1
|
Zhao J, Wang X, Wu Y, Zhao C. Krüppel-like factor 4 modulates the miR-101/COL10A1 axis to inhibit renal fibrosis after AKI by regulating epithelial-mesenchymal transition. Ren Fail 2024; 46:2316259. [PMID: 38345033 PMCID: PMC10863509 DOI: 10.1080/0886022x.2024.2316259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/03/2024] [Indexed: 02/15/2024] Open
Abstract
Acute kidney injury (AKI) can progress to renal fibrosis and chronic kidney disease (CKD), which reduces quality of life and increases the economic burden on patients. However, the molecular mechanisms underlying renal fibrosis following AKI remain unclear. This study tested the hypothesis that the Krüppel-like factor 4 (KLF4)/miR-101/Collagen alpha-1X (COL10A1) axis could inhibit epithelial-mesenchymal transition (EMT) and renal fibrosis after AKI in a mouse model of ischemia-reperfusion (I/R)-induced renal fibrosis and HK-2 cells by gene silencing, overexpression, immunofluorescence, immunohistochemistry, real-time quantitative PCR, Western blotting, dual-luciferase reporter assay, fluorescence in situ hybridization (FISH) and ELISA. Compared with the Sham group, I/R induced renal tubular and glomerular injury and fibrosis, and increased the levels of BUN, serum Scr and neutrophil gelatinase-associated lipocalin (NGAL), Col10a1 and Vimentin expression, but decreased E-cadherin expression in the kidney tissues of mice at 42 days post-I/R. Similarly, hypoxia promoted fibroblastic morphological changes in HK-2 cells and enhanced NGAL, COL10A1, Vimentin, and α-SMA expression, but reduced E-cadherin expression in HK-2 cells. These pathological changes were significantly mitigated in COL10A1-silenced renal tissues and HK-2 cells. KLF4 induces miR-101 transcription. More importantly, hypoxia upregulated Vimentin and COL10A1 expression, but decreased miR-101, KLF4, and E-cadherin expression in HK-2 cells. These hypoxic effects were significantly mitigated or abrogated by KLF4 over-expression in the HK-2 cells. Our data indicate that KLF4 up-regulates miR-101 expression, leading to the downregulation of COL10A1 expression, inhibition of EMT and renal fibrosis during the pathogenic process of I/R-related renal fibrosis.
Collapse
Affiliation(s)
- Jingying Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Xiuli Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yubin Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Chengguang Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
2
|
Lumpuy-Castillo J, Amador-Martínez I, Díaz-Rojas M, Lorenzo O, Pedraza-Chaverri J, Sánchez-Lozada LG, Aparicio-Trejo OE. Role of mitochondria in reno-cardiac diseases: A study of bioenergetics, biogenesis, and GSH signaling in disease transition. Redox Biol 2024; 76:103340. [PMID: 39250857 PMCID: PMC11407069 DOI: 10.1016/j.redox.2024.103340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are global health burdens with rising prevalence. Their bidirectional relationship with cardiovascular dysfunction, manifesting as cardio-renal syndromes (CRS) types 3 and 4, underscores the interconnectedness and interdependence of these vital organ systems. Both the kidney and the heart are critically reliant on mitochondrial function. This organelle is currently recognized as a hub in signaling pathways, with emphasis on the redox regulation mediated by glutathione (GSH). Mitochondrial dysfunction, including impaired bioenergetics, redox, and biogenesis pathways, are central to the progression of AKI to CKD and the development of CRS type 3 and 4. This review delves into the metabolic reprogramming and mitochondrial redox signaling and biogenesis alterations in AKI, CKD, and CRS. We examine the pathophysiological mechanisms involving GSH redox signaling and the AMP-activated protein kinase (AMPK)-sirtuin (SIRT)1/3-peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) axis in these conditions. Additionally, we explore the therapeutic potential of GSH synthesis inducers in mitigating these mitochondrial dysfunctions, as well as their effects on inflammation and the progression of CKD and CRS types 3 and 4.
Collapse
Affiliation(s)
- Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - Isabel Amador-Martínez
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico; Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Miriam Díaz-Rojas
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 43210, Columbus, Ohio, USA.
| | - Oscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Laura Gabriela Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| | - Omar Emiliano Aparicio-Trejo
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| |
Collapse
|
3
|
Yang XR, Wen R, Yang N, Zhang TN. Role of sirtuins in sepsis and sepsis-induced organ dysfunction: A review. Int J Biol Macromol 2024; 278:134853. [PMID: 39163955 DOI: 10.1016/j.ijbiomac.2024.134853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis causes a high mortality rate and current treatment focuses on supportive therapies but lacks specific therapeutic targets. Notably, sirtuins (SIRTs) shows potential clinical application in the treatment of sepsis. It has been demonstrated that SIRTs, the nicotinamide adenine dinucleotide+(NAD+)-dependent deacetylases that regulate key signaling pathways in eukaryotes and prokaryotes, are involved in a variety of biological processes. To date, seven mammalian yeast Sir2 homologs have been identified. SIRTs can regulate inflammation, oxidative stress, apoptosis, autophagy, and other pathways that play important roles in sepsis-induced organ dysfunction. However, the existing studies on SIRTs in sepsis are too scattered, and there is no relevant literature to integrate them. This review innovatively summarizes the different mechanisms of SIRTs in sepsis organ dysfunction according to the different systems, and focuses on SIRT agonists, inhibitors, and targeted drugs that have been proved to be effective in the treatment of sepsis, so as to integrate the clinical research and basic research closely. We searched PubMed for all literature related to SIRTs and sepsis since its inception using the following medical subject headings: sirtuins, SIRTs, and sepsis. Data on the mechanisms of SIRTs in sepsis-induced organ damage and their potential as targets for disease treatment were extracted.
Collapse
Affiliation(s)
- Xin-Ru Yang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ri Wen
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ni Yang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
4
|
Peng X, Ni H, Kuang B, Wang Z, Hou S, Gu S, Gong N. Sirtuin 3 in renal diseases and aging: From mechanisms to potential therapies. Pharmacol Res 2024; 206:107261. [PMID: 38917912 DOI: 10.1016/j.phrs.2024.107261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
The longevity protein sirtuins (SIRTs) belong to a family of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases. In mammals, SIRTs comprise seven members (SIRT1-7) which are localized to different subcellular compartments. As the most prominent mitochondrial deacetylases, SIRT3 is known to be regulated by various mechanisms and participate in virtually all aspects of mitochondrial homeostasis and metabolism, exerting significant impact on multiple organs. Notably, the kidneys possess an abundance of mitochondria that provide substantial energy for filtration and reabsorption. A growing body of evidence now supports the involvement of SIRT3 in several renal diseases, including acute kidney injury, chronic kidney disease, and diabetic nephropathy; notably, these diseases are all associated with aging. In this review, we summarize the emerging role of SIRT3 in renal diseases and aging, and highlights the intricate mechanisms by which SIRT3 exerts its effects. In addition, we highlight the potential therapeutic significance of modulating SIRT3 and provide valuable insights into the therapeutic role of SIRT3 in renal diseases to facilitate clinical application.
Collapse
Affiliation(s)
- Xuan Peng
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Haiqiang Ni
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Baicheng Kuang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhiheng Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shuaiheng Hou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shiqi Gu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Nianqiao Gong
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
5
|
Juszczak F, Arnould T, Declèves AE. The Role of Mitochondrial Sirtuins (SIRT3, SIRT4 and SIRT5) in Renal Cell Metabolism: Implication for Kidney Diseases. Int J Mol Sci 2024; 25:6936. [PMID: 39000044 PMCID: PMC11241570 DOI: 10.3390/ijms25136936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Kidney diseases, including chronic kidney disease (CKD), diabetic nephropathy, and acute kidney injury (AKI), represent a significant global health burden. The kidneys are metabolically very active organs demanding a large amount of ATP. They are composed of highly specialized cell types in the glomerulus and subsequent tubular compartments which fine-tune metabolism to meet their numerous and diverse functions. Defective renal cell metabolism, including altered fatty acid oxidation or glycolysis, has been linked to both AKI and CKD. Mitochondria play a vital role in renal metabolism, and emerging research has identified mitochondrial sirtuins (SIRT3, SIRT4 and SIRT5) as key regulators of renal cell metabolic adaptation, especially SIRT3. Sirtuins belong to an evolutionarily conserved family of mainly NAD+-dependent deacetylases, deacylases, and ADP-ribosyl transferases. Their dependence on NAD+, used as a co-substrate, directly links their enzymatic activity to the metabolic status of the cell. In the kidney, SIRT3 has been described to play crucial roles in the regulation of mitochondrial function, and the antioxidative and antifibrotic response. SIRT3 has been found to be constantly downregulated in renal diseases. Genetic or pharmacologic upregulation of SIRT3 has also been associated with beneficial renal outcomes. Importantly, experimental pieces of evidence suggest that SIRT3 may act as an important energy sensor in renal cells by regulating the activity of key enzymes involved in metabolic adaptation. Activation of SIRT3 may thus represent an interesting strategy to ameliorate renal cell energetics. In this review, we discuss the roles of SIRT3 in lipid and glucose metabolism and in mediating a metabolic switch in a physiological and pathological context. Moreover, we highlight the emerging significance of other mitochondrial sirtuins, SIRT4 and SIRT5, in renal metabolism. Understanding the role of mitochondrial sirtuins in kidney diseases may also open new avenues for innovative and efficient therapeutic interventions and ultimately improve the management of renal injuries.
Collapse
Affiliation(s)
- Florian Juszczak
- Laboratory of Molecular and Metabolic Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), 20, Place du Parc, 7000 Mons, Belgium;
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61, Rue de Bruxelles, 5000 Namur, Belgium;
| | - Anne-Emilie Declèves
- Laboratory of Molecular and Metabolic Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), 20, Place du Parc, 7000 Mons, Belgium;
| |
Collapse
|
6
|
Xi S, Chen W, Ke Y. Advances in SIRT3 involvement in regulating autophagy-related mechanisms. Cell Div 2024; 19:20. [PMID: 38867228 PMCID: PMC11170824 DOI: 10.1186/s13008-024-00124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
The silencing regulatory factor 2-like protein 3 (SIRT3) is a nicotinamide adenine dinucleotide (NAD+) dependent deacetylase located primarily in the mitochondria. This protein plays an important role in oxidative stress, energy metabolism, and autophagy in multicellular organisms. Autophagy (macroautophagy) is primarily a cytoprotective mechanism necessary for intracellular homeostasis and the synthesis, degradation, and recycling of cellular products. Autophagy can influence the progression of several neural, cardiac, hepatic, and renal diseases and can also contribute to the development of fibrosis, diabetes, and many types of cancer. Recent studies have shown that SIRT3 has an important role in regulating autophagy. Therefore in this study, we aimed to perform a literature review to summarize the role of SIRT3 in the regulation of cellular autophagy. The findings of this study could be used to identify new drug targets for SIRT3-related diseases. Methods: A comprehensive literature review of the mechanism involved behind SIRT3 and autophagy-related diseases was performed. Relevant literature published in Pubmed and Web of Science up to July 2023 was identified using the keywords "silencing regulatory factor 2-like protein 3", "SIRT3" and "autophagy".
Collapse
Affiliation(s)
- Shuangyun Xi
- Center of Forensic Expertise, Affiliated hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- School of Forensic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Weijun Chen
- Center of Forensic Expertise, Affiliated hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- School of Forensic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Yong Ke
- Center of Forensic Expertise, Affiliated hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- School of Forensic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
7
|
Yang L, Liu S, He Y, Gan L, Ni Q, Dai A, Mu C, Liu Q, Chen H, Lu H, Sun R. Exosomes regulate SIRT3-related autophagy by delivering miR-421 to regulate macrophage polarization and participate in OSA-related NAFLD. J Transl Med 2024; 22:475. [PMID: 38764033 PMCID: PMC11103849 DOI: 10.1186/s12967-024-05283-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/08/2024] [Indexed: 05/21/2024] Open
Abstract
PURPOSE To analyze the role of and mechanism underlying obstructive sleep apnea (OSA)-derived exosomes in inducing non-alcoholic fatty liver (NAFLD). METHODS The role of OSA-derived exosomes was analyzed in inducing hepatocyte fat accumulation in mice models both in vivo and in vitro. RESULTS OSA-derived exosomes caused fat accumulation and macrophage activation in the liver tissue. These exosomes promoted fat accumulation; steatosis was more noticeable in the presence of macrophages. Macrophages could internalize OSA-derived exosomes, which promoted macrophage polarization to the M1 type. Moreover, it inhibited sirtuin-3 (SIRT3)/AMP-activated protein kinase (AMPK) and autophagy and promoted the activation of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasomes. The use of 3-methyladenine (3-MA) to inhibit autophagy blocked NLRP3 inflammasome activation and inhibited the M1 polarization of macrophages. miR-421 targeting inhibited SIRT3 protein expression in the macrophages. miR-421 was significantly increased in OSA-derived exosomes. Additionally, miR-421 levels were increased in OSA + NAFLD mice- and patient-derived exosomes. In the liver tissues of OSA and OSA + NAFLD mice, miR-421 displayed similar co-localization with the macrophages. Intermittent hypoxia-induced hepatocytes deliver miR-421 to the macrophages via exosomes to inhibit SIRT3, thereby participating in macrophage M1 polarization. After OSA and NAFLD modeling in miR-421-/- mice, liver steatosis and M1 polarization were significantly reduced. Additionally, in the case of miR-421 knockout, the inhibitory effects of OSA-derived exosomes on SIRT3 and autophagy were significantly alleviated. Furthermore, their effects on liver steatosis and macrophage M1 polarization were significantly reduced. CONCLUSIONS OSA promotes the delivery of miR-421 from the hepatocytes to macrophages. Additionally, it promotes M1 polarization by regulating the SIRT3/AMPK-autophagy pathway, thereby causing NAFLD.
