic alterations in type 2 diabetes mellitus patients of Chinese Tibetan and Han populations. Front Endocrinol (Lausanne) 2023; 14:1122047. [PMID: 36891054 PMCID: PMC9987421 DOI: 10.3389/fendo.2023.1122047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Due to the distinctive living environment, lifestyle, and diet, the Tibetan community in China has the lowest prevalence of T2DM and prediabetes among numerous ethnic groups, while Han community shows the highest statistic. In this study, we aim to conclude the clinical manifestations of both Tibetan and Han T2DM patients and their association with transcriptomic and epigenetic alterations. METHODS A cross-sectional study including 120 T2DM patients from Han and Tibetan ethnic groups were conducted between 2019 to 2021 at the Hospital of Chengdu University of Traditional Chinese Medicine. The various clinical features and laboratory tests were recorded and analyzed between the two groups. The genome-wide methylation pattern and RNA expression were determined by Reduced Representation Bisulfite Sequencing (RBBS) and Poly (A) RNA sequencing (RNA-seq) from leucocytes of peripheral blood samples in 6 Han and 6 Tibetan patients. GO analysis and KEGG analysis were conducted in differentially expressed genes and those with differentially methylated regions. RESULTS Compared to Han, Tibetan T2DM individuals intake more coarse grains, meat and yak butter, but less refined grains, vegetables and fruit. They also showed increased BMI, Hb, HbA1c, LDL, ALT, GGT and eGFR, and decreased level of BUN. Among the 12 patients in the exploratory cohort, we identified 5178 hypomethylated and 4787 hypermethylated regions involving 1613 genes in the Tibetan group. RNA-seq showed a total of 947 differentially expressed genes (DEGs) between the two groups, with 523 up-regulated and 424 down-regulated in Tibetan patients. By integrating DNA methylation and RNA expression data, we identified 112 DEGs with differentially methylated regions (overlapping genes) and 14 DEGs with promoter-related DMRs. The functional enrichment analysis demonstrated that the overlapping genes were primarily involved in metabolic pathways, PI3K-Akt signaling pathway, MAPK signaling pathway, pathways in cancer and Rap1 signaling pathway. CONCLUSION Our study demonstrates the clinical characteristics of T2DM differ subtly between various ethnic groups that may be related to epigenetic modifications, thus providing evidence and ideas for additional research on the genetic pattern of T2DM.
Collapse
Affiliation(s)
- Xian Wang
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, United Kingdom
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Liu
- Department of Endocrinology, Kunming Municipal Hospital of Traditional Chinese Medicine, Kumning, China
| | - Qiuhong Wang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Qiuhong Wang, ; Qiu Chen,
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Qiuhong Wang, ; Qiu Chen,
| |
Collapse
|
8
|
Panda M, Kalita E, Singh S, Kumar K, Rao A, Prajapati VK. MiRNA-SARS-CoV-2 dialogue and prospective anti-COVID-19 therapies. Life Sci 2022; 305:120761. [PMID: 35787998 PMCID: PMC9249409 DOI: 10.1016/j.lfs.2022.120761] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/08/2023]
Abstract
COVID-19 is a highly transmissible disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), affects 226 countries and continents, and has resulted in >6.2 million deaths worldwide. Despite the efforts of all scientific institutions worldwide to identify potential therapeutics, no specific drug has been approved by the FDA to treat the COVID-19 patient. SARS-CoV-2 variants of concerns make the potential of publicly known therapeutics to respond to and detect disease onset highly improbable. The quest for universal therapeutics pointed to the ability of RNA-based molecules to shield and detect the adverse effects of the COVID-19 illness. One such candidate, miRNA (microRNA), works on regulating the differential expression of the target gene post-transcriptionally. The prime focus of this review is to report the critical miRNA molecule and their regular expression in patients with COVID-19 infection and associated comorbidities. Viral and host miRNAs control the etiology of COVID-19 infection throughout the life cycle and host inflammatory response, where host miRNAs are identified as a double-edged showing as a proviral and antiviral response. The review also covered the role of viral miRNAs in mediating host cell signaling expression during disease pathology. Studying molecular interactions between the host and the SARS-CoV-2 virus during COVID-19 pathogenesis offers the chance to use miRNA-based therapeutics to reduce the severity of the illness. By utilizing an appropriate delivery vehicle, these small non-coding RNA could be envisioned as a promising biomarker in designing a practical RNAi-based treatment approach of clinical significance.