Collapse
Affiliation(s)
- Li Yang
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China.
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China.
| | - Shijie Liu
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Yan He
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Lulu Gan
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Qing Ni
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Anni Dai
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Changhuan Mu
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Qian Liu
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Hongyan Chen
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Hongying Lu
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Ruixue Sun
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| |
Collapse
|
8
|
Ma L, Li J, Zhang X, Zhang W, Jiang C, Yang B, Yang H. Chinese botanical drugs targeting mitophagy to alleviate diabetic kidney disease, a comprehensive review. Front Pharmacol 2024; 15:1360179. [PMID: 38803440 PMCID: PMC11128677 DOI: 10.3389/fphar.2024.1360179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Diabetic kidney disease (DKD) is one of the chronic microvascular complications caused by diabetes, which is characterized by persistent albuminuria and/or progressive decline of estimated glomerular filtration rate (eGFR), and has been the major cause of dialysis around the world. At present, although the treatments for DKD including lifestyle modification, glycemic control and even using of Sodium-glucose cotransporter 2 (SGLT2) inhibitors can relieve kidney damage caused to a certain extent, there is still a lack of effective treatment schemes that can prevent DKD progressing to ESRD. It is urgent to find new complementary and effective therapeutic agents. Growing animal researches have shown that mitophagy makes a great difference to the pathogenesis of DKD, therefore, exploration of new drugs that target the restoration of mitophagy maybe a potential perspective treatment for DKD. The use of Chinese botanical drugs (CBD) has been identified to be an effective treatment option for DKD. There is growing concern on the molecular mechanism of CBD for treatment of DKD by regulating mitophagy. In this review, we highlight the current findings regarding the function of mitophagy in the pathological damages and progression of DKD and summarize the contributions of CBD that ameliorate renal injuries in DKD by interfering with mitophagy, which will help us further explain the mechanism of CBD in treatment for DKD and explore potential therapeutic strategies for DKD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
9
|
Yuan J, Zhao J, Qin Y, Zhang Y, Wang A, Ma R, Han M, Hui Y, Guo S, Ning X, Sun S. The protective mechanism of SIRT3 and potential therapy in acute kidney injury. QJM 2024; 117:247-255. [PMID: 37354530 DOI: 10.1093/qjmed/hcad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/06/2023] [Indexed: 06/26/2023] Open
Abstract
Acute kidney injury (AKI) is a complex clinical syndrome with a poor short-term prognosis, which increases the risk of the development of chronic kidney diseases and end-stage kidney disease. However, the underlying mechanism of AKI remains to be fully elucidated, and effective prevention and therapeutic strategies are still lacking. Given the enormous energy requirements for filtration and absorption, the kidneys are rich in mitochondria, which are unsurprisingly involved in the onset or progression of AKI. Accumulating evidence has recently documented that Sirtuin 3 (SIRT3), one of the most prominent deacetylases highly expressed in the mitochondria, exerts a protective effect on AKI. SIRT3 protects against AKI by regulating energy metabolism, inhibiting oxidative stress, suppressing inflammation, ameliorating apoptosis, inhibiting early-stage fibrosis and maintaining mitochondrial homeostasis. Besides, a number of SIRT3 activators have exhibited renoprotective properties both in animal models and in vitro experiments, but have not yet been applied to clinical practice, indicating a promising therapeutic approach. In this review, we unravel and summarize the recent advances in SIRT3 research and the potential therapy of SIRT3 activators in AKI.
Collapse
Affiliation(s)
- Jinguo Yuan
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jin Zhao
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yunlong Qin
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of Nephrology, 980th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), Shijiazhuang, 050011, China
| | - Yumeng Zhang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, 710021, China
| | - Anjing Wang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, 710021, China
| | - Rui Ma
- Department of Geriatric, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Mei Han
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, 710021, China
| | - Yueqing Hui
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shuxian Guo
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoxuan Ning
- Department of Geriatric, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
10
|
Dhiman S, Mannan A, Taneja A, Mohan M, Singh TG. Sirtuin dysregulation in Parkinson's disease: Implications of acetylation and deacetylation processes. Life Sci 2024; 342:122537. [PMID: 38428569 DOI: 10.1016/j.lfs.2024.122537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative condition that primarily affects motor function and is caused by a gradual decline of dopaminergic neurons in the brain's substantia pars compacta (Snpc) region. Multiple molecular pathways are involved in the pathogenesis, which results in impaired cellular functions and neuronal degeneration. However, the role of sirtuins, a type of NAD+-dependent deacetylase, in the pathogenesis of Parkinson's disease has recently been investigated. Sirtuins are essential for preserving cellular homeostasis because they control a number of biological processes, such as metabolism, apoptosis, and DNA repair. This review shed lights on the dysregulation of sirtuin activity in PD, highlighting the role that acetylation and deacetylation processes play in the development of the disease. Key regulators of protein acetylation, sirtuins have been found to be involved in the aberrant acetylation of vital substrates linked to PD pathology when their balance is out of balance. The hallmark characteristics of PD such as neuroinflammation, oxidative stress, and mitochondrial dysfunction have all been linked to the dysregulation of sirtuin expression and activity. Furthermore, we have also explored how the modulators of sirtuins can be a promising therapeutic intervention in the treatment of PD.
Collapse
Affiliation(s)
- Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Ayushi Taneja
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
11
|
Jin Q, Ma F, Liu T, Yang L, Mao H, Wang Y, Peng L, Li P, Zhan Y. Sirtuins in kidney diseases: potential mechanism and therapeutic targets. Cell Commun Signal 2024; 22:114. [PMID: 38347622 PMCID: PMC10860260 DOI: 10.1186/s12964-023-01442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/12/2023] [Indexed: 02/15/2024] Open
Abstract
Sirtuins, which are NAD+-dependent class III histone deacetylases, are involved in various biological processes, including DNA damage repair, immune inflammation, oxidative stress, mitochondrial homeostasis, autophagy, and apoptosis. Sirtuins are essential regulators of cellular function and organismal health. Increasing evidence suggests that the development of age-related diseases, including kidney diseases, is associated with aberrant expression of sirtuins, and that regulation of sirtuins expression and activity can effectively improve kidney function and delay the progression of kidney disease. In this review, we summarise current studies highlighting the role of sirtuins in renal diseases. First, we discuss sirtuin family members and their main mechanisms of action. We then outline the possible roles of sirtuins in various cell types in kidney diseases. Finally, we summarise the compounds that activate or inhibit sirtuin activity and that consequently ameliorate renal diseases. In conclusion, targeted modulation of sirtuins is a potential therapeutic strategy for kidney diseases. Video Abstract.
Collapse
Affiliation(s)
- Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
12
|
Gao X, Wu Y. Perioperative acute kidney injury: The renoprotective effect and mechanism of dexmedetomidine. Biochem Biophys Res Commun 2024; 695:149402. [PMID: 38159412 DOI: 10.1016/j.bbrc.2023.149402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Dexmedetomidine (DEX) is a highly selective and potent α2-adrenoceptor (α2-AR) agonist that is widely used as a clinical anesthetic to induce anxiolytic, sedative, and analgesic effects. In recent years, a growing body of evidence has demonstrated that DEX protects against acute kidney injury (AKI) caused by sepsis, drugs, surgery, and ischemia-reperfusion (I/R) in organs or tissues, indicating its potential role in the prevention and treatment of AKI. In this review, we summarized the evidence of the renoprotective effects of DEX on different models of AKI and explored the mechanism. We found that the renoprotective effects of DEX mainly involved antisympathetic effects, reducing inflammatory reactions and oxidative stress, reducing apoptosis, increasing autophagy, reducing ferroptosis, protecting renal tubular epithelial cells (RTECs), and inhibiting renal fibrosis. Thus, the use of DEX is a promising strategy for the management and treatment of perioperative AKI. The aim of this review is to further clarify the renoprotective mechanism of DEX to provide a theoretical basis for its use in basic research in various AKI models, clinical management, and the treatment of perioperative AKI.
Collapse
Affiliation(s)
- Xiong Gao
- Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yaohua Wu
- Department of Anesthesiology, Huanggang Central Hospital, Huanggang, Hube, China.
| |
Collapse
|
13
|
Huang Q, Li Y, Chen Z, Ou H, Tan Y, Lin H. Bushenhuoluo Decoction improves polycystic ovary syndrome by regulating exosomal miR-30a-5p/ SOCS3/mTOR/NLRP3 signaling-mediated autophagy and pyroptosis. J Ovarian Res 2024; 17:29. [PMID: 38302986 PMCID: PMC10832128 DOI: 10.1186/s13048-024-01355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a frequent and complicated endocrine disease that remains a major reason for infertility. Bushenhuoluo Decotion (BSHLD) has been validated to exhibit curative effects on PCOS. This study was aimed to explore the potential mechanism underlying the therapeutic action of BSHLD. METHODS PCOS rat model was induced by dehydroepiandrosterone (DHEA). Serum hormone and cytokines levels and ovarian pathological alterations were measured to assess ovarian function. Exosomes (Exos) were identified by Transmission electron microscopy and Nanoparticle Tracking Analysis. RT-qPCR, Western blotting, immunohistochemical staining, and immunofluorescence staining were performed to detect molecule expressions. Proliferation and pyroptosis of granulosa cells (GCs) were evaluated by CCK-8 and flow cytometry, respectively. The binding relationship between miR-30a-5p and suppressor of cytokine signaling 3 (SOCS3) was verified by dual luciferase reporter and RIP assays. RESULTS BSHLD treatment improved serum hormone abnormality, insulin sensitivity, and ovarian morphologic changes of PCOS rats. Moreover, BSHLD treatment restrained the excessive autophagy and pyroptosis in ovarian tissues of PCOS rats. Moreover, BSHLD reduced the expression of miR-30a-5p in serum, serum-derived Exos, and ovarian tissues, thus inhibiting autophagy and NLRP3-mediated pyroptosis in GCs. Mechanistically, SOCS3 was proved as a target of miR-30a-5p and could activate mTOR/P70S6K pathway to repress autophagy. The inhibitory effect of miR-30a-5p deficiency on autophagy and pyroptosis of GCs was attenuated by rapamycin. CONCLUSION Collectively, BSHLD suppressed autophagy and pyroptosis to improve POCS by regulating exosomal miR-30a-5p/SOCS3/mTOR signaling.
Collapse
Affiliation(s)
- Qun Huang
- Department of Gynecology, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, 412012, Hunan Province, People's Republic of China
| | - Yuanbin Li
- Department of Traditional Chinese Medicine, Hunan Traditional Chinese Medical College, No. 88 Zhihui Road, Shifeng District, Zhuzhou, 412012, Hunan Province, People's Republic of China
| | - Zhuang Chen
- Department of Traditional Chinese Medicine, Hunan Traditional Chinese Medical College, No. 88 Zhihui Road, Shifeng District, Zhuzhou, 412012, Hunan Province, People's Republic of China
| | - Huiping Ou
- Department of Traditional Chinese Medicine, Hunan Traditional Chinese Medical College, No. 88 Zhihui Road, Shifeng District, Zhuzhou, 412012, Hunan Province, People's Republic of China
| | - Yanjiao Tan
- Department of Gynecology, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, 412012, Hunan Province, People's Republic of China
| | - Hui Lin
- Department of Traditional Chinese Medicine, Hunan Traditional Chinese Medical College, No. 88 Zhihui Road, Shifeng District, Zhuzhou, 412012, Hunan Province, People's Republic of China.
| |
Collapse
|
14
|
Wang M, Sun Z, Ou Y, Ge W, Yuan M, Xu B. Electroacupuncture Mediates Fat Metabolism and Autophagy via a Sirt3-Dependent Mechanism in Mice Fed High-Fat Diet. Adv Biol (Weinh) 2024; 8:e2300370. [PMID: 37840428 DOI: 10.1002/adbi.202300370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/02/2023] [Indexed: 10/17/2023]
Abstract
This study investigates the therapeutic potential of electroacupuncture (EA) on obesity, focusing on its influence on autophagy and energy metabolism, utilizing a high-fat diet (HFD)-induced mouse model. Treatment with EA significantly reduces body weight, fat deposition, and lipid accumulation in HFD-fed mice. Additionally, EA effectively ameliorates metabolic imbalances, reducing blood glucose levels and plasma markers of liver function. At the molecular level, EA enhances the expression of thermogenesis-associated genes in brown adipose tissue and decreases p53 expression, suggesting a decrease in apoptosis. Autophagy in white adipose tissue is inhibited by EA, as demonstrated by the suppression of key autophagy-related proteins. Further experiments highlight the critical role of Sirtuin 3 (Sirt3) in EA's anti-obesity effects. Sirt3 supplementation combined with EA results in reduced body weight, fat deposition, and lipid accumulation, along with modulations in key metabolic indicators. Moreover, EA's modulatory effect on uncoupling protein 1 (Ucp1), Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc-1α), and p53 is found to be Sirt3 dependent. In conclusion, EA exerts beneficial effects against obesity through Sirt3-dependent modulation of autophagy and energy metabolism, indicating a potential therapeutic approach for obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Ming Wang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
- Department of Acupuncture and Massage, Geriatric Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, 210024, China
| | - Zhicheng Sun
- Department of Acupuncture and Massage, Geriatric Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, 210024, China
| | - Yanggang Ou
- Department of Acupuncture and Massage, Geriatric Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, 210024, China
| | - Wei Ge
- Department of Acupuncture and Massage, Geriatric Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, 210024, China
| | - Mengqian Yuan
- Department of Acupuncture Rehabilitation, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, 210024, China
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
15
|
Chen FF, Liu JF, Zhou DM. SIRT3 enhances the protective effect of Xyloketal B on seizure-induced brain injury by regulating AMPK/mTOR signaling-mediated autophagy. Kaohsiung J Med Sci 2024; 40:74-85. [PMID: 37850727 DOI: 10.1002/kjm2.12765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 10/19/2023] Open
Abstract
Brain damage in children due to seizures is irreversible and has been a major public health concern. The herbal monomer Xyloketal B (Xyl-B) can be used as a neuroprotective drug because of its antioxidant, antiapoptotic, and anti-inflammatory effects but with few adverse effects. In this article, we constructed a rat developmental convulsion model and a primary hippocampal neuronal cell convulsion model, through which we studied hippocampal neuronal morphology and neuronal apoptosis using H&E staining and TUNEL staining, respectively. Moreover, we measured TNF-α, IL-6, and IL-1β inflammatory factor levels using ELISA, MDA, and SOD kits. The expression of SIRT3 in hippocampal tissues was determined by qPCR and Western blotting. The expression of autophagy-related proteins such as LC3, p62, and Beclin-1 was evaluated by Western blotting or immunohistochemistry. The role of SIRT3 and autophagic activity with Xyl-B in convulsive seizure-induced brain injury was investigated by knocking down SIRT3 expression levels. Our results showed that Xyl-B plays a neuroprotective role in convulsive seizure-induced brain injury by increasing SIRT3 expression and activating the autophagy pathway. The regulatory role of SIRT3 in the autophagy pathway with Xyl-B treatment was explored by knocking down SIRT3 expression and inhibiting autophagy. Our results revealed that SIRT3 enhances the protective effect of Xyl-B against postconvulsive brain injury by regulating AMPK/mTOR signaling-mediated autophagy.
Collapse
Affiliation(s)
- Fen-Fang Chen
- Department of Paediatrics, The Second Affiliated Hospital of University of South China, Hengyang City, Hunan Province, China
| | - Jian-Feng Liu
- Department of Paediatrics, The Second Affiliated Hospital of University of South China, Hengyang City, Hunan Province, China
| | - Di-Mi Zhou
- Department of Neurology, The Second Affiliated Hospital of University of South China, Hengyang City, Hunan Province, China
| |
Collapse
|
16
|
Fan H, Le JW, Sun M, Zhu JH. N-acetylcysteine protects septic acute kidney injury by inhibiting SIRT3-mediated mitochondrial dysfunction and apoptosis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:850-856. [PMID: 38800015 PMCID: PMC11127075 DOI: 10.22038/ijbms.2024.72882.15853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/13/2023] [Indexed: 05/29/2024]
Abstract
Objectives To investigate the protective effect of N-acetylcysteine (NAC) on septic acute kidney injury (SAKI) via regulating Sirtuin3 (SIRT3)-mediated mitochondrial dysfunction and apoptosis. Materials and Methods By constructing SIRT3 knockout mice and culturing kidney tubular epithelial cells (KTECs), we assessed the changes of renal function and detected the protein expression of adenine nucleotide translocator (ANT), cyclophilin (CypD) and voltage-dependent anion channel (VDAC) using western-blotting, and simultaneously detected toll-like receptor 4 (TLR4), inhibitor of kappa B kinase (IKKβ), inhibitor of Kappa Bα (IκBα), and p65 protein expression. We observed mitochondrial damage of KTECs using a transmission electron microscope and assessed apoptosis by TdT-mediated dUTP Nick-End Labeling and flow cytometry. Results SIRT3 deficiency led to the deterioration of renal function, and caused a significant increase in inducible nitric oxide synthase production, a decrease in mitochondrial volume, up-regulation of TLR4, IκBα, IKKβ, and p65 proteins, and up-regulation of ANT, CypD and VDAC proteins. However, NAC significantly improved renal function and down-regulated the expression of TLR4, IκBα, IKKβ, and p65 proteins. Furthermore, SIRT3 deficiency led to a significant increase in KTEC apoptosis, while NAC up-regulated the expression of SIRT3 and inhibited apoptosis. Conclusion NAC has a significant protective effect on SAKI by inhibiting SIRT3-mediated mitochondrial dysfunction and apoptosis of KTECs.
Collapse
Affiliation(s)
- Heng Fan
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, P.R China
| | - Jian-wei Le
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, P.R China
| | - Min Sun
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, P.R China
| | - Jian-hua Zhu
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, P.R China
| |
Collapse
|
17
|
Jin C, Cao Y, Li Y. Bone Mesenchymal Stem Cells Origin Exosomes are Effective Against Sepsis-Induced Acute Kidney Injury in Rat Model. Int J Nanomedicine 2023; 18:7745-7758. [PMID: 38144514 PMCID: PMC10743757 DOI: 10.2147/ijn.s417627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction The incidence and mortality rates of sepsis-induced acute kidney injury (SAKI) remain high, posing a substantial healthcare burden. Studies have implicated a connection between the development of SAKI and inflammation response, apoptosis, and autophagy. Moreover, evidence suggests that manipulating autophagy could potentially influence the prognosis of this condition. Notably, exosomes derived from bone mesenchymal stem cells (BMSCs-Exo) have exhibited promise in mitigating cellular damage by modulating pathways associated with inflammation, apoptosis, and autophagy. Thus, this study aims to investigate the influence of BMSCs-Exo on SAKI and the potential mechanisms that drive this impact. Methods The SAKI model was induced in HK-2 cells using lipopolysaccharide (LPS), while rats underwent cecal ligation and puncture (CLP) to simulate the condition. Cell viability was assessed using the CCK-8 kit, and kidney damage was evaluated through HE staining, blood urea nitrogen (BUN), and serum creatinine (SCr) measurements. Inflammatory-related RNAs and proteins were quantified via qPCR and ELISA, respectively. Apoptosis was determined through apoptosis-related protein levels, flow cytometry, and TUNEL staining. Western blot analysis was utilized to measure associated protein expressions. Results In vivo, BMSCs-Exo ameliorated kidney injury in CLP-induced SAKI rats, reducing inflammatory cytokine production and apoptosis levels. Fluorescence microscope observed the absorption of BMSCs-Exo by renal cells following injection via tail vein. In the SAKI rat kidney tissue, there was an upregulation of LC3-II/LC3-I, p62, and phosphorylated AMP-activated protein kinase (p-AMPK) expressions, indicating blocked autophagic flux, while phosphorylated mammalian target of rapamycin (p-mTOR) expression was downregulated. However, BMSCs-Exo enhanced LC3-II/LC3-I and p-AMPK expression, concurrently reducing p62 and p-mTOR levels. In vitro, BMSCs-Exo enhanced cell viability in LPS-treated HK-2 cells, and exerted anti-inflammation and anti-apoptosis effects which were consistent with the results in vivo. Similarly, rapamycin (Rapa) exhibited a protective effect comparable to BMSCs-Exo, albeit partially abrogated by 3-methyladenine (3-MA). Conclusion BMSCs-Exo mitigate inflammation and apoptosis through autophagy in SAKI, offering a promising avenue for SAKI treatment.
Collapse
Affiliation(s)
- Cui Jin
- Department of Critical Care Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Yongmei Cao
- Department of Critical Care Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Yingchuan Li
- Department of Critical Care Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| |
Collapse
|
18
|
Liu P, Li M, Wu W, Liu A, Hu H, Liu Q, Yi C. Protective effect of omega-3 polyunsaturated fatty acids on sepsis via the AMPK/mTOR pathway. PHARMACEUTICAL BIOLOGY 2023; 61:306-315. [PMID: 36694426 PMCID: PMC9879202 DOI: 10.1080/13880209.2023.2168018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/10/2022] [Accepted: 01/09/2023] [Indexed: 06/02/2023]
Abstract
CONTEXT Sepsis is a systemic inflammatory response caused by infection, with high morbidity and mortality. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) have reported biological activities. OBJECTIVE This study explored the signaling pathways through which ω-3 PUFAs protect against sepsis-induced multiorgan failure. MATERIALS AND METHODS Septic Sprague-Dawley (SD) rat model was established by the cecum ligation perforation (CLP) method. Rats were divided into control, sham, model, parenteral ω-3 PUFAs (0.5 g/kg) treatment, ω-3 PUFAs (0.5 g/kg) + AMPK inhibitor Compound C (30 mg/kg) treatment, and ω-3 PUFAs (0.5 g/kg) + mTOR activator MHY1485 (10 mg/kg) treatment groups. The serum inflammatory cytokines were measured using ELISA. Organ damage-related markers cTnI, CK, CK-MB, Cr, BUN, ALT, and AST were measured using an automated chemical analyzer. The AMPK/mTOR pathway in liver, kidney, and myocardial tissues was detected using western blot and qRT-PCR methods. RESULTS CLP treatment enhanced the secretion of pro-inflammatory cytokines and multi-organ related markers, along with increased p-AMPK/AMPK ratio (from 0.47 to 0.87) and decreased p-mTOR/mTOR ratio (from 0.33 to 0.12) in rats. The inflammation response and multi-organ injury induced by CLP treatment could be partially counteracted by 0.5 g/kg parenteral ω-3 PUFA treatment. The activated AMPK/mTOR pathway in CLP-induced rats was further promoted. Finally, Compound C and MHY1485 could reverse the effects of parenteral ω-3 PUFA treatment on sepsis rats. DISCUSSION AND CONCLUSION ω-3 PUFAs ameliorated sepsis development by activating the AMPK/mTOR pathway, serving as a potent therapeutic agent for sepsis. Further in vivo studies may validate potential clinical use.
Collapse
Affiliation(s)
- Peng Liu
- Wuhan Fourth Hospital, Wuhan, China
| | - Ming Li
- Wuhan Fourth Hospital, Wuhan, China
| | - Wei Wu
- Wuhan Fourth Hospital, Wuhan, China
| | - Anjie Liu
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | | | - Qin Liu
- Wuhan Fourth Hospital, Wuhan, China
| | | |
Collapse
|
19
|
Liu D, Li L, Li Z. Anemonin inhibits sepsis-induced acute kidney injury via mitigating inflammation and oxidative stress. Biotechnol Appl Biochem 2023; 70:1983-2001. [PMID: 37592376 DOI: 10.1002/bab.2504] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/08/2023] [Indexed: 08/19/2023]
Abstract
Elevated inflammation and oxidative stress (OS) are the main pathologic features of acute kidney injury (AKI)-caused by sepsis. Here, we made an investigation into the protective effects of the natural compound Anemonin (ANE) on sepsis-induced AKI both in vitro and in vivo. Lipopolysaccharide (LPS) was applied to construct an in vitro AKI model in renal tubular epithelial cells, and the septic C57BL/6J mouse model was constructed via cecal ligation and puncture (CLP). Cell viability and apoptosis were detected. The levels of p53, Bax, Bcl2, Caspase3, Caspase8, Caspase9, AMP-activated protein kinase (AMPK), Sirt-1, and forkhead box O3 were determined by Western Blot or RT-PCR. The reactive oxygen species level and OS markers were measured. Furthermore, the pathological changes of kidneys were evaluated by hematoxylin-eosin staining and immunohistochemistry. As per the information presented, ANE improved LPS-elicited apoptosis, inflammatory response, and OS in a dose-dependent pattern in renal tubular epithelial cells. Besides, ANE activated the AMPK/Sirt-1 pathway, and the AMPK inhibitor (Compound C) and Sirt-1 inhibitor (EX-527) significantly attenuated ANE-mediated protection on renal tubular epithelial cells. In vivo, ANE mitigated the levels of serum creatinine and urea nitrogen in the CLP-induced mouse sepsis model, reduced the renal tissue injury score, and attenuated OS, inflammation, and apoptosis levels in the kidney. Taken together, this study suggested that ANE has protective effects in sepsis-triggered AKI through repressing inflammation, OS, and cell apoptosis by activating the AMPK/Sirt-1 pathway.