Collapse
Affiliation(s)
- Mamta Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Elora Kalita
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Satyendra Singh
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Ketan Kumar
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Abhishek Rao
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
9
|
Chen B, Li D, Ran B, Zhang P, Wang T. Key miRNAs and Genes in the High-Altitude Adaptation of Tibetan Chickens. Front Vet Sci 2022; 9:911685. [PMID: 35909692 PMCID: PMC9330022 DOI: 10.3389/fvets.2022.911685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Tibetan chickens living at high altitudes show specific physiological adaptations to the extreme environmental conditions. However, the regulated base of how chickens adapt to high-altitude habitats remains largely unknown. In this study, we sequenced 96 transcriptomes (including 48 miRNA and 48 mRNA transcriptomes of heart, liver, lung, and brain) and resequenced 12 whole genomes of Tibetan chickens and Peng'xian yellow chickens. We found that several miRNAs show the locally optimal plastic changes that occurred in miRNAs of chickens, such as miR-10c-5p, miR-144-3p, miR-3536, and miR-499-5p. These miRNAs could have effects on early adaption to the high-altitude environment of chickens. In addition, the genes under selection between Tibetan chickens and Peng'xian yellow chickens were mainly related to oxygen transport and oxidative stress. The I-kappa B kinase/NF-kappa B signaling pathway is widely found for high-altitude adaptation in Tibetan chickens. The candidate differentially expressed miRNAs and selected genes identified in this study may be useful in current breeding efforts to develop improved breeds for the highlands.
Collapse
Affiliation(s)
- Binlong Chen
- College of Animal Science, Xichang University, Xichang, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, China
- *Correspondence: Diyan Li
| | - Bo Ran
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Pu Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu, China
- Tao Wang
| |
Collapse
|
10
|
The Challenges and Opportunities in the Development of MicroRNA Therapeutics: A Multidisciplinary Viewpoint. Cells 2021; 10:cells10113097. [PMID: 34831320 PMCID: PMC8619171 DOI: 10.3390/cells10113097] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
microRNAs (miRs) are emerging as attractive therapeutic targets because of their small size, specific targetability, and critical role in disease pathogenesis. However, <20 miR targeting molecules have entered clinical trials, and none progressed to phase III. The difficulties in miR target identification, the moderate efficacy of miR inhibitors, cell type-specific delivery, and adverse outcomes have impeded the development of miR therapeutics. These hurdles are rooted in the functional complexity of miR's role in disease and sequence complementarity-dependent/-independent effects in nontarget tissues. The advances in understanding miR's role in disease, the development of efficient miR inhibitors, and innovative delivery approaches have helped resolve some of these hurdles. In this review, we provide a multidisciplinary viewpoint on the challenges and opportunities in the development of miR therapeutics.
Collapse
|
11
|
Mohanty A, Rajendran V. Mammalian host microRNA response to plasmodial infection: role as therapeutic target and potential biomarker. Parasitol Res 2021; 120:3341-3353. [PMID: 34423387 DOI: 10.1007/s00436-021-07293-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
The appearance of increasing drug resistance in apicomplexan intracellular Plasmodium falciparum presents a significant challenge. P. falciparum infection results in cerebral malaria (CM), causing irreversible damage to the brain leading to high mortality cases. To enhance the clinical outcome of the disease, further research is required to identify new molecular targets involved in disease manifestations. Presently, the role of non-coding microRNAs (miRNAs) derived from different cells implicated in CM pathogenesis is still barely understood. Despite the absence of miRNA machinery in Plasmodium, host-parasite interactions can lead to disease severity or impart resistance to malaria. Cytoadherence and sequestration of parasitized RBCs dysregulate the miRNA profile of brain endothelial cells, leukocytes, monocytes, and platelets, disrupting blood-brain barrier integrity and activating inflammatory signaling pathways. The abundance of miRNA in blood plasma samples of CM patients directly correlates to cerebral symptoms compared to non-CM patients and healthy individuals. Moreover, the differential host-miRNA signatures distinguish P. falciparum from P. vivax infection. Here, we review the diverse functions of host-miRNA, either protective, pathogenic, or a combination of the two, which may act as prognostic markers and novel antimalarial drug targets.