Collapse
Affiliation(s)
- Dan Liu
- Department of Nephrology, First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Li Li
- Department of Nephrology, First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Zengyan Li
- Department of Nephrology, First Affiliated Hospital of Baotou Medical College, Baotou, China
| |
Collapse
|
20
|
Xing H, Li S, Fu Y, Wan X, Zhou A, Cao F, Sun Q, Hu N, Ma M, Li W, Cao C. HYAL1 deficiency attenuates lipopolysaccharide-triggered renal injury and endothelial glycocalyx breakdown in septic AKI in mice. Ren Fail 2023; 45:2188966. [PMID: 37563795 PMCID: PMC10424626 DOI: 10.1080/0886022x.2023.2188966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 12/27/2022] [Accepted: 12/31/2022] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Renal dysfunction and disruption of renal endothelial glycocalyx are two important events during septic acute kidney injury (AKI). Here, the role and mechanism of hyaluronidase 1 (HYAL1) in regulating renal injury and renal endothelial glycocalyx breakdown in septic AKI were explored for the first time. METHODS BALB/c mice were injected with lipopolysaccharide (LPS, 10 mg/kg) to induce AKI. HYAL1 was blocked in vivo using lentivirus-mediated short hairpin RNA targeting HYAL1 (LV-sh-HYAL1). Biochemical assays were performed to measure the levels and concentrations of biochemical parameters associated with AKI as well as levels of inflammatory cytokines. Renal pathological lesions were determined by hematoxylin-eosin (HE) staining. Cell apoptosis in the kidney was detected using terminal-deoxynucleoitidyl transferase-mediated nick end labeling (TUNEL) assay. Immunofluorescence and immunohistochemical (IHC) staining assays were used to examine the levels of hyaluronic acid in the kidney. The protein levels of adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling, endothelial glycocalyx, and autophagy-associated indicators were assessed by western blotting. RESULTS The knockdown of HYAL1 in LPS-subjected mice by LV-sh-HYAL1 significantly reduced renal inflammation, oxidative stress, apoptosis and kidney dysfunction in AKI, as well as alleviated renal endothelial glycocalyx disruption by preventing the release of hyaluronic acid to the bloodstream. Additionally, autophagy-related protein analysis indicated that knockdown of HYAL1 significantly enhanced autophagy in LPS mice. Furthermore, the beneficial actions of HYAL1 blockade were closely associated with the AMPK/mTOR signaling. CONCLUSION HYAL1 deficiency attenuates LPS-triggered renal injury and endothelial glycocalyx breakdown in septic AKI in mice.
Collapse
Affiliation(s)
- Hongxia Xing
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Shensen Li
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Yongchao Fu
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Xin Wan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Annan Zhou
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Feifei Cao
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Qing Sun
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Nana Hu
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Mengqing Ma
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Wenwen Li
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Changchun Cao
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| |
Collapse
|
21
|
Labiner HE, Sas KM, Baur JA, Sims CA. Sirt3 Deletion Increases Inflammation and Mortality in Polymicrobial Sepsis. Surg Infect (Larchmt) 2023; 24:788-796. [PMID: 38015645 PMCID: PMC10659016 DOI: 10.1089/sur.2023.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Background: Sirtuin 3 (SIRT3) is a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase that confers resilience to cellular stress by promoting mitochondrial activity. Mitochondrial dysfunction is a major driver of inflammation during sepsis. We hypothesize that Sirt3 expression improves survival in polymicrobial sepsis by mitigating the inflammatory response. Materials and Methods: Sirt3 knockout (S3KO) and wild-type (WT) mice underwent cecal ligation and puncture (CLP) or sham surgery. mRNA expression was quantified using quantitative polymerase chain reaction (qPCR) and protein expression was quantified using enzyme-linked immunosorbent assay (ELISA). Spectrophotometric assays were used to quantify serum markers of organ dysfunction. For in vitro studies, bone marrow-derived macrophages (BMDMs) were harvested from S3KO and WT mice and treated with lipopolysaccharide (LPS). Results: After CLP, hepatic Sirt3 levels decreased from baseline by nine hours and remained depressed at 24 hours. Peak serum interleukin-6 (IL-6) protein levels were higher in S3KO mice. In LPS-treated BMDMs, IL-6 mRNA levels peaked earlier in S3KO cells, although peak levels were comparable to WT. Although S3KO mice had decreased median survival after CLP compared with WT, there was no difference in five-day survival or organ dysfunction. Conclusions: Although S3KO mice initially had increased inflammation and mortality, this difference abated with time, and overall survival was comparable between the groups. This pattern is consistent with the timeline of sepsis-induced Sirt3 downregulation in WT mice, and suggests that Sirt3 downregulation occurring in sepsis is at least partially responsible for the initial hyperinflammatory response and subsequent mortality. Our data support upregulation of Sirt3 as a promising therapeutic strategy for further research in sepsis.
Collapse
Affiliation(s)
- Hanna E. Labiner
- Division of Trauma, Critical Care, and Burn at The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Kelli M. Sas
- Division of Trauma, Critical Care, and Burn at The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Joseph A. Baur
- Institute for Diabetes, Obesity and Metabolism and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carrie A. Sims
- Division of Trauma, Critical Care, and Burn at The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
22
|
Zhu M, He J, Xu Y, Zuo Y, Zhou W, Yue Z, Shao X, Cheng J, Wang T, Mou S. AMPK activation coupling SENP1-Sirt3 axis protects against acute kidney injury. Mol Ther 2023; 31:3052-3066. [PMID: 37608549 PMCID: PMC10556228 DOI: 10.1016/j.ymthe.2023.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/24/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023] Open
Abstract
Acute kidney injury (AKI) is a critical clinical condition that causes kidney fibrosis, and it currently lacks specific treatment options. In this research, we investigate the role of the SENP1-Sirt3 signaling pathway and its correlation with mitochondrial dysfunction in proximal tubular epithelial cells (PTECs) using folic acid (FA) and ischemia-reperfusion-induced (IRI) AKI models. Our findings reveal that Sirt3 SUMOylation site mutation (Sirt3 KR) or pharmacological stimulation (metformin) protected mice against AKI and subsequent kidney inflammation and fibrosis by decreasing the acetylation level of mitochondrial SOD2, reducing mitochondrial reactive oxygen species (mtROS), and subsequently restoring mitochondrial ATP level, reversing mitochondrial morphology and alleviating cell apoptosis. In addition, AKI in mice was similarly alleviated by reducing mtROS levels using N-acetyl-L-cysteine (NAC) or MitoQ. Metabolomics analysis further demonstrated an increase in antioxidants and metabolic shifts in Sirt3 KR mice during AKI, compared with Sirt3 wild-type (WT) mice. Activation of the AMPK pathway using metformin promoted the SENP1-Sirt3 axis and protected PTECs from apoptosis. Hence, the augmented deSUMOylation of Sirt3 in mitochondria, activated through the metabolism-related AMPK pathway, protects against AKI and subsequently mitigated renal inflammation and fibrosis through Sirt3-SOD2-mtROS, which represents a potential therapeutic target for AKI.
Collapse
Affiliation(s)
- Minyan Zhu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201207, China
| | - Jianli He
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yao Xu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201207, China
| | - Yong Zuo
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenyan Zhou
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201207, China
| | - Zhiying Yue
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinghua Shao
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201207, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tianshi Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Shan Mou
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201207, China.
| |
Collapse
|
23
|
Xiao H, Xie Y, Xi K, Xie J, Liu M, Zhang Y, Cheng Z, Wang W, Guo B, Wu S. Targeting Mitochondrial Sirtuins in Age-Related Neurodegenerative Diseases and Fibrosis. Aging Dis 2023; 14:1583-1605. [PMID: 37196115 PMCID: PMC10529758 DOI: 10.14336/ad.2023.0203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/03/2023] [Indexed: 05/19/2023] Open
Abstract
Aging is a natural and complex biological process that is associated with widespread functional declines in numerous physiological processes, terminally affecting multiple organs and tissues. Fibrosis and neurodegenerative diseases (NDs) often occur with aging, imposing large burdens on public health worldwide, and there are currently no effective treatment strategies for these diseases. Mitochondrial sirtuins (SIRT3-5), which are members of the sirtuin family of NAD+-dependent deacylases and ADP-ribosyltransferases, are capable of regulating mitochondrial function by modifying mitochondrial proteins that participate in the regulation of cell survival under various physiological and pathological conditions. A growing body of evidence has revealed that SIRT3-5 exert protective effects against fibrosis in multiple organs and tissues, including the heart, liver, and kidney. SIRT3-5 are also involved in multiple age-related NDs, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. Furthermore, SIRT3-5 have been noted as promising targets for antifibrotic therapies and the treatment of NDs. This review systematically highlights recent advances in knowledge regarding the role of SIRT3-5 in fibrosis and NDs and discusses SIRT3-5 as therapeutic targets for NDs and fibrosis.
Collapse
Affiliation(s)
- Haoxiang Xiao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Yuqiao Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Kaiwen Xi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Jinyi Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Mingyue Liu
- Medical School, Yan’an University, Yan’an, China
| | - Yangming Zhang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Zishuo Cheng
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| |
Collapse
|
24
|
Shen X, Shi H, Chen X, Han J, Liu H, Yang J, Shi Y, Ma J. Esculetin Alleviates Inflammation, Oxidative Stress and Apoptosis in Intestinal Ischemia/Reperfusion Injury via Targeting SIRT3/AMPK/mTOR Signaling and Regulating Autophagy. J Inflamm Res 2023; 16:3655-3667. [PMID: 37641705 PMCID: PMC10460583 DOI: 10.2147/jir.s413941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/06/2023] [Indexed: 08/31/2023] Open
Abstract
Aim Intestinal ischemia/reperfusion (I/R) injury is a challenging pathological phenomenon accountable for significant mortality in clinical scenarios. Substantial evidence has supported the protective role of esculetin in myocardial I/R injury. This study is designed to reveal the specific impacts of esculetin on intestinal I/R injury and disclose the underlying mechanism. Methods First, intestinal I/R injury model and intestinal epithelial cell line hypoxia/reoxygenation (H/R) model were established. Pathologic damages to intestinal tissues were observed through H&E staining. Serum diamine oxidase (DAO) levels were examined. RT-qPCR and Western blot examined the expression of inflammatory mediators. Commercial kits were used for detecting the levels of oxidative stress markers. TUNEL assay and caspase 3 activity assay measured cell apoptosis. Immunofluorescence (IF) staining measured autophagy levels. Western blot analyzed the expression of apoptosis-, Sirtuin 3 (SIRT3)/AMP activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling- and autophagy-related proteins. Molecular docking verified the interaction of esculetin with SIRT3. Cell viability was explored via CCK-8 assay. Results The experimental results revealed that esculetin treatment mitigated pathological damage of intestinal tissues, reduced serum DAO level, ameliorated inflammation, oxidative stress and apoptosis and promoted autophagy in intestinal I/R rats. Moreover, esculetin bond to SIRT3 and activated SIRT3/AMPK/mTOR signaling both in vitro and in vivo. Furthermore, esculetin treatment enhanced cell viability and SIRT3 silencing reversed the impacts of esculetin on autophagy, inflammation, oxidative stress and apoptosis in H/R cell model. Conclusion In a word, esculetin activated SIRT3/AMPK/mTOR signaling and autophagy to protect against inflammation, oxidative stress and apoptosis in intestinal I/R injury.