Collapse
Affiliation(s)
- Abhinab Mohanty
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Vinoth Rajendran
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
12
|
Veryaskina YA, Titov SE, Kovynev IB, Fedorova SS, Pospelova TI, Zhimulev IF. MicroRNAs in the Myelodysplastic Syndrome. Acta Naturae 2021; 13:4-15. [PMID: 34377552 PMCID: PMC8327150 DOI: 10.32607/actanaturae.11209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
The myelodysplastic syndrome (MDS) holds a special place among blood cancers, as it represents a whole spectrum of hematological disorders with impaired differentiation of hematopoietic precursors, bone marrow dysplasia, genetic instability and is noted for an increased risk of acute myeloid leukemia. Both genetic and epigenetic factors, including microRNAs (miRNAs), are involved in MDS development. MicroRNAs are short non-coding RNAs that are important regulators of normal hematopoiesis, and abnormal changes in their expression levels can contribute to hematological tumor development. To assess the prognosis of the disease, an international assessment system taking into account a karyotype, the number of blast cells, and the degree of deficiency of different blood cell types is used. However, the overall survival and effectiveness of the therapy offered are not always consistent with predictions. The search for new biomarkers, followed by their integration into the existing prognostic system, will allow for personalized treatment to be performed with more precision. Additionally, this paper explains how miRNA expression levels correlate with the prognosis of overall survival and response to the therapy offered.
Collapse
Affiliation(s)
- Y. A. Veryaskina
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090 Russia
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, 630090 Russia
| | - S. E. Titov
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, 630090 Russia
- Vector-Best, Novosibirsk, 630117 Russia
| | - I. B. Kovynev
- Novosibirsk State Medical University, Novosibirsk, 630091 Russia
| | - S. S. Fedorova
- Novosibirsk State Medical University, Novosibirsk, 630091 Russia
| | - T. I. Pospelova
- Novosibirsk State Medical University, Novosibirsk, 630091 Russia
| | - I. F. Zhimulev
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, 630090 Russia
| |
Collapse
|
13
|
Mussack V, Wittmann G, Pfaffl MW. On the trail of blood doping-microRNA fingerprints to monitor autologous blood transfusions in vivo. Am J Hematol 2021; 96:338-353. [PMID: 33326140 DOI: 10.1002/ajh.26078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
Autologous blood doping refers to the illegal re-transfusion of any quantities of blood or blood components with blood donor and recipient being the same person. The re-transfusion of stored erythrocyte concentrates is particularly attractive to high-performance athletes as this practice improves their oxygen capacity excessively. However, there is still no reliable detection method available. Analyzing circulating microRNA profiles of human subjects that underwent monitored autologous blood transfusions seems to be a highly promising approach to develop novel biomarkers for autologous blood doping. In this exploratory study, we randomly divided 30 healthy males into two different treatment groups and one control group and sampled whole blood at several time points at baseline, after whole blood donation and after transfusion of erythrocyte concentrates. Hematological variables were recorded and analyzed following the adaptive model of the Athlete Biological Passport. microRNA profiles were examined by small RNA sequencing and comprehensive multivariate data analyses, revealing microRNA fingerprints that reflect the sampling time point and transfusion volume. Neither individual microRNAs nor a signature of transfusion-dependent microRNAs reached superior sensitivity at 100% specificity compared to the Athlete Biological Passport (≤11% 6 h after transfusion versus ≤44% 2 days after transfusion). However, the window of autologous blood doping detection was different. Due to the heterogenous nature of doping, with athletes frequently combining multiple medications in order to both gain a competitive advantage and interfere with known testing methods, the true applicability of the molecular signature remains to be validated in real anti-doping testings.