Collapse
Affiliation(s)
- Xin Shen
- Department of Gastrointestinal Surgery, Xi’an Daxing Hospital, Xi’an, 710016, People’s Republic of China
| | - Hai Shi
- Department of Gastrointestinal Surgery, Xi’an Daxing Hospital, Xi’an, 710016, People’s Republic of China
| | - Xinli Chen
- Department of Gastrointestinal Surgery, Xi’an Daxing Hospital, Xi’an, 710016, People’s Republic of China
| | - Junwei Han
- Department of Gastrointestinal Surgery, Xi’an Daxing Hospital, Xi’an, 710016, People’s Republic of China
| | - Haiwang Liu
- Department of Gastrointestinal Surgery, Xi’an Daxing Hospital, Xi’an, 710016, People’s Republic of China
| | - Jie Yang
- Department of Gastrointestinal Surgery, Xi’an Daxing Hospital, Xi’an, 710016, People’s Republic of China
| | - Yuan Shi
- Department of Gynecology and Obstetrics, Xijing Hospital, Air Force Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Jiajia Ma
- Department of Gynecology and Obstetrics, Xijing Hospital, Air Force Military Medical University, Xi’an, 710032, People’s Republic of China
| |
Collapse
|
25
|
Osuru HP, Ikeda K, Atluri N, Thiele RH. Moderate exercise-induced dynamics on key sepsis-associated signaling pathways in the liver. Crit Care 2023; 27:266. [PMID: 37407986 DOI: 10.1186/s13054-023-04551-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/25/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND There is a clear relationship between quantitative measures of fitness (e.g., VO2 max) and outcomes after surgical procedures. Whether or not fitness is a modifiable risk factor and what underlying biological processes drive these changes are not known. The purpose of this study was to evaluate the moderate exercise training effect on sepsis outcomes (survival) as well as the hepatic biological response. We chose to study the liver because it plays a central role in the regulation of immune defense during systemic infection and receives blood flow directly from the origin of infection (gut) in the cecal ligation and puncture (CLP) model. METHODS We randomized 50 male (♂) and female (♀) Sprague-Dawley rats (10 weeks, 340 g) to 3 weeks of treadmill exercise training, performed CLP to induce polymicrobial "sepsis," and monitored survival for five days (Part I). In parallel (Part II), we randomized 60 rats to control/sedentary (G1), exercise (G2), exercise + sham surgery (G3), CLP/sepsis (G4), exercise + CLP [12 h (G5) and 24 h (G6)], euthanized at 12 or 24 h, and explored molecular pathways related to exercise and sepsis survival in hepatic tissue and serum. RESULTS Three weeks of exercise training significantly increased rat survival following CLP (polymicrobial sepsis). CLP increased inflammatory markers (e.g., TNF-a, IL-6), which were attenuated by exercise. Sepsis suppressed the SOD and Nrf2 expression, and exercise before sepsis restored SOD and Nrf2 levels near the baseline. CLP led to increased HIF1a expression and oxidative and nitrosative stress, the latter of which were attenuated by exercise. Haptoglobin expression levels were increased in CLP animals, which was significantly amplified in exercise + CLP (24 h) rats. CONCLUSIONS Moderate exercise training (3 weeks) increased the survival in rats exposed to CLP, which was associated with less inflammation, less oxidative and nitrosative stress, and activation of antioxidant defense pathways.
Collapse
Affiliation(s)
- Hari Prasad Osuru
- Department of Anesthesiology, University of Virginia School of Medicine, P.O. Box 800710-0710, Charlottesville, VA, 22908-0710, USA.
| | - Keita Ikeda
- Department of Anesthesiology, University of Virginia School of Medicine, P.O. Box 800710-0710, Charlottesville, VA, 22908-0710, USA
| | - Navya Atluri
- Department of Anesthesiology, University of Virginia School of Medicine, P.O. Box 800710-0710, Charlottesville, VA, 22908-0710, USA
| | - Robert H Thiele
- Department of Anesthesiology, University of Virginia School of Medicine, P.O. Box 800710-0710, Charlottesville, VA, 22908-0710, USA.
| |
Collapse
|
26
|
Ray N, Park SJ, Jung H, Kim J, Korcsmaros T, Moon Y. Stress-responsive Gdf15 counteracts renointestinal toxicity via autophagic and microbiota reprogramming. Commun Biol 2023; 6:602. [PMID: 37270567 DOI: 10.1038/s42003-023-04965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/22/2023] [Indexed: 06/05/2023] Open
Abstract
The integrated stress response (ISR) plays a pivotal role in the cellular stress response, primarily through global translational arrest and the upregulation of cellular adaptation-linked molecules. Growth differentiation factor 15 (Gdf15) is a potent stress-responsive biomarker of clinical inflammatory and metabolic distress in various types of diseases. Herein, we assess whether ISR-driven cellular stress contributes to pathophysiological outcomes by modulating Gdf15. Clinical transcriptome analysis demonstrates that PKR is positively associated with Gdf15 expression in patients with renal injury. Gdf15 expression is dependent on protein kinase R (PKR)-linked ISR during acute renointestinal distress in mice and genetic ablation of Gdf15 aggravates chemical-induced lesions in renal tissues and the gut barrier. An in-depth evaluation of the gut microbiota indicates that Gdf15 is associated with the abundance of mucin metabolism-linked bacteria and their enzymes. Moreover, stress-responsive Gdf15 facilitates mucin production and cellular survival via the reorganization of the autophagy regulatory network. Collectively, ISR-activated Gdf15 counteracts pathological processes via the protective reprogramming of the autophagic network and microbial community, thereby providing robust predictive biomarkers and interventions against renointestinal distress.
Collapse
Affiliation(s)
- Navin Ray
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Korea
| | - Seung Jun Park
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Korea
| | - Hoyung Jung
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Korea
| | - Juil Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Korea
| | - Tamas Korcsmaros
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Korea.
- Earlham Institute, Norwich Research Park, Norwich, UK.
- Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan, Korea.
| |
Collapse
|
27
|
Li Q, Wang T, Wang X, Ge XY, Yang T, Bai G, Wang W. Inhibition of sepsis-induced acute kidney injury via the circITCH-miR-579-3p-ZEB2 axis. ENVIRONMENTAL TOXICOLOGY 2023; 38:1217-1225. [PMID: 36999488 DOI: 10.1002/tox.23682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 05/18/2023]
Abstract
Circular RNAs (circRNAs) are linked to the regulation of sepsis-induced acute kidney injury (AKI). However, the function of circITCH in the development of sepsis-induced AKI is still unclear. The levels of circITCH, miR-579-3p and ZEB2 were examined by real-time PCR and immunoblotting. Then, the roles of circITCH in cell viability, apoptosis, and inflammation in lipopolysaccharide (LPS)-treated HK-2 cells were evaluated. The further mechanism was investigated using rescue assays. CircITCH was downregulated in septic AKI patients and LPS-triggered HK-2 cells. CircITCH overexpression restored cell viability in LPS-treated HK-2 cells and restrained apoptosis and inflammatory cytokine production. CircITCH negatively regulated miR-579-3p, thereby upregulating ZEB2 expression. Taken together, circITCH alleviates LPS-induced HK-2 cell injury by regulating miR-579-3p/ZEB2 signal axis, which provides a theoretical basis for AKI therapy.
Collapse
Affiliation(s)
- Qing Li
- Department of Internal Medicine, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Tianyi Wang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Ximin Wang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xin-Yu Ge
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Tao Yang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Guang Bai
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Wei Wang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
28
|
Zhao S, Liao J, Shen M, Li X, Wu M. Epigenetic dysregulation of autophagy in sepsis-induced acute kidney injury: the underlying mechanisms for renoprotection. Front Immunol 2023; 14:1180866. [PMID: 37215112 PMCID: PMC10196246 DOI: 10.3389/fimmu.2023.1180866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Sepsis-induced acute kidney injury (SI-AKI), a common critically ill, represents one of the leading causes of global death. Emerging evidence reveals autophagy as a pivotal modulator of SI-AKI. Autophagy affects the cellular processes of renal lesions, including cell death, inflammation, and immune responses. Herein, we conducted a systematic and comprehensive review on the topic of the proposed roles of autophagy in SI-AKI. Forty-one relevant studies were finally included and further summarized and analyzed. This review revealed that a majority of included studies (24/41, 58.5%) showed an elevation of the autophagy level during SI-AKI, while 22% and 19.5% of the included studies reported an inhibition and an elevation at the early stage but a declination of renal autophagy in SI-AKI, respectively. Multiple intracellular signaling molecules and pathways targeting autophagy (e.g. mTOR, non-coding RNA, Sirtuins family, mitophagy, AMPK, ROS, NF-Kb, and Parkin) involved in the process of SI-AKI, exerting multiple biological effects on the kidney. Multiple treatment modalities (e.g. small molecule inhibitors, temsirolimus, rapamycin, polydatin, ascorbate, recombinant human erythropoietin, stem cells, Procyanidin B2, and dexmedetomidine) have been found to improve renal function, which may be attributed to the elevation of the autophagy level in SI-AKI. Though the exact roles of autophagy in SI-AKI have not been well elucidated, it may be implicated in preventing SI-AKI through various molecular pathways. Targeting the autophagy-associated proteins and pathways may hint towards a new prospective in the treatment of critically ill patients with SI-AKI, but more preclinical studies are still warranted to validate this hypothesis.
Collapse
Affiliation(s)
- Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizho, Zhejiang, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Maolei Shen
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizho, Zhejiang, China
| | - Xin Li
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizho, Zhejiang, China
| | - Mei Wu
- Educational Administration Department, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
29
|
Xu K, Mo X, Wang Y, Zeng Z, Xu Z, Yue D, Li G, Li T, Liu J, Yuan J. Downregulation of miR-527 alleviates sepsis-induced acute kidney injury via targeting Beclin1. Histol Histopathol 2023; 38:443-452. [PMID: 36200697 DOI: 10.14670/hh-18-531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
BACKGROUND Sepsis-induced acute kidney injury (AKI) is known to result from the inflammatory responses. MiRNAs participate in the development of sepsis-induced AKI. Nevertheless, the function of miR-527 in sepsis-induced AKI remains unclear. METHODS Cell viability was evaluated by CCK8 assay, and TUNEL staining was applied to assess cell apoptosis. Pro-inflammatory cytokine (TNF-α, IL-6 and IL-1β) levels were evaluated by ELISA. Meanwhile, the relation among miR-527 and Beclin1 was detected by dual luciferase report assay. Western blot and RT-qPCR were used to examine the protein and mRNA levels, respectively. Furthermore, an in vivo model was constructed to assess the function of miR-527 in sepsis-induced AKI. RESULTS MiR-527 downregulation significantly alleviated the symptoms of sepsis-induced AKI in mice. MiR-527 level in HK-2 cells was significantly upregulated by LPS, and downregulation of miR-527 notably reversed LPS-induced inhibition of HK-2 cell viability by inhibiting apoptosis. In addition, LPS greatly increased TNF-α, IL-6 and IL-1β levels in supernatant of HK-2 cells, while miR-527 inhibitor partially restored this phenomenon. Meanwhile, Beclin1 was found to be the downstream mRNA of miR-527, and miR-527 inhibitor notably upregulated the level of LC3. MiR-527 downregulation reversed LPS-induced HK-2 cell injury through suppression of TGF-β pathway. CONCLUSION Downregulation of miR-527 alleviated sepsis-induced AKI via targeting Beclin1. Thus, miR-527 might act as a vital mediator in sepsis-induced AKI.
Collapse
Affiliation(s)
- Ke Xu
- Department of Critical Care Medicine, First People's Hospital of Chenzhou, Chenzhou, Hunan, China
| | - Xiaojun Mo
- Department of Emergency, First People's Hospital of Chenzhou, Chenzhou, Hunan, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yijun Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Emergency, First People's Hospital of Chenzhou, Chenzhou, Hunan, China.
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ziqiang Xu
- Department of Emergency, First People's Hospital of Chenzhou, Chenzhou, Hunan, China
| | - Dongyou Yue
- Department of Emergency, First People's Hospital of Chenzhou, Chenzhou, Hunan, China
| | - Guicheng Li
- Department of Critical Care Medicine, First People's Hospital of Chenzhou, Chenzhou, Hunan, China
| | - Tao Li
- Department of Critical Care Medicine, First People's Hospital of Chenzhou, Chenzhou, Hunan, China
| | - Junhong Liu
- Department of Emergency, First People's Hospital of Chenzhou, Chenzhou, Hunan, China
| | - Jiemin Yuan
- Department of Emergency, First People's Hospital of Chenzhou, Chenzhou, Hunan, China
| |
Collapse
|
30
|
Notoginseng leaf triterpenes ameliorates mitochondrial oxidative injury via the NAMPT-SIRT1/2/3 signaling pathways in cerebral ischemic model rats. J Ginseng Res 2023; 47:199-209. [PMID: 36926612 PMCID: PMC10014186 DOI: 10.1016/j.jgr.2020.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/17/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Due to the interrupted blood supply in cerebral ischemic stroke (CIS), ischemic and hypoxia results in neuronal depolarization, insufficient NAD+, excessive levels of ROS, mitochondrial damages, and energy metabolism disorders, which triggers the ischemic cascades. Currently, improvement of mitochondrial functions and energy metabolism is as a vital therapeutic target and clinical strategy. Hence, it is greatly crucial to look for neuroprotective natural agents with mitochondria protection actions and explore the mediated targets for treating CIS. In the previous study, notoginseng leaf triterpenes (PNGL) from Panax notoginseng stems and leaves was demonstrated to have neuroprotective effects against cerebral ischemia/reperfusion injury. However, the potential mechanisms have been not completely elaborate. Methods: The model of middle cerebral artery occlusion and reperfusion (MCAO/R) was adopted to verify the neuroprotective effects and potential pharmacology mechanisms of PNGL in vivo. Antioxidant markers were evaluated by kit detection. Mitochondrial function was evaluated by ATP content measurement, ATPase, NAD and NADH kits. And the transmission electron microscopy (TEM) and pathological staining (H&E and Nissl) were used to detect cerebral morphological changes and mitochondrial structural damages. Western blotting, ELISA and immunofluorescence assay were utilized to explore the mitochondrial protection effects and its related mechanisms in vivo. Results: In vivo, treatment with PNGL markedly reduced excessive oxidative stress, inhibited mitochondrial injury, alleviated energy metabolism dysfunction, decreased neuronal loss and apoptosis, and thus notedly raised neuronal survival under ischemia and hypoxia. Meanwhile, PNGL significantly increased the expression of nicotinamide phosphoribosyltransferase (NAMPT) in the ischemic regions, and regulated its related downstream SIRT1/2/3-MnSOD/PGC-1α pathways. Conclusion: The study finds that the mitochondrial protective effects of PNGL are associated with the NAMPT-SIRT1/2/3-MnSOD/PGC-1α signal pathways. PNGL, as a novel candidate drug, has great application prospects for preventing and treating ischemic stroke.
Collapse
|
31
|
Shen SH, Wang RL, Yuan Q, Jian LY, Guo HH, Li HS, Liu XP, Huang RF. The roles of AMPK/mTOR autophagy pathway in the acute kidney injury-induced acute lung injury. CHINESE J PHYSIOL 2023; 66:73-84. [PMID: 37082995 DOI: 10.4103/cjop.cjop-d-22-00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Acute kidney injury (AKI) is one of the most challenging clinical problems in kidney disease due to serious complications and high mortality rate, which can lead to acute lung injury (ALI) through inflammatory reactions and oxidative stress. Adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway has been reported to be involved in the development of renal ischemia-reperfusion through autophagy and it remains unclear whether AMPK/mTOR pathway has an effect on the AKI-induced ALI. In this study, we aimed to investigate the effects of autophagy-related AMPK/mTOR signaling pathway on inflammatory factors and oxidative stress in an AKI-induced ALI model. The 48 male Sprague-Dawley rats were divided into four groups randomly: (i) sham, (ii) ischemia/reperfusion injury (IRI), (iii) IRI + rapamycin (RA), and (iv) IRI + 3-methyladenine (3-MA). Unilateral flank incisions were made and right kidneys were excised. The left kidney was subjected to 60 min of ischemia followed by 12, 24, 48, and 72 h of reperfusion. The levels of Scr, blood urea nitrogen (BUN), Wet/Dry ratio, indexes of inflammation, and oxidative stress were assayed. Histological examinations were performed. The protein expression of AMPK, mTOR, LC3-II/LC3-I ratio, and Beclin-1, ULK1 was evaluated by western blotting and immunohistochemistry. Compared to the rats from the sham group, IRI rats showed significantly pulmonary damage after AKI with increased Scr, BUN, Wet/Dry ratio, indexes of inflammation, and oxidative stress. The expression of AMPK, LC3-II/LC3-I ratio, Beclin-1, and ULK1 and were increased, while p62 and mTOR were decreased. In addition, RA treatment significantly attenuated lung injury by promoting autophagy through the activation of the AMPK/mTOR pathway, and 3-MA treatment exhibited adverse effects inversely. Therefore, the activation of the AMPK/mTOR pathway after renal IRI induction could significantly attenuate kidney injury and following AKI-induced ALI by inducing autophagy, which alienates inflammation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Si-Heng Shen
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ruo-Lin Wang
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Qi Yuan
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lu-Yong Jian
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hua-Hui Guo
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - He-Sheng Li
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xue-Pin Liu
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ren-Fa Huang
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
32
|
Wang T, Lin B, Qiu W, Yu B, Li J, An S, Weng L, Li Y, Shi M, Chen Z, Zeng Z, Lin X, Gao Y, Ouyang J. ADENOSINE MONOPHOSPHATE-ACTIVATED PROTEIN KINASE PHOSPHORYLATION MEDIATED BY SIRTUIN 5 ALLEVIATES SEPTIC ACUTE KIDNEY INJURY. Shock 2023; 59:477-485. [PMID: 36533528 DOI: 10.1097/shk.0000000000002073] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ABSTRACT Background : Our previous studies have shown that ameliorating mitochondrial damage in renal tubular epithelial cells (RTECs) can alleviate septic acute kidney injury (SAKI). It is reported that AMPK phosphorylation (p-AMPK) could ameliorate mitochondrial damage in renal tissue and Sirtuin 5 (SIRT5) overexpression significantly enhanced the level of p-AMPK in bovine preadipocytes. However, the role of SIRT5-mediated phosphorylation of AMPK in SAKI needs to be clarified. Methods : WT/SIRT5 gene knockout mouse model of cecal ligation and puncture-induced SAKI and a human kidney 2 cell model of LPS-induced SAKI were constructed. An AMPK chemical activator and SIRT5 overexpression plasmid were used. Indexes of mitochondrial structure and function, level of p-AMPK, and expression of SIRT5 protein in renal tissue and RTECs were measured. Results : After sepsis stimulation, the p-AMPK level was decreased, mitochondrial structure was disrupted, and ATP content was decreased. Notably, an AMPK activator alleviated SAKI. Sirtuin 5 gene knockout significantly aggravated SAKI, while SIRT5 overexpression alleviated mitochondrial dysfunction after LPS stimulation, as manifested by the increase of p-AMPK level, the alleviation of mitochondrial structure damage, the restoration of ATP content, the decrease of proapoptotic protein expression, as well as the reduction of reactive oxygen species generation. Conclusions : Upregulation of SIRT5 expression can attenuate mitochondrial dysfunction in RTECs and alleviate SAKI by enhancing the phosphorylation of AMPK.
Collapse
Affiliation(s)
- Tingjie Wang
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Bo Lin
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Weihuang Qiu
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Binmei Yu
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Jiaxin Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Sheng An
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lijun Weng
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yuying Li
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Menglu Shi
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xianzhong Lin
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Youguang Gao
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Jie Ouyang
- Department of Urology, Huaihua First People's Hospital, Huaihua 418099, Hunan, China
| |
Collapse
|
33
|
Itoh H, Yoshino J. NAD + and mtRNA sensing drive human kidney diseases. Nat Metab 2023; 5:357-359. [PMID: 36914910 DOI: 10.1038/s42255-023-00762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Hiroshi Itoh
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan.
| | - Jun Yoshino
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
34
|
Curcumin Ameliorates Age-Induced Tight Junction Impaired in Porcine Sertoli Cells by Inactivating the NLRP3 Inflammasome through the AMPK/SIRT3/SOD2/mtROS Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1708251. [PMID: 36846717 PMCID: PMC9957632 DOI: 10.1155/2023/1708251] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023]
Abstract
Blood-testis barrier (BTB) made of concomitant junction apparatus between Sertoli cells (SCs) is crucial for spermatogenesis. The tight junction (TJ) function is impaired in SCs with age, exhibiting an intimate relationship to testicular dysfunction induced by age. In this study, compared with those in young boars, TJ proteins (i.e., Occludin, ZO-1, and plus Claudin-11) were discovered to have reduced expressions in testes, and spermatogenesis ability declined in old boars. An in vitro age model for D-gal-treated porcine SCs was established, the performance of Curcumin as a natural antioxidant and anti-inflammatory compound in affecting the TJ function of SCs was appraised, and related molecular mechanisms were exploited. The results manifested that 40 g/L D-gal downregulated ZO-1, Claudin-11, and Occludin in terms of the expression in SCs, whereas Curcumin restored such expressions in D-gal-treated SCs. Using the AMPK and SIRT3 inhibiters demonstrated that activation of the AMPK/SIRT3 pathway was associated with Curcumin, which not only rescued the expression of ZO-1, Occludin, Claudin-11, and SOD2 but also inhibited the production of mtROS and ROS and the activation of NLRP3 inflammasome and release of IL-1β in D-gal-treated SCs. Furthermore, with mtROS scavenger (mito-TEMPO), NLRP3 inhibitor (MCC950) plus IL-1Ra treatment ameliorated D-gal-caused TJ protein decline in SCs. In vivo data also showed that Curcumin alleviated TJ impairment in murine testes, improved D-gal-triggered spermatogenesis ability, and inactivated the NLRP3 inflammasome by virtue of the AMPK/SIRT3/mtROS/SOD2 signal transduction pathway. Given the above findings, a novel mechanism where Curcumin modulates BTB function to improve spermatogenesis ability in age-related male reproductive disorder is characterized.
Collapse
|
35
|
Zhao S, Gong J, Wang Y, Heng N, Wang H, Hu Z, Wang H, Zhang H, Zhu H. Sirtuin 3 regulation: a target to alleviate β-hydroxybutyric acid-induced mitochondrial dysfunction in bovine granulosa cells. J Anim Sci Biotechnol 2023; 14:18. [PMID: 36788581 PMCID: PMC9926763 DOI: 10.1186/s40104-022-00825-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/11/2022] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND During the transition period, the insufficient dry matter intake and a sharply increased in energy consumption to produce large quantities of milk, high yielding cows would enter a negative energy balance (NEB) that causes an increase in ketone bodies (KBs) and decrease in reproduction efficiency. The excess concentrations of circulating KBs, represented by β-hydroxybutyric acid (BHBA), could lead to oxidative damage, which potentially cause injury to follicular granulosa cells (fGCs) and delayed follicular development. Sirtuin 3 (Sirt3) regulates mitochondria reactive oxygen species (mitoROS) homeostasis in a beneficial manner; however, the molecular mechanisms underlying its involvement in the BHBA-induced injury of fGCs is poorly understood. The aim of this study was to explore the protection effects and underlying mechanisms of Sirt3 against BHBA overload-induced damage of fGCs. RESULTS Our findings demonstrated that 2.4 mmol/L of BHBA stress increased the levels of mitoROS in bovine fGCs. Further investigations identified the subsequent mitochondrial dysfunction, including an increased abnormal rate of mitochondrial architecture, mitochondrial permeability transition pore (MPTP) opening, reductions in mitochondrial membrane potential (MMP) and Ca2+ release; these dysfunctions then triggered the caspase cascade reaction of apoptosis in fGCs. Notably, the overexpression of Sirt3 prior to treatment enhanced mitochondrial autophagy by increasing the expression levels of Beclin-1, thus preventing BHBA-induced mitochondrial oxidative stress and mitochondrial dysfunction in fGCs. Furthermore, our data suggested that the AMPK-mTOR-Beclin-1 pathway may be involved in the protective mechanism of Sirt3 against cellular injury triggered by BHBA stimulation. CONCLUSIONS These findings indicate that Sirt3 protects fGCs from BHBA-triggered injury by enhancing autophagy, attenuating oxidative stress and mitochondrial damage. This study provides new strategies to mitigate the fGCs injury caused by excessive BHBA stress in dairy cows with ketosis.
Collapse
Affiliation(s)
- Shanjiang Zhao
- grid.410727.70000 0001 0526 1937State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianfei Gong
- grid.410727.70000 0001 0526 1937State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi Wang
- grid.410727.70000 0001 0526 1937State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nuo Heng
- grid.410727.70000 0001 0526 1937State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huan Wang
- grid.410727.70000 0001 0526 1937State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhihui Hu
- grid.410727.70000 0001 0526 1937State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haoyu Wang
- grid.410727.70000 0001 0526 1937State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haobo Zhang
- grid.410727.70000 0001 0526 1937State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huabin Zhu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
36
|
Ding X, Hou Y, Liu X, Li X, Liu X, Deng Y, Cao N, Yu W. The role of Sirt3-induced autophagy in renal structural damage caused by periodontitis in rats. J Periodontal Res 2023; 58:97-108. [PMID: 36380567 DOI: 10.1111/jre.13071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE This research aimed to explore the effect of periodontitis on renal tissues injury in rats and the role of Sirtuin3 (Sirt3) and its regulation of autophagy in this progression. MATERIAL AND METHODS Thirty Wistar rats were assigned into three groups: control, periodontitis (P), and periodontitis with gavage administration of Sirt3 activator resveratrol (P + RSV). To induce periodontitis, the wire ligature was placed around the cervical region of the rat maxillary first molar. After 8 weeks, micro-computed tomography (Micro-CT) and hematoxylin and eosin (HE) were used to evaluate the alveolar bone resorption and periodontal inflammation. Serum and urine biochemical indicators were measured to assess renal function. The pathological changes of the kidney were observed via HE and periodic acid Schiff (PAS) staining. Autophagosome was viewed by transmission electron microscopy (TEM). Real-time PCR and western blot were used to test expressions of Sirt3 and autophagy indicators in renal and periodontal tissues, including mammalian target of rapamycin (mTOR), phosphor-mTOR (p-mTOR), BECN1 (Beclin-1), and microtubule-associated protein 1 light chain 3 (LC3). RESULTS Alveolar bone destruction, resorption, and periodontal inflammation were observed in the P group (compared with the control group), and the above indexes were significantly improved after RSV intervention; the obvious changes in renal tissue structure in the P group were partially recovered after RSV intervention, while renal functional status was not affected (among the three groups); in addition, the levels of Sirt3 and autophagy in kidney and periodontal tissues of P group were inhibited, manifested as a decrease in the number of autophagosomes (renal tissue) and expressions of autophagy marker Beclin-1 and LC3 conversion rate and an increase in the expression of p-mTOR. After Sirt3 activation (RSV), the above indicators were significantly improved. CONCLUSION Periodontitis causes renal structural damage in rats, which may be connected to the effect of Sirt3-induced autophagy.