Collapse
Affiliation(s)
- Veronika Mussack
- Animal Physiology and Immunology School of Life Sciences Weihenstephan, Technical University of Munich Freising Germany
| | - Georg Wittmann
- Department for Transfusion Medicine, Cell therapeutics and Haemostaseology University Hospital LMU Munich Germany
| | - Michael W. Pfaffl
- Animal Physiology and Immunology School of Life Sciences Weihenstephan, Technical University of Munich Freising Germany
| |
Collapse
|
14
|
Ikonomidis I, Vlastos D, Andreadou I, Gazouli M, Efentakis P, Varoudi M, Makavos G, Kapelouzou A, Lekakis J, Parissis J, Katsanos S, Tsilivarakis D, Hausenloy DJ, Alexopoulos D, Cokkinos DV, Bøtker HE, Iliodromitis EK. Vascular conditioning prevents adverse left ventricular remodelling after acute myocardial infarction: a randomised remote conditioning study. Basic Res Cardiol 2021; 116:9. [PMID: 33547969 DOI: 10.1007/s00395-021-00851-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/27/2021] [Indexed: 12/18/2022]
Abstract
AIMS Remote ischemic conditioning (RIC) alleviates ischemia-reperfusion injury via several pathways, including micro-RNAs (miRs) expression and oxidative stress modulation. We investigated the effects of RIC on endothelial glycocalyx, arterial stiffness, LV remodelling, and the underlying mediators within the vasculature as a target for protection. METHODS AND RESULTS We block-randomised 270 patients within 48 h of STEMI post-PCI to either one or two cycles of bilateral brachial cuff inflation, and a control group without RIC. We measured: (a) the perfusion boundary region (PBR) of the sublingual arterial microvessels to assess glycocalyx integrity; (b) the carotid-femoral pulse wave velocity (PWV); (c) miR-144,-150,-21,-208, nitrate-nitrite (NOx) and malondialdehyde (MDA) plasma levels at baseline (T0) and 40 min after RIC onset (T3); and (d) LV volumes at baseline and after one year. Compared to baseline, there was a greater PBR and PWV decrease, miR-144 and NOx levels increase (p < 0.05) at T3 following single- than double-cycle inflation (PBR:ΔT0-T3 = 0.249 ± 0.033 vs 0.126 ± 0.034 μm, p = 0.03 and PWV:0.4 ± 0.21 vs -1.02 ± 0.24 m/s, p = 0.03). Increased miR-150,-21,-208 (p < 0.05) and reduced MDA was observed after both protocols. Increased miR-144 was related to PWV reduction (r = 0.763, p < 0.001) after the first-cycle inflation in both protocols. After one year, single-cycle RIC was associated with LV end-systolic volume reduction (LVESV) > 15% (odds-ratio of 3.75, p = 0.029). MiR-144 and PWV changes post-RIC were interrelated and associated with LVESV reduction at follow-up (r = 0.40 and 0.37, p < 0.05), in the single-cycle RIC. CONCLUSION RIC evokes "vascular conditioning" likely by upregulation of cardio-protective microRNAs, NOx production, and oxidative stress reduction, facilitating reverse LV remodelling. CLINICAL TRIAL REGISTRATION http://www.clinicaltrials.gov . Unique identifier: NCT03984123.
Collapse
Affiliation(s)
- Ignatios Ikonomidis
- 2nd Department of Cardiology, Medical School, Attikon Hospital, National and Kapodistrian University of Athens, Rimini 1, Haidari, 12462, Athens, Greece.
| | - Dimitrios Vlastos
- 2nd Department of Cardiology, Medical School, Attikon Hospital, National and Kapodistrian University of Athens, Rimini 1, Haidari, 12462, Athens, Greece.,Department of Cardiac Surgery, Royal Brompton Hospital, London, UK
| | - Ioanna Andreadou
- Laboratory of Pharmacology, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece.
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Varoudi
- 2nd Department of Cardiology, Medical School, Attikon Hospital, National and Kapodistrian University of Athens, Rimini 1, Haidari, 12462, Athens, Greece
| | - George Makavos
- 2nd Department of Cardiology, Medical School, Attikon Hospital, National and Kapodistrian University of Athens, Rimini 1, Haidari, 12462, Athens, Greece
| | | | - John Lekakis
- 2nd Department of Cardiology, Medical School, Attikon Hospital, National and Kapodistrian University of Athens, Rimini 1, Haidari, 12462, Athens, Greece
| | - John Parissis
- 2nd Department of Cardiology, Medical School, Attikon Hospital, National and Kapodistrian University of Athens, Rimini 1, Haidari, 12462, Athens, Greece
| | - Spiridon Katsanos
- 2nd Department of Cardiology, Medical School, Attikon Hospital, National and Kapodistrian University of Athens, Rimini 1, Haidari, 12462, Athens, Greece
| | - Damianos Tsilivarakis
- 2nd Department of Cardiology, Medical School, Attikon Hospital, National and Kapodistrian University of Athens, Rimini 1, Haidari, 12462, Athens, Greece
| | - Derek J Hausenloy
- National Heart Centre, National Heart Research Institute Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,The Hatter Cardiovascular Institute, University College London, London, UK.,The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research and Development, London, UK.,Centro de Biotecnologia-FEMSA, Tecnologico de Monterrey, Monterrey, Mexico
| | - Dimitrios Alexopoulos
- 2nd Department of Cardiology, Medical School, Attikon Hospital, National and Kapodistrian University of Athens, Rimini 1, Haidari, 12462, Athens, Greece
| | | | - Hans-Eric Bøtker
- Department of Cardiology, Aarhus University Hospital Skejby, Aarhus N, Denmark
| | - Efstathios K Iliodromitis
- 2nd Department of Cardiology, Medical School, Attikon Hospital, National and Kapodistrian University of Athens, Rimini 1, Haidari, 12462, Athens, Greece
| |
Collapse
|
15
|
Thangaraju K, Neerukonda SN, Katneni U, Buehler PW. Extracellular Vesicles from Red Blood Cells and Their Evolving Roles in Health, Coagulopathy and Therapy. Int J Mol Sci 2020; 22:E153. [PMID: 33375718 PMCID: PMC7796437 DOI: 10.3390/ijms22010153] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Red blood cells (RBCs) release extracellular vesicles (EVs) including both endosome-derived exosomes and plasma-membrane-derived microvesicles (MVs). RBC-derived EVs (RBCEVs) are secreted during erythropoiesis, physiological cellular aging, disease conditions, and in response to environmental stressors. RBCEVs are enriched in various bioactive molecules that facilitate cell to cell communication and can act as markers of disease. RBCEVs contribute towards physiological adaptive responses to hypoxia as well as pathophysiological progression of diabetes and genetic non-malignant hematologic disease. Moreover, a considerable number of studies focus on the role of EVs from stored RBCs and have evaluated post transfusion consequences associated with their exposure. Interestingly, RBCEVs are important contributors toward coagulopathy in hematological disorders, thus representing a unique evolving area of study that can provide insights into molecular mechanisms that contribute toward dysregulated hemostasis associated with several disease conditions. Relevant work to this point provides a foundation on which to build further studies focused on unraveling the potential roles of RBCEVs in health and disease. In this review, we provide an analysis and summary of RBCEVs biogenesis, composition, and their biological function with a special emphasis on RBCEV pathophysiological contribution to coagulopathy. Further, we consider potential therapeutic applications of RBCEVs.
Collapse
Affiliation(s)
- Kiruphagaran Thangaraju
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.T.); (P.W.B.)
| | - Sabari Nath Neerukonda
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Upendra Katneni
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.T.); (P.W.B.)
| | - Paul W. Buehler
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.T.); (P.W.B.)