Collapse
Affiliation(s)
- Xu Ding
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yubo Hou
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xinchan Liu
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xin Li
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaomeng Liu
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yu Deng
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Niuben Cao
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Weixian Yu
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
37
|
Xiang Y, Fu Y, Wu W, Tang C, Dong Z. Autophagy in acute kidney injury and maladaptive kidney repair. BURNS & TRAUMA 2023; 11:tkac059. [PMID: 36694860 PMCID: PMC9867874 DOI: 10.1093/burnst/tkac059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 01/23/2023]
Abstract
Acute kidney injury (AKI) is a major renal disease characterized by a sudden decrease in kidney function. After AKI, the kidney has the ability to repair, but if the initial injury is severe the repair may be incomplete or maladaptive and result in chronic kidney problems. Autophagy is a highly conserved pathway to deliver intracellular contents to lysosomes for degradation. Autophagy plays an important role in maintaining renal function and is involved in the pathogenesis of renal diseases. Autophagy is activated in various forms of AKI and acts as a defense mechanism against kidney cell injury and death. After AKI, autophagy is maintained at a relatively high level in kidney tubule cells during maladaptive kidney repair but the role of autophagy in maladaptive kidney repair has been controversial. Nonetheless, recent studies have demonstrated that autophagy may contribute to maladaptive kidney repair after AKI by inducing tubular degeneration and promoting a profibrotic phenotype in renal tubule cells. In this review, we analyze the role and regulation of autophagy in kidney injury and repair and discuss the therapeutic strategies by targeting autophagy.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410000, Hunan Province, China
| | - Ying Fu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410000, Hunan Province, China
| | - Wenwen Wu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410000, Hunan Province, China
| | - Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410000, Hunan Province, China
| | | |
Collapse
|
38
|
Neres-Santos RS, Armentano GM, da Silva JV, Falconi CA, Carneiro-Ramos MS. Progress and Challenges of Understanding Cardiorenal Syndrome Type 3. Rev Cardiovasc Med 2023; 24:8. [PMID: 39076878 PMCID: PMC11270482 DOI: 10.31083/j.rcm2401008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 07/31/2024] Open
Abstract
The pathologies of the kidney and heart have instigated a large number of researchers around the world to try to better understand what the exact connectors responsible for the emergence and establishment of these diseases are. The classification of these pathologies into different types of cardiorenal syndromes (CRSs) over the last 15 years has greatly contributed to understanding pathophysiological and diagnostic aspects, as well as treatment strategies. However, with the advent of new technologies classified as "Omics", a new range of knowledge and new possibilities have opened up in order to effectively understand the intermediaries between the kidney-heart axis. The universe of micro-RNAs (miRNAs), epigenetic factors, and components present in extracellular vesicles (EVs) have been protagonists in studying different types of CRSs. Thus, the new challenge that is imposed is to select and link the large amount of information generated from the use of large-scale analysis techniques. The present review seeks to present some of the future perspectives related to understanding CRSs, with an emphasis on CRS type 3.
Collapse
Affiliation(s)
- Raquel Silva Neres-Santos
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, 09210-170 Santo André, SP, Brazil
| | - Giovana Marchini Armentano
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, 09210-170 Santo André, SP, Brazil
| | - Jéssica Verônica da Silva
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, 09210-170 Santo André, SP, Brazil
| | - Carlos Alexandre Falconi
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, 09210-170 Santo André, SP, Brazil
| | - Marcela Sorelli Carneiro-Ramos
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, 09210-170 Santo André, SP, Brazil
| |
Collapse
|
39
|
Yin Y, Zhou Y, Yang X, Xu Z, Yang B, Luo P, Yan H, He Q. The participation of non-canonical autophagic proteins in the autophagy process and their potential as therapeutic targets. Expert Opin Ther Targets 2023; 27:71-86. [PMID: 36735300 DOI: 10.1080/14728222.2023.2177151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Autophagy is a conserved catabolic process that helps recycle intracellular components to maintain homeostasis. The completion of autophagy requires the synergistic effect of multiple canonical autophagic proteins. Defects in autophagy machinery have been reported to promote diseases, rendering autophagy a bone fide health-modifying agent. However, the clinical implication of canonical pan-autophagic activators or inhibitors has often led to undesirable side effects, making it urgent to find a safer autophagy-related therapeutic target. The discovery of non-canonical autophagic proteins has been found to specifically affect the development of diseases without causing a universal impact on autophagy and has shed light on finding a safer way to utilize autophagy in the therapeutic context. AREAS COVERED This review summarizes recently discovered non-canonical autophagic proteins, how these proteins influence autophagy, and their potential therapeutic role in the disease due to their interaction with autophagy. EXPERT OPINION Several therapies have been studied thus far and continued research is needed to identify the potential that non-canonical autophagic proteins have for treating certain diseases. In the meantime, continue to uncover new non-canonical autophagic proteins and examine which are likely to have therapeutic implications.
Collapse
Affiliation(s)
- Yiming Yin
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yourong Zhou
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaochun Yang
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhifei Xu
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Peihua Luo
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Pharmacology and Toxicology, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Yan
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiaojun He
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
40
|
Wang Z, Xiao D, Ji Q, Li Y, Cai Z, Fang L, Huo H, Zhou G, Yan X, Shen L, He B. Jujuboside A attenuates sepsis-induced cardiomyopathy by inhibiting inflammation and regulating autophagy. Eur J Pharmacol 2022; 947:175451. [PMID: 36502962 DOI: 10.1016/j.ejphar.2022.175451] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Jujuboside A (JuA), as a main effective component of Jujubogenin, has long been known as a sedative-hypnotic drug. The aim of the current study was to investigate the potential effect of JuA on sepsis-induced cardiomyopathy (SIC) induced by lipopolysaccharide (LPS). METHOD Wide type C57BL/6 mice and neonatal rat cardiomyocytes (NRCMs) were exposed to LPS to establish myocardial toxicity models. Cardiac function of septic mice was detected by echocardiography. Moreover, the survival rate was calculated for 7 days. ELISA assays were used to analyze inflammatory factors in serum. Furthermore, western blotting, flow cytometry and TUNEL staining were performed to assess cell apoptosis and transmission electron microscopy detect the number of autophagosomes in myocardium. Finally, the expression of proteins related to pyroptosis, autophagy and oxidative stress was analyzed by western blotting and immunohistochemistry staining. RESULTS Results showed that JuA pretreatment significantly improved the survival rate and cardiac function, and suppressed systemic inflammatory response in septic mice. Further study revealed that JuA could decrease cell apoptosis and pyroptosis; instead, it strengthened autophagy in SIC. Moreover, JuA also significantly decreased oxidative stress and nitrodative stress, as evidenced by suppressing the superoxide production and downregulating iNOS and gp91 expression in vivo. In addition, the autophagy inhibitor 3-MA significantly abolished the effect of JuA on autophagic activity in SIC. CONCLUSION In conclusion, the findings indicated that JuA attenuates cardiac function via blocking inflammasome-mediated apoptosis and pyroptosis, at the same time by enhancing autophagy in SIC, heralding JuA as a potential therapy for sepsis.
Collapse
|
41
|
Zhu J, Yang Q, Li H, Wang Y, Jiang Y, Wang H, Cong L, Xu J, Shen Z, Chen W, Zeng X, Wang M, Lei M, Sun Y. Sirt3 deficiency accelerates ovarian senescence without affecting spermatogenesis in aging mice. Free Radic Biol Med 2022; 193:511-525. [PMID: 36336229 DOI: 10.1016/j.freeradbiomed.2022.10.324] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/11/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Sirtuin-3 (SIRT3), the main deacetylase in the mitochondria, maintains cellular energy metabolism and redox balance by deacetylating mitochondrial proteins in a NAD+-dependent manner. Growing evidence indicates that decreased Sirt3 expression is involved in various age-related maladies. However, the role of Sirt3 in ovarian and testicular senescence remains unclear. In this study, we observed that sirt3 expression showed age-dependent decreases in the ovary but not the testis. We generated Sirt3 null mice via CRISPR/Cas9-mediated genome editing. We observed that Sirt3 deletion accelerated ovarian aging, as shown by a decrease in offspring sizes, the follicle reserve and oocytes markers (Bmp15 and Gdf9) as well as increased expression of aging and inflammation-related genes (p16, p21, Il-1α, and Il-1β). Sirt3 deficiency led to an accumulation of superoxide and disruption of spindle assembly accompanied by mitochondrial dysfunction (uneven mitochondria distribution, decreased mitochondrial potential as well as reduced mitochondrial DNA content) in aging oocytes. Meanwhile, in ovaries of Sirt3 null mice, the impaired mitochondrial functions were shown by decreases in mitochondrial respiratory complexes, along with lower levels of mitochondrial fusion (OPA1, MFN2) and fission (DRP1, FIS1) proteins. er levels of mitochondrial fusion (OPA1, MFN2) and fission (DRP1, FIS1) proteins. Interestingly, Sirt3-/- male mice exhibited no changes on the testicular histology, serum testosterone levels, germ-cell proliferation, and differentiation of spermatogonia. Meiotic prophase I spermatocytes were also normal. Levels of superoxide, mitochondrial potential as well as expression of mitochondrially-encoded genes were unaltered in Sirt3-/- testes. Collectively, the results indicated that SIRT3 plays a critical role in maintaining the ovarian follicle reserve and oocyte quality in aging mice, suggesting its important role in controlling ovarian senescence.
Collapse
Affiliation(s)
- Jing Zhu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Disease (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Qingling Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Disease (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Hui Li
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Disease (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujiao Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Disease (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuqing Jiang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Disease (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huan Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Disease (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Luping Cong
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Disease (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianmin Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Disease (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaoyang Shen
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Disease (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenhui Chen
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Disease (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinxin Zeng
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Disease (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengchen Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Disease (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Min Lei
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Disease (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Disease (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
42
|
Hu J, Liu T, Fu F, Cui Z, Lai Q, Zhang Y, Yu B, Liu F, Kou J, Li F. Omentin1 ameliorates myocardial ischemia-induced heart failure via SIRT3/FOXO3a-dependent mitochondrial dynamical homeostasis and mitophagy. Lab Invest 2022; 20:447. [PMID: 36192726 PMCID: PMC9531426 DOI: 10.1186/s12967-022-03642-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/16/2022] [Indexed: 12/03/2022]
Abstract
Background Adipose tissue-derived adipokines are involved in various crosstalk between adipose tissue and other organs. Omentin1, a novel adipokine, exerts vital roles in the maintenance of body metabolism, insulin resistance and the like. However, the protective effect of omentin1 in myocardial ischemia (MI)-induced heart failure (HF) and its specific mechanism remains unclear and to be elucidated. Methods The model of MI-induced HF mice and oxygen glucose deprivation (OGD)-injured cardiomyocytes were performed. Mice with overexpression of omentin1 were constructed by a fat-specific adeno-associated virus (AAV) vector system. Results We demonstrated that circulating omentin1 level diminished in HF patients compared with healthy subjects. Furthermore, the fat-specific overexpression of omentin1 ameliorated cardiac function, cardiac hypertrophy, infarct size and cardiac pathological features, and also enhanced SIRT3/FOXO3a signaling in HF mice. Additionally, administration with AAV-omentin1 increased mitochondrial fusion and decreased mitochondrial fission in HF mice, as evidenced by up-regulated expression of Mfn2 and OPA1, and downregulation of p-Drp1(Ser616). Then, it also promoted PINK1/Parkin-dependent mitophagy. Simultaneously, treatment with recombinant omentin1 strengthened OGD-injured cardiomyocyte viability, restrained LDH release, and enhanced the mitochondrial accumulation of SIRT3 and nucleus transduction of FOXO3a. Besides, omentin1 also ameliorated unbalanced mitochondrial fusion-fission dynamics and activated mitophagy, thereby, improving the damaged mitochondria morphology and controlling mitochondrial quality in OGD-injured cardiomyocytes. Interestingly, SIRT3 played an important role in the improvement effects of omentin1 on mitochondrial function, unbalanced mitochondrial fusion-fission dynamics and mitophagy. Conclusion Omentin1 improves MI-induced HF and myocardial injury by maintaining mitochondrial dynamical homeostasis and activating mitophagy via upregulation of SIRT3/FOXO3a signaling. This study provides evidence for further application of omentin1 in cardiovascular diseases from the perspective of crosstalk between heart and adipose tissue. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03642-x.
Collapse
Affiliation(s)
- Jingui Hu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Tao Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Fei Fu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Zekun Cui
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Qiong Lai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Yuanyuan Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Fuming Liu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
43
|
Zou J, Tan W, Liu K, Chen B, Duan T, Xu H. Wnt inhibitory factor 1 ameliorated diabetic retinopathy through the AMPK/mTOR pathway-mediated mitochondrial function. FASEB J 2022; 36:e22531. [PMID: 36063130 DOI: 10.1096/fj.202200366rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 11/11/2022]
Abstract
Diabetic retinopathy (DR) is one of the most common complications of diabetes mellitus and will lead to visual impairment. We aim to explore the effects and mechanisms of wnt inhibitory factor 1 (WIF1) in the progression of DR. To establish DR in vitro and in vivo, human retinal pigment epithelium (RPE) cell line ARPE-19 was treated with high-glucose (HG) and diabetic mice models were induced by streptozotocin (STZ), respectively. Different dose of recombinant WIF1 protein was used to treat DR. qRT-PCR and western blotting results demonstrated that WIF1 was downregulated, while VEGFA was upregulated in HG-induced ARPE-19 cells. WIF1 overexpression promoted cell migration. The ARPE-19 cells culture medium treated with WIF1 inhibited retinal endothelial cell tube formation and downregulated VEGFA expression. Moreover, WIF1 decreased the levels of ROS and MDA, while increasing the activity of SOD and GPX. WIF1 increased the ΔΨm in the mitochondria and downregulated the expression of mitochondrial autophagy-related proteins including Parkin, Pink1, LC3-II/LC3-I ratio, cleaved caspase 3, and cyt-c, which ameliorated mitochondrial dysfunction. The in vivo studies further demonstrated the consistent effects of WIF1 in STZ-induced mice. Taken together, WIF1 ameliorated mitochondrial dysfunction in DR by downregulating the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Jing Zou
- Eye Center of Xiangya Hospital, Central South University, Changsha, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Wei Tan
- Eye Center of Xiangya Hospital, Central South University, Changsha, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Kangcheng Liu
- Eye Center of Xiangya Hospital, Central South University, Changsha, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Bolin Chen
- Eye Center of Xiangya Hospital, Central South University, Changsha, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - TianQi Duan
- Eye Center of Xiangya Hospital, Central South University, Changsha, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Huizhuo Xu
- Eye Center of Xiangya Hospital, Central South University, Changsha, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
44
|
He FF, Wang YM, Chen YY, Huang W, Li ZQ, Zhang C. Sepsis-induced AKI: From pathogenesis to therapeutic approaches. Front Pharmacol 2022; 13:981578. [PMID: 36188562 PMCID: PMC9522319 DOI: 10.3389/fphar.2022.981578] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a heterogenous and highly complex clinical syndrome, which is caused by infectious or noninfectious factors. Acute kidney injury (AKI) is one of the most common and severe complication of sepsis, and it is associated with high mortality and poor outcomes. Recent evidence has identified that autophagy participates in the pathophysiology of sepsis-associated AKI. Despite the use of antibiotics, the mortality rate is still at an extremely high level in patients with sepsis. Besides traditional treatments, many natural products, including phytochemicals and their derivatives, are proved to exert protective effects through multiple mechanisms, such as regulation of autophagy, inhibition of inflammation, fibrosis, and apoptosis, etc. Accumulating evidence has also shown that many pharmacological inhibitors might have potential therapeutic effects in sepsis-induced AKI. Hence, understanding the pathophysiology of sepsis-induced AKI may help to develop novel therapeutics to attenuate the complications of sepsis and lower the mortality rate. This review updates the recent progress of underlying pathophysiological mechanisms of sepsis-associated AKI, focuses specifically on autophagy, and summarizes the potential therapeutic effects of phytochemicals and pharmacological inhibitors.
Collapse
|
45
|
Protection of zero-valent iron nanoparticles against sepsis and septic heart failure. J Nanobiotechnology 2022; 20:405. [PMID: 36064371 PMCID: PMC9444118 DOI: 10.1186/s12951-022-01589-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Background Septic heart failure accounts for high mortality rates globally. With a strong reducing capacity, zero-valent iron nanoparticles (nanoFe) have been applied in many fields. However, the precise roles and mechanisms of nanoFe in septic cardiomyopathy remain unknown. Results NanoFe was prepared via the liquid-phase reduction method and functionalized with the biocompatible polymer sodium carboxymethylcellulose (CMC). We then successfully constructed a mouse model of septic myocardial injury by challenging with cecal ligation and puncture (CLP). Our findings demonstrated that nanoFe has a significant protective effect on CLP-induced septic myocardial injury. This may be achieved by attenuating inflammation and oxidative stress, improving mitochondrial function, regulating endoplasmic reticulum stress, and activating the AMPK pathway. The RNA-seq results supported the role of nanoFe treatment in regulating a transcriptional profile consistent with its role in response to sepsis. Conclusions The results provide a theoretical basis for the application strategy and combination of nanoFe in sepsis and septic myocardial injury. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01589-1.
Collapse
|
46
|
Feng YL, Yang Y, Chen H. Small molecules as a source for acute kidney injury therapy. Pharmacol Ther 2022; 237:108169. [DOI: 10.1016/j.pharmthera.2022.108169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
|
47
|
Huang C, Jiang S, Gao S, Wang Y, Cai X, Fang J, Yan T, Craig Wan C, Cai Y. Sirtuins: Research advances on the therapeutic role in acute kidney injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154122. [PMID: 35490494 DOI: 10.1016/j.phymed.2022.154122] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/28/2022] [Accepted: 04/17/2022] [Indexed: 05/28/2023]
Abstract
BACKGROUND Acute kidney injury (AKI), a common multidisciplinary diagnostic clinical critical illness, eventually causes end-stage renal disease (ESRD). Although many clinical measures have been taken to prevent or treat AKI, high morbidity and death rates were recorded. Therefore, in-depth pathogenesis study and search for new therapeutic targets are in demand. Interestingly, the suirtuins family showed a significant protective effect in AKI. Sirtuins (SIRT1-7) is a family of seven proteins with NAD+-dependent type III histone deacetylase activity. Sirtuins family members were involved by AKI, and regulation of sirtuins activities significantly improved AKI-induced renal injury. Therefore, the therapeutic role and molecular mechanisms of the sirtuins family in AKI has important research implications for clinical applications or basic research. PURPOSE This review summarizes recent advances in the roles and functions of the sirtuins family, discusses their therapeutic effects on AKI and related molecular mechanisms, and the mechanisms of action of small molecule specific activators or inhibitors sirtuins in the prevention and treatment of AKI were discussed. METHODS The data in this review were retrieved from various scientific databases (PubMed, Google scholar, Science Direct, and Web of Science), till December 2021. The keywords were used as follows: "Sirtuins", "Acute kidney injury", "AKI", "Sirtuins modulators" and "Histone deacetylation". The retrieved data followed PRISMA criteria (preferred reporting items for systematic review). RESULTS Growing evidence indicates that members of the sirtuins family regulate the development and progression of different renal diseases, including AKI, through anti-inflammation, antioxidation, anti-apoptotic, and maintenance of mitochondrial homeostasis. The molecular mechanism of Sirtuins family on AKI mainly regulated NF-κB, JNK/ERK, and AMPK/mTOR signaling pathways, upregulated the expression of PGC-1α, HO-1, NRF2, Bcl-2, OPA1, and AMPK, and downregulated the expression of NRLP3, IL-1β, TNF-α, IL-6, ROS, MFF, Drp1, Bax, ERK, and mTOR. In addition, the active ingredients of herbs (resveratrol, thujaplicins, huperzine, and curcumin) could activate the activity of SIRT1 or SIRT3, thereby improving AKI. Meanwhile, the synthetic Sirtuins inhibitor (AK-1) inhibited SIRT2 activity, thus alleviating AKI. In the future, more specific modulators will remain needed to enhance the clinical therapeutic role of the Sirtuins family in AKI. CONCLUSION The sirtuins family is a promising type III histone deacetylase for AKI treatment. This review will provide insight into sirtuins family's therapeutic role in AKI and promote the clinical use of sirtuins modulators in AKI.
Collapse
Affiliation(s)
- Chaoming Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Shisheng Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Shuhan Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yuxin Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Xiaoting Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Junyan Fang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Tingdong Yan
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, PR China.
| | - Chunpeng Craig Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, PR China.
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
48
|
Li B, Lin F, Xia Y, Ye Z, Yan X, Song B, Yuan T, Li L, Zhou X, Yu W, Cheng F. The Intersection of Acute Kidney Injury and Non-Coding RNAs: Inflammation. Front Physiol 2022; 13:923239. [PMID: 35755446 PMCID: PMC9218900 DOI: 10.3389/fphys.2022.923239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Acute renal injury (AKI) is a complex clinical syndrome, involving a series of pathophysiological processes, in which inflammation plays a key role. Identification and verification of gene signatures associated with inflammatory onset and progression are imperative for understanding the molecular mechanisms involved in AKI pathogenesis. Non-coding RNAs (ncRNAs), involved in epigenetic modifications of inflammatory responses, are associated with the aberrant expression of inflammation-related genes in AKI. However, its regulatory role in gene expression involves precise transcriptional regulation mechanisms which have not been fully elucidated in the complex and volatile inflammatory response of AKI. In this study, we systematically review current research on the intrinsic molecular mechanisms of ncRNAs that regulate the inflammatory response in AKI. We aim to provide potential research directions and strategies for developing ncRNA-targeted gene therapies as an intervention for the inflammatory damage in AKI.
Collapse
Affiliation(s)
- Bojun Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangyou Lin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuqi Xia
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zehua Ye
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinzhou Yan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baofeng Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tianhui Yuan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
49
|
Association of Metformin Use During Hospitalization and Mortality in Critically Ill Adults With Type 2 Diabetes Mellitus and Sepsis. Crit Care Med 2022; 50:935-944. [PMID: 35120041 DOI: 10.1097/ccm.0000000000005468] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVES Whether metformin exposure is associated with improved outcomes in patients with type 2 diabetes mellitus and sepsis. DESIGN Retrospective cohort study. SETTING Patients admitted to ICUs in 16 hospitals in Pennsylvania from October 2008 to December 2014. PATIENTS Adult critical ill patients with type 2 diabetes mellitus and sepsis. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We conducted a retrospective cohort study to compare 90-day mortality in diabetic patients with sepsis with and without exposure to metformin during hospitalization. Data were obtained from the electronic health record of a large healthcare system in Pennsylvania from October 2008 to December 2014, on patients admitted to the ICU at any of the 16 hospitals within the system. The primary outcome was mortality at 90 days. The absolute and adjusted odds ratio (OR) with 95% CI were calculated in a propensity score-matched cohort. Among 14,847 patients with type 2 diabetes mellitus and sepsis, 682 patients (4.6%) were exposed to metformin during hospitalization and 14,165 (95.4%) were not. Within a total of 2,691 patients subjected to propensity score-matching at a 1:4 ratio, exposure to metformin (n = 599) was associated with decreased 90-day mortality (71/599, 11.9% vs 475/2,092, 22.7%; OR, 0.46; 95% CI, 0.35-0.60), reduced severe acute kidney injury (50% vs 57%; OR, 0.75; 95% CI, 0.62-0.90), less Major Adverse Kidney Events at 1 year (OR, 0.27; 95% CI, 0.22-0.68), and increased renal recovery (95% vs 86%; OR, 6.43; 95% CI, 3.42-12.1). CONCLUSIONS Metformin exposure during hospitalization is associated with a decrease in 90-day mortality in patients with type 2 diabetes mellitus and sepsis.
Collapse
|
50
|
Chang P, Li Y. Editorial: Targeting Protein Post-Translational Modifications (PTMs) for Diagnosis and Treatment of Sepsis. Front Immunol 2022; 13:856146. [PMID: 35185940 PMCID: PMC8851232 DOI: 10.3389/fimmu.2022.856146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Panpan Chang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, China.,Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, China.,National Center for Trauma Medicine of China, Beijing, China
| | - Yongqing Li
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|