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
16
|
Khurana P, Gupta A, Sugadev R, Sharma YK, Kumar B. HAHmiR.DB: a server platform for high-altitude human miRNA-gene coregulatory networks and associated regulatory circuits. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:6015264. [PMID: 33259604 PMCID: PMC7706787 DOI: 10.1093/database/baaa101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/27/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022]
Abstract
Around 140 million people live in high-altitude (HA) conditions! and even a larger number visit such places for tourism, adventure-seeking or sports training. Rapid ascent to HA can cause severe damage to the body organs and may lead to many fatal disorders. During induction to HA, human body undergoes various physiological, biochemical, hematological and molecular changes to adapt to the extreme environmental conditions. Several literature references hint that gene-expression-regulation and regulatory molecules like miRNAs and transcription factors (TFs) control adaptive responses during HA stress. These biomolecules are known to interact in a complex combinatorial manner to fine-tune the gene expression and help in controlling the molecular responses during this stress and ultimately help in acclimatization. High-Altitude Human miRNA Database (HAHmiR.DB) is a unique, comprehensive and curated collection of miRNAs that have been experimentally validated to be associated with HA stress, their level of expression in different altitudes, fold change, experiment duration, biomarker association, disease and drug association, tissue-specific expression level, Gene Ontology (GO) and Kyoto Encyclopaedia of Gene and Genomes (KEGG) pathway associations. As a server platform, it also uniquely constructs and analyses interactive miRNA-TF-gene coregulatory networks and extracts regulatory circuits/feed-forward loops (FFLs). These regulatory circuits help to offer mechanistic insights into complex regulatory mechanisms during HA stress. The server can also build these regulatory networks between two and more miRNAs of the database and also identify the regulatory circuits from this network. Hence, HAHmiR.DB is the first-of-its-kind database in HA research, which is a reliable platform to explore, compare, analyse and retrieve miRNAs associated with HA stress, their coregulatory networks and FFL regulatory-circuits. HAHmiR.DB is freely accessible at http://www.hahmirdb.in.
Collapse
Affiliation(s)
- Pankaj Khurana
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| | - Apoorv Gupta
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| | - Ragumani Sugadev
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| | - Yogendra Kumar Sharma
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| | - Bhuvnesh Kumar
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| |
Collapse
|
17
|
Hypoxia Pathway Proteins are Master Regulators of Erythropoiesis. Int J Mol Sci 2020; 21:ijms21218131. [PMID: 33143240 PMCID: PMC7662373 DOI: 10.3390/ijms21218131] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Erythropoiesis is a complex process driving the production of red blood cells. During homeostasis, adult erythropoiesis takes place in the bone marrow and is tightly controlled by erythropoietin (EPO), a central hormone mainly produced in renal EPO-producing cells. The expression of EPO is strictly regulated by local changes in oxygen partial pressure (pO2) as under-deprived oxygen (hypoxia); the transcription factor hypoxia-inducible factor-2 induces EPO. However, erythropoiesis regulation extends beyond the well-established hypoxia-inducible factor (HIF)-EPO axis and involves processes modulated by other hypoxia pathway proteins (HPPs), including proteins involved in iron metabolism. The importance of a number of these factors is evident as their altered expression has been associated with various anemia-related disorders, including chronic kidney disease. Eventually, our emerging understanding of HPPs and their regulatory feedback will be instrumental in developing specific therapies for anemic patients and beyond.
Collapse
|
18
|
Sun L, Yu Y, Niu B, Wang D. Red Blood Cells as Potential Repositories of MicroRNAs in the Circulatory System. Front Genet 2020; 11:442. [PMID: 32582273 PMCID: PMC7286224 DOI: 10.3389/fgene.2020.00442] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
The amount of erythrocyte-derived microRNAs (miRNAs) represents the majority of miRNAs expressed in whole blood. miR-451, miR-144, and miR-486, which are abundant in red blood cells (RBCs), are involved in the process of erythropoiesis and disease occurrence. Moreover, erythrocyte-derived miRNAs have been reported to be potential biomarkers of specific diseases. However, the function and underlying mechanisms of miRNAs derived from erythrocytes remain unclear. Based on a review of previously published literature, we discuss several possible pathways by which RBC miRNAs may function and propose that RBCs may serve as repositories of miRNAs in the circulatory system and participate in the regulation of gene expression mainly via the transfer of miRNAs from erythrocyte extracellular vesicles (EVs). In the whole blood, there are still other important cell types such as leukocytes and platelets harboring functional miRNAs, and hemolysis also exists, which limit the abundance of miRNAs as disease biomarkers, and thus, miRNA studies on RBCs may be impacted. In the future, the role of RBCs in the regulation of normal physiological functions of the body and the entire circulatory system under pathological states, if any, remains to be determined.
Collapse
Affiliation(s)
- Liping Sun
- Department of Blood Transfusion, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yang Yu
- Department of Blood Transfusion, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Beifang Niu
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Deqing Wang
- Department of Blood Transfusion, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
19
|
Hadj-Moussa H, Storey KB. The OxymiR response to oxygen limitation: a comparative microRNA perspective. J Exp Biol 2020; 223:223/10/jeb204594. [DOI: 10.1242/jeb.204594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT
From squid at the bottom of the ocean to humans at the top of mountains, animals have adapted to diverse oxygen-limited environments. Surviving these challenging conditions requires global metabolic reorganization that is orchestrated, in part, by microRNAs that can rapidly and reversibly target all biological functions. Herein, we review the involvement of microRNAs in natural models of anoxia and hypoxia tolerance, with a focus on the involvement of oxygen-responsive microRNAs (OxymiRs) in coordinating the metabolic rate depression that allows animals to tolerate reduced oxygen levels. We begin by discussing animals that experience acute or chronic periods of oxygen deprivation at the ocean's oxygen minimum zone and go on to consider more elevated environments, up to mountain plateaus over 3500 m above sea level. We highlight the commonalities and differences between OxymiR responses of over 20 diverse animal species, including invertebrates and vertebrates. This is followed by a discussion of the OxymiR adaptations, and maladaptations, present in hypoxic high-altitude environments where animals, including humans, do not enter hypometabolic states in response to hypoxia. Comparing the OxymiR responses of evolutionarily disparate animals from diverse environments allows us to identify species-specific and convergent microRNA responses, such as miR-210 regulation. However, it also sheds light on the lack of a single unified response to oxygen limitation. Characterizing OxymiRs will help us to understand their protective roles and raises the question of whether they can be exploited to alleviate the pathogenesis of ischemic insults and boost recovery. This Review takes a comparative approach to addressing such possibilities.
Collapse
Affiliation(s)
- Hanane Hadj-Moussa
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada, K1S 5B6
| | - Kenneth B. Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada, K1S 5B6
| |
Collapse
|
20
|
Groen K, Maltby VE, Scott RJ, Tajouri L, Lechner‐Scott J. Erythrocyte microRNAs show biomarker potential and implicate multiple sclerosis susceptibility genes. Clin Transl Med 2020; 10:74-90. [PMID: 32508012 PMCID: PMC7240864 DOI: 10.1002/ctm2.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Multiple sclerosis is a demyelinating autoimmune disease, for which there is no blood-borne biomarker. Erythrocytes may provide a source of such biomarkers as they contain microRNAs. MicroRNAs regulate protein translation through complementary binding to messenger RNA. As erythrocytes are transcriptionally inactive, their microRNA profiles may be less susceptible to variation. The aim of this study was to assess the biomarker potential of erythrocyte microRNAs for multiple sclerosis and assess the potential contribution of erythrocyte-derived extracellular vesicle microRNAs to pathology. METHODS Erythrocytes were isolated from whole blood by density gradient centrifugation. Erythrocyte microRNAs of a discovery cohort (23 multiple sclerosis patients and 22 healthy controls) were sequenced. Increased expression of miR-183 cluster microRNAs (hsa-miR-96-5p, hsa-miR-182-5p and hsa-miR-183-5p) was validated in an independent cohort of 42 patients and 45 healthy and pathological (migraine) controls. Erythrocyte-derived extracellular vesicles were created ex vivo and their microRNAs were sequenced. Targets of microRNAs were predicted using miRDIP. RESULTS Hsa-miR-182-5p and hsa-miR-183-5p were able to discriminate relapsing multiple sclerosis patients from migraine patients and/or healthy controls with 89-94% accuracy and around 90% specificity. Hsa-miR-182-5p and hsa-miR-183-5p expression correlated with measures of physical disability and hsa-miR-96-5p expression correlated with measures of cognitive disability in multiple sclerosis. Erythrocytes were found to selectively package microRNAs into extracellular vesicles and 34 microRNAs were found to be differentially packaged between healthy controls and multiple sclerosis patients. Several gene targets of differentially expressed and packaged erythrocyte microRNAs overlapped with multiple sclerosis susceptibility genes. Gene enrichment analysis indicated involvement in nervous system development and histone H3-K27 demethylation. CONCLUSIONS Erythrocyte miR-183 cluster members may be developed into specific multiple sclerosis biomarkers that could assist with diagnosis and disability monitoring. Erythrocyte and their extracellular microRNAs were shown to target multiple sclerosis susceptibility genes and may be contributing to the pathophysiology via previously identified routes.
Collapse
Affiliation(s)
- Kira Groen
- School of Medicine and Public HealthUniversity of NewcastleCallaghanNew South WalesAustralia
- Centre for Brain and Mental Health ResearchHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Vicki E. Maltby
- School of Medicine and Public HealthUniversity of NewcastleCallaghanNew South WalesAustralia
- Centre for Brain and Mental Health ResearchHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
- Department of NeurologyJohn Hunter HospitalNew Lambton HeightsNew South WalesAustralia
| | - Rodney J. Scott
- CancerHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
- Division of Molecular MedicinePathology NorthJohn Hunter HospitalNew Lambton HeightsNew South WalesAustralia
- School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Lotti Tajouri
- Faculty of Health Sciences and MedicineBond UniversityRobinaQueenslandAustralia
- Dubai Police Scientific CouncilDubaiUnited Arab Emirates
| | - Jeannette Lechner‐Scott
- School of Medicine and Public HealthUniversity of NewcastleCallaghanNew South WalesAustralia
- Centre for Brain and Mental Health ResearchHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
- Department of NeurologyJohn Hunter HospitalNew Lambton HeightsNew South WalesAustralia
| |
Collapse
|
21
|
Jafri I, Alsharif G, Bland GNL, Gambhir KK. Erythrocyte miRNA 144 and miRNA 451 as Cell Aging Biomarkers in African American Adults. Open Biochem J 2019. [DOI: 10.2174/1874091x01913010081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective:
MicroRNAs (miRNA) are novel critical regulators of cell proliferation and human disease, including diabetes mellitus and cancer. The aim of this study was to evaluate the expression of circulating erythrocytes (E) miRNA-144 and miRNA-451 expression in African Americans Adults (AAA) as a biomarker of cell aging.
Methods:
The blood samples were collected from healthy controls [n=9] following an 8-12 hours fast. Erythrocytes were purified twice by Boyum gradient. Erythrocytes were further sub-fractionated into young (y) (1.07-1.09 g/ml), mid (m) (1.09- 1.11 g/ml), and old (o) (1.11-1.12 g/ml) age cells by using discontinuous Percoll gradient (35%, 40%, 45%, 50%, 55%, 65%, 80%, and 100%) and total RNA extracted. MiRNA-144 and miRNA-451 were quantified in y, m, and o age E sub-fractions by qRT-PCR.
Results:
MiRNA-451 expression was 82210.8271, 130922.476, and 149554.364 in y, m, and o cells, respectively. MiRNA-144 expression in y cells was 18.6641092, m cells was 32.4413621, and o cells was 57.8118394 These results showed that o cells expressed both miRNA-144 and miRNA-451 more than that of m, and y cells.
Conclusion:
The findings of this study showed that miRNAs expression differ in sub-fractionated erythrocytes. This study suggests that miRNA-144 and miRNA-451 have the potential to be used as biomarkers of RBC aging.
Collapse
